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Abstract
Background: N-acetyltransferase 1 (NAT1) and 2 (NAT2) are polymorphic isoenzymes
responsible for the metabolism of numerous drugs and carcinogens. Acetylation catalyzed by NAT1
and NAT2 are important in metabolic activation of arylamines to electrophilic intermediates that
initiate carcinogenesis. Inflammatory bowel diseases (IBD) consist of Crohn's disease (CD) and
ulcerative colitis (UC), both are associated with increased colorectal cancer (CRC) risk. We
hypothesized that NAT1 and/or NAT2 polymorphisms contribute to the increased cancer evident
in IBD.

Methods: A case control study was performed with 729 Caucasian participants, 123 CRC, 201
CD, 167 UC, 15 IBD dysplasia/cancer and 223 controls. NAT1 and NAT2 genotyping were
performed using Taqman based techniques. Eight single nucleotide polymorphisms (SNPs) were
characterized for NAT1 and 7 SNPs for NAT2. Haplotype frequencies were estimated using an
Expectation-Maximization (EM) method. Disease groups were compared to a control group for the
frequencies at each individual SNP separately. The same groups were compared for the frequencies
of NAT1 and NAT2 haplotypes and deduced NAT2 phenotypes.

Results: No statistically significant differences were found for any comparison. Strong linkage
disequilibrium was present among both the NAT1 SNPs and the NAT2 SNPs.

Conclusion: This study did not demonstrate an association between NAT1 and NAT2
polymorphisms and IBD or sporadic CRC, although power calculations indicate this study had
sufficient sample size to detect differences in frequency as small as 0.05 to 0.15 depending on SNP
or haplotype.
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Background
Inflammatory bowel diseases (IBD) are disorders charac-
terized by chronic gastrointestinal inflammation includ-
ing ulcerative colitis (UC), and Crohn's disease (CD).
Both are associated with an increased risk of colorectal
cancer (CRC) [1,2]. Colitis associated CRC risk increases
with both the duration and extent of the disease [3-6]. The
risk of malignant transformation is particularly high for
patients having the disease for longer than 8 years, for
patients with UC affecting the entire colon [7]. Patients
with UC are up to 30-fold more likely to develop CRC and
are three times as likely as the general population to die
from it [7]. In contrast to sporadic CRC, relatively little is
known regarding the pathogenesis of IBD-associated
CRC. The continuous state of inflammation and repair in
IBD may increase both the frequency and propagation of
genetic mutations.

Many enzymes are involved in the metabolism of carcin-
ogens, the present study focused on both N-acetyltrans-
ferase (NAT) isoenzymes. NAT1 and NAT2 are both
localized to chromosome 8 and are involved in the
metabolism of numerous drugs and carcinogens [8,9].
Germline genetic variation within the genes encoding
these enzymes can lead to altered phenotypic expression,
which in turn impacts on an individual's metabolic capac-
ity. Base pair changes or deletions may affect enzyme sta-
bility, expression and/or activity. NAT1 and NAT2
catalyze both N-acetylation and 0-acetylation of
arylamine carcinogens [10]. Humans are exposed to
arylamine carcinogens such as 4-aminobiphenyl, 2-nap-
thylamine and o-toluidine in cigarette smoke [11].

Conflicting data address NAT1 and NAT2 polymorphisms
and CRC risk. Although NAT2 polymorphism is said to
modify CRC risk in individuals exposed to heterocyclic
amine carcinogens [9], a meta-analysis of 20 case-control
studies on NAT2 acetylation status and colon cancer risk
reported no consistent effect on CRC risk [12]. To date
there has been limited investigation of NAT polymor-
phisms in IBD. The aim of this study was to characterize

NAT1 and NAT2 polymorphisms within a well defined
IBD and sporadic CRC population, and to test for associ-
ation with IBD and/or sporadic CRC.

Methods
Control and subject selection
University of Louisville Institutional Review Board
approved and written informed consent were obtained
from all subjects. Patients were derived from a university
colorectal surgery unit. The patient population consisted
of 729 Caucasians including 201 unrelated individuals
with CD, 167 with UC, 123 with sporadic CRC, 15 with
IBD dysplasia or cancer and 223 controls without IBD or
CRC. Clinical and demographic information is provided
for cases and control in Table 1. Different ethnic groups
have varying degrees of susceptibility to inflammatory
bowel disease, patients of Jewish ethnicity being more
susceptible to IBD and African-Americans less so. The
racial/ethnic composition of our patient population com-
prised 0.9% Asians, 6% African- Americans, 2% Jewish
Caucasians and 90% non-Jewish Caucasians. In order to
study a homogenous group with an adequate sample size,
our study focused upon non-Jewish Caucasians.

An initial diagnosis of IBD was included, histology in all
cases. Following the initial diagnosis, a single specialist
gastrointestinal pathologist with a particular interest in
IBD reviewed all histology as previous studies have shown
that inter-observer variation in can be a significant con-
founding variable [13-15]. If there was disagreement
between the initial diagnosis and that of the specialist
pathologist, the latter diagnosis was used.

Polymorphism detection
Following venipuncture, 10 ml peripheral blood was
obtained and Genomic DNA extracted (PURGENE® DNA
extraction kit, Gentra Systems Inc., Minneapolis, MN).
NAT1 and NAT2 SNPs; NAT1: 97 C > T, 190 C > T, 445G
> A, 559C > T, 560G > A, 752A > T, 1088T > A and 1095C
> A, and for NAT2: 191G> A, 282C > T, 341T > C, 481C >
T, 590G > A, 803A > G and 857G > A were determined by

Table 1: Clinical and demographic characteristics of cases and controls.

Group Male: 
Female (n)

Average 
age (yrs)

Average age of 
diagnosis, range(yrs)

Family history 
of IBD (%)

Family history of 
sporadic-CRC (%)

Average length of 
follow up,range(yrs)

Sporadic-CRC 58:65 62 65 (28–97) < 2 21 5.2 (0–12)
CD 75:126 46 29(6–81) 38 23 4.6 (0–16)
UC 77:90 48 34(10–75) 25 36 4.3 (0–14)
IBD dysplasia/cancer 6:9 59 45 (12–81) 29 32 4.4 (0–16)
Control 76:147 53 - 9 37

CRC: colorectal cancer
IBD: inflammatory bowel disease
CD: Crohn's disease
UC: ulcerative colitis
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TaqMan allele discrimination assays as previously
described [16,17]. Amplification reactions were carried
out in an ABI Prism 7700 sequence detection system
(Applied Biosystems, Foster City, CA). Consensus NAT1
and NAT2 genotypes were determined as published at
http://www.louisville.edu/medschool/pharmacology/
NAT.html. NAT2 phenotypes were deduced from NAT2
genotypes as previously described [18] based on NAT2
phenotypes following recombinant expression of NAT2
alleles [19].

Statistical analyses
Hardy-Weinberg goodness of fit was determined using an
exact test (proc Allele, SAS, Cary, NC). The squared corre-
lation coefficient (r2) and Lewontin's standardized dise-
quilibrium coefficient (D'), both measures of linkage
disequilibrium (LD), were estimated using SAS proc
Allele.

Genotype and Allele frequencies between patients and
controls were compared using a R × C contingency table
and an exact test.

Haplotype frequencies were estimated from genotype
data with unknown phase using Arlequin 2.0 (University
of Geneva). The Arlequin program provides exact global
p-values for comparison of all haplotypes among all
groups as well as exact global p-values for each control
group vs. disease comparison for all haplotypes. It also
gives the estimated haplotype frequency and its standard
error for each haplotype in each group. Tests for differ-
ences between control and disease groups for each haplo-
type frequency were done with a normal distribution (z)
test. Within each control-disease group comparison the p-
values for each haplotype frequency were then used to
compute the false discovery rate p-values (fdrp) [20] using
the multi-test procedure of SAS [21]. Only haplotypes
with a frequency above 0.15% in at least one group were
used in the analysis.

Compounding of type I errors due to multiple testing was
controlled by declaring a difference in frequency for a spe-
cific haplotype significant only if (1) the global test for
homogeneity of all haplotypes in all groups was < 0.05,
(2) the global p-value for all haplotypes in a specific con-
trol-disease group comparison was < 0.05, (3) the fdrp
was < 0.05.

Prospective power for genotype frequency differences was
calculated using SAS power RxC macro. The computations
involved setting a single genotype in a single group to be
different by the amount delta from its frequency in the
control and all other groups except the IBD dysplasia/can-
cer group, which was too small to conduct meaningful
power calculations. Power was then computed for a range

of different values of delta. Approximate prospective
power of the haplotype analysis was computed by simula-
tion of sampling from a control population and disease
population in which a particular haplotype (focal haplo-
type) frequency in the disease group was set to be greater
than the frequency in the control group by amount delta.
All other haplotypes in the disease group were adjusted
proportionally to make the sum of all haplotype frequen-
cies equal one. Each sample was tested for a difference
between the control and disease group using Proc haplo-
type (SAS), each value of delta, 10,000 simulations were
performed and power calculated as the proportion of tests
in which the null hypothesis was rejected. The null
hypothesis was the frequency of the focal haplotype is the
same in the two groups. To account for multiple testing
when comparing 3 groups, the Bonferroni method was
used giving a significance level of α/κ = 0.0167 for each
test.

Results
All 729 participants were genotyped for NAT1 SNPs. Four
subjects who could not be genotyped for NAT2 were
excluded from analysis. Twenty different genotypes were
observed for NAT1 (Table 2), 26 genotypes were found for
NAT2 (Table 3). Thirteen NAT2 genotypes are associated
with slow acetylation phenotype, 10 genotypes with
"intermediate" acetylation phenotype and 3 with rapid
acetylation phenotype.

NAT1
None of the eight SNPs showed any significant departure
from Hardy-Weinberg equilibrium proportions in any of
the groups. Significant pairwise linkage disequilibrium
(LD) was found between three of the 8 SNPs; C1095A,
G560A and T1088A.

Power of NAT1 analyses
Two SNPs (G560A and C1095A) were selected for power
analysis, G560A had very low levels of polymorphism
(genotype frequencies; GG: 0.954, GA: 0.046). C1095A
was more polymorphic (genotype frequencies; AA: 0.056;
CA: 0.332; CC: 0.612).

The groups in the analysis were CRC, CD, control, and UC
with sample sizes 123, 201, 223, and 167, respectively.
UC was the focal group for all analyses and GA the focal
genotype for the G560A SNP analyses. AA and CA were
the focal genotypes for C1095A analyses. The power
against delta = 0.1 for G560A was 0.95, so the power
against a difference of = 0.1 was good, but fell of rapidly
for smaller delta values. The power of the focal genotype
AA for C1095A, for delta = 0.1 was 0.843, while the power
for CA the focal genotype for C1095A for delta = 0.1 was
0.384. Examination of the power curve indicates good
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Table 2: NAT1 genotype frequency.

NAT1 Genotype Sporadic-CRC IBD benign IBD dysplasia/cancer Control

No. % No. % No. % No. %
NAT1*4/*4 73 59.35 205 55.7 9 60 131 58.75
NAT1*4/*10 28 22.77 104 28.3 6 40 61 27.35
NAT1*10/*10 9 7.32 18 4.89 9 4.03
NAT1*4/*14A or *10/*14B 4 3.25 13 3.53 7 3.14
NAT1*4/*11B 0 0 6 1.63 5 2.24
NAT1*4/*14B 2 1.63 3 0.81 2 0.9
NAT1*10/*11B 1 0.81 2 0.54 2 0.9
NAT1*4/*3 2 1.63 3 0.81 1 0.45
NAT1*4/*15 0 0 1 0.27 1 0.45
NAT1*4/*11A or *3/*11B 1 0.81 0 0 1 0.45
NAT1*3/*11A 0 0 0 0 1 0.45
NAT1*10/*15 0 0 0 0 1 0.45
NAT1*4/*17 0 0 6 1.63 1 0.44
NAT1*3/*3 1 0.81 2 0.54 0 0
NAT1*10/*17 0 0 2 0.54 0 0
NAT1*10/*22 1 0.81 1 0.27 0 0
NAT1*4/*22 0 0 1 0.27 0 0
NAT1*3/*14A 1 0.81 0 0 0 0
NAT14A/*22 0 0 1 0.27 0 0
Total 123 368 15 223

Genotypes listed by order of decreasing frequency in control group
IBD: inflammatory bowel disease
CRC: colorectal cancer

Table 3: NAT2 genotype frequency.

NAT2 Genotype Sporadic-CRC IBD benign IBD dysplasia/cancer Controls Phenotype

No. % No. % No. % No. %
NAT2*5B/*6A 26 21.3 85 23.22 5 33.33 54 24.3 Slow
NAT2*4/*5B 22 18 72 19.67 1 6.66 39 17.5 Intermediate
NAT2*5B/*5B 17 13.9 54 14.75 3 20 32 14.4 Slow
NAT2*4/*6A 24 19.7 48 13.11 4 26.66 30 13.5 Intermediate
NAT2*6A/*6A 16 13.2 20 5.46 21 9.45 Slow
NAT2*4/*4 3 2.45 26 7.1 16 7.2 Rapid
NAT2*6A/*7B 3 2.45 6 1.63 3 1.36 Slow
NAT2*5B/*7B 2 1.63 8 2.18 5 2.25 Slow
NAT2*5B/*5C 2 1.63 2 0.54 4 1.8 Slow
NAT2*5A/*6A 0 0 2 0.54 2 0.9 Slow
NAT2*5B/*13 0 0 5 1.36 1 6.66 2 0.9 Intermediate
NAT2*4/*5A 0 0 5 1.36 2 0.9 Intermediate
NAT2*4/*7B 2 1.63 5 1.36 1 6.66 2 0.9 Intermediate
NAT2*5C/*6A 0 0 3 0.819 2 0.9 Slow
NAT2*5A/*5B 1 0.81 8 2.18 1 0.45 Slow
NAT2*5A/*5C 0 0 2 0.54 1 0.45 Slow
NAT2*5B/*12A 1 0.81 0 0 1 0.45 Intermediate
NAT2*5C/*5C 0 0 1 0.27 1 0.45 Slow
NAT2*4/*12A 0 0 0 0 1 0.45 Rapid
NAT2*4/*5C 1 0.81 7 1.91 1 0.45 Intermediate
NAT2*6A/*12A 0 0 0 0 1 0.45 Intermediate
NAT2*6A/*13 1 0.81 1 0.27 1 0.45 Intermediate
NAT2*4/*13 0 0 2 0.54 0 0 Rapid
NAT2*5A/*13 0 0 1 0.27 0 0 Intermediate
NAT2*5A/*5A 1 0.81 1 0.27 0 0 Slow
NAT2*5C/*7B 0 0 2 0.54 0 0 Slow
Total 122 366 15 222

Genotypes listed by order of decreasing frequency in control group
IBD: inflammatory bowel disease
CRC: colorectal cancer
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power against a delta ≥ 0.125 for the AA genotype and for
the CA genotype good power against a delta ≥ 0.175.

The haplotype identifier number, SNP composition and
frequency in the control group for the four focal haplo-
types were as follows: AACCCAGA, < 0.001; AACTCGGA,
0.001; AACCCGGA, 0.183 and ACCCCGGT, 0.766. The
first and second of these haplotypes were low frequency
haplotypes and the third and fourth were high frequency
haplotypes. Power curves were substantially different for
different haplotypes. Examination of the power curves
indicated power for against a change of delta = 0.10 to be
0.999, 0.046, 0.641, and 0.632, respectively, for the above
4 haplotypes. For delta = 0.15 the powers were 1.000,
0.057, 0.958 and 0.057 respectively.

NAT1 case-control association studies
NAT1 genotypes are shown in Table 1. There were no sig-
nificant differences among any groups with respect to gen-
otype or allele frequencies. The Cochran-Armitage test
gave no significant differences for genotype frequencies
between sporadic-CRC, IBD, and control populations.

The most common allele was NAT1*4, in agreement with
published literature [9]. The global null hypothesis of no
difference in haplotype frequencies between groups was
not rejected and there were no differences in haplotype
frequencies among any groups when pairwise testing was
performed (p = 0.851).

NAT2
None of the seven NAT2 SNPs showed any significant
departure from Hardy-Weinberg equilibrium proportions
in any of the groups. Almost all pairwise combinations of
the 7 SNPs showed significant LD, except G857A which
had highly significant LD with C282T and T341C only.

Power of NAT2 analyses
Two SNPs (C282T and G857A) were selected for power
analysis. The G857A SNP was not very polymorphic (gen-
otype frequencies, GG: 0.948, GA: 0.052). The C282T SNP
was more polymorphic (genotype frequencies, CC: 0.458,
CT: 0.44, TT: 0.102). The groups and sample sizes in the
analysis were CRC (n = 123), CD (n = 201), control (n =
223), and UC (n = 167). UC was the focal group for all
analyses and GA the focal genotype for the G857A SNP
analysis and TT and CT the focal genotypes for the C282T
analysis. For G857A, the power against delta= 0.1 was
0.963. The power against a difference ≥ 0.1 was good, but
fell off rapidly for smaller delta values. For C282T, the TT
focal genotype yielded a power of 0.723 for delta = 0.1,
whereas the CT focal genotype yielded a power of 0.346
for delta = 0.1. Examination of the power curve indicated
that there was good power against a delta ≥ 0.15 for the TT

genotype and there was good power against a delta ≥ 0.2
for the CT genotype.

The haplotype identification number, SNP composition,
and frequency in the control group for the four focal hap-
lotypes were as follows: ACCGGGC, 0.002; ATCGAGT,
0.307; ATCGGGT, 0.007 and GCTGGGC, 0.383. The
power curves indicated more power for detecting an
increase in frequency for some haplotypes than for others.
The power against a delta = 0.10 for the above four haplo-
types are 0.284, 0.555, 0.127 and 0.317 respectively. For
delta = 0.15 the powers were 0.689, 0.887, 0.288, and
0.766 respectively.

NAT2 case-control association studies
All 7 NAT2 SNPs were identified in our population. NAT2
*5B was the most common allele in agreement with pre-
vious studies in Caucasians [22]. There was no difference
among groups with respect to single SNP analysis using
the Cochran-Armitage test, homogeneity of genotype fre-
quencies or allele frequencies. There was no difference in
haplotype frequencies among groups (p = 0.468) and no
pairwise differences.

There was no correlation between disease group and
NAT2 acetylation phenotype [Global p-value = 0.354, χ2

= 8.62 (6 d.f)].

Discussions and conclusion
NAT1 and NAT2 activity have been described in human
intestine; both are involved in the metabolism of
arylamine carcinogens such as 4-aminobiphenyl found in
tobacco smoke [11,23]. The primary step in hepatic 4-
aminobiphenyl metabolism involves two competing
pathways: N-acetylation and N-oxidation (hydroxyla-
tion). Individuals who exhibit slow acetylator phenotypes
produce higher concentrations of 4-aminobiphenyl
derived hemoglobin adducts and have a higher risk of
smoking related cancers [11,24]. Within smokers,
arylamine carcinogen levels are greater as a consequence
of the slow N-acetylator phenotype characterized by
homozygosity for less active variant alleles. Differences in
NAT1 or NAT2 haplotypes with respect to acetylator phe-
notypes could be considered as contributing factors in
increasing exposure to carcinogenic products.

The role of N-acetyltransferases in cancer predisposition
varies between different organs as might be expected with
tissue-specific expression of NAT1 and NAT2 [8]. Some
early studies suggested an increased CRC risk associated
with the rapid acetylation phenotype [22,24,25]. How-
ever, the increased risk was relatively small and much
progress has been made in the accurate determination of
both genotype and acetylation status. These associations
are strongest with documented exposure to heterocyclic
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amine carcinogens in the diet [22]. More recently, a study
on 275 patients with colon cancer and 343 controls
revealed a significant association between the slow
acetylation genotype and early age of onset [26]. Some
previous studies have reported associations between the
NAT1*10 allele and CRC, particularly in association with
rapid NAT2 acetylators, while others have reported no
association [9]. These contradictory results may be due to
the small number of CRC cases examined; however, the
role of NAT2 acetylation in CRC risk still remains unclear.
The role of NAT1 and NAT2 polymorphisms and their
association with IBD is even less clear. Few papers address
NAT polymorphisms in association with IBD [27,28]. The
true risk of patients with IBD developing CRC is debated.
It is thought by some to increase by 0.5 – 1.0% yearly
beginning 8 – 10 years after diagnosis [29,30]. However,
many of our patients have surgical intervention due to dis-
ease activity and accurate prediction of cancer risk in IBD
patients is confounded by whether or not they have had
surgical intervention [2,31].

In our overall population of 281 UC patients and 460 CD
patients, 18 UC patients (6.4%) and 15 CD patients
(3.2%) had a confirmed diagnosis of dysplasia or cancer.
For UC, nine of these 18 patients had colorectal cancer
and nine had dysplasia. For CD, seven of these 15 patients
had colorectal cancer and eight had dysplasia. However,
genomic DNA for analysis was not available for all these
patients.

We examined NAT1 and NAT2 polymorphisms in
genomic DNA and found no association between NAT1
and NAT2 polymorphisms with either benign IBD, IBD
dysplasia/cancer or sporadic colorectal cancer, compared
to controls. Power calculations for both single marker and
haplotype analyses for NAT1 and NAT2, indicated that
differences in frequency between control and disease
groups of 0.05 and higher had a very high chance (80 –
90%) of detection. The greatest power of our study was in
detecting genotypes or haplotypes that are rare in the con-
trol group and increased in frequency in disease groups.
For many haplotypes, this study had a good chance of
detecting differences as small as 0.15. Thus, if a strong
relationship between any of the three conditions and
NAT1 or NAT2 SNPs existed, they would likely have been
found by this study.

A recent report from Japan suggested an association of the
NAT2*7B haplotype (p = 0.013) with CD in a cohort of 60
CD, 95 UC and 200 gender matched unrelated controls
[32]. Our inability to replicate this finding may be due to
a number of factors including the presence of heterogene-
ity between populations of different race, differences in
LD or population differences in allele frequencies of inter-

acting genes. Different environmental exposures may also
have an effect on these diseases.

Strengths of this study are the relatively large sample size,
reproducible methods and stringent study design. Since
this study was restricted to Caucasians, further studies
across different ethnic groups are needed. Future studies
that consider age of onset also are needed.
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