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Abstract: We proposed the enhancement of the electrical properties of solution-processed indium–tin–
oxide (ITO) thin films through microwave irradiation (MWI) and argon (Ar) gas plasma treatment. A
cost- and time-effective heat treatment through MWI was applied as a post-deposition annealing
(PDA) process to spin-coated ITO thin films. Subsequently, the sheet resistance of MWI ITO thin films
was evaluated before and after plasma treatment. The change in the sheet resistance demonstrated
that MWI PDA and Ar plasma treatment significantly improved the electrical properties of the ITO
thin films. Furthermore, X-ray photoelectron spectroscopy and X-ray diffraction analyses showed
that the electrical properties of the ITO thin films were enhanced by the increase in oxygen vacancies
due to the ion bombardment effect of high-energy plasma ions during Ar plasma treatment. Changes
in the band gap structure of the ITO thin film due to the ion bombardment effect were also analyzed.
The combination of MWI PDA and Ar plasma treatment presents new possibilities for improving the
high-conductivity sol–gel ITO electrode.
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1. Introduction

Indium tin oxide (ITO) is one of the key materials for transparent conductive oxides
in optoelectronics. ITO provides major advantages, i.e., high optical transmittance in the
visible wavelength region, stable chemical properties, easy patterning ability, and excellent
substrate adhesion. Hence, it is widely used as a transparent electrode in electro-optical
devices such as organic light emitting diodes, solar cells, and image sensors [1–4]. Various
methods of fabricating ITO thin films are being studied, such as magnetron sputtering,
spray pyrolysis, electron beam deposition, pulse laser deposition, chemical vapor deposi-
tion, and solution process deposition [5–11]. Among these, solution-process-based ITO thin
films have drawn attention because of their simple and low-cost fabrication process without
expensive high-vacuum equipment, easy ratio adjustment, and homogeneity [12]. Various
processes are being investigated to improve the conductivity of sol–gel ITO thin films to
ensure their practicality, e.g., post-deposition annealing (PDA), passivation, plasma surface
treatment, excimer laser crystallization, and ultraviolet–ozone photo treatment [13–17].
Plasma surface treatment uses high-energy electrons to change the chemical bonding on
the surface of a material. In particular, as the plasma-based process is simple, ecofriendly,
and low temperature, it has been applied for the precision cleaning of semiconductor
surfaces and photoresist ashing processes [18]. Numerous gases are used for plasma sur-
face treatment depending on its purpose [19–22]. Argon (Ar) causes high-energy electron
collision on a surface during plasma treatment, thereby increasing oxygen vacancies. This
phenomenon, referred to as the ion bombardment effect, has been observed in several
amorphous oxide semiconductors [20,23]. In general, the conductivity of ITO films can be
described by the increase in the carrier concentration with the number of oxygen vacancies.
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Low-resistance ITO thin films can be obtained by increasing the carrier concentration [24].
There have been reports of studies on improving conductivity by applying Ar plasma
treatment to ITO thin films, but most of them are conducted on ITO thin films processed
with conventional furnace annealing (CFA) for PDA [25,26]. However, in our previous
study we applied microwave irradiation (MWI) to sol–gel ITO thin films, a high-efficiency
heat treatment with a shorter time than the CFA heat treatment [27]. MWI heat treatment
affects the molecular level of a material through the 2.45 GHz electromagnetic wave. The
interaction of molecular dipoles with microwaves results in rotation of the dipoles, and
the energy is converted into heat for rotation by internal resistance. Therefore, MWI is an
efficient heat treatment method that directly transfers heat to materials through electro-
magnetic waves, and since metal salts efficiently absorb 2.45 GHz microwaves, it is widely
studied as a promising technology for oxide semiconductors [28–31].

In this study, we prepared low-cost sol–gel ITO thin films and improved their electrical
properties through MWI PDA and Ar plasma treatment. Additionally, to identify the
effects of MWI PDA and Ar plasma treatment, CFA and O2-plasma-treated ITO thin film
samples were prepared. The sheet resistance of the PDA and plasma-treated ITO thin
films was measured to evaluate their electrical properties. In addition, X-ray photoelectron
spectroscopy (XPS), X-ray diffraction (XRD), and optical transmittance measurements
were carried out to analyze the chemical state, crystalline state, and band gap model of
the sol–gel ITO thin films, respectively. The improvement in the electrical properties of
the ITO thin films was attributed to the removal of residual organic contaminants by
MWI and the increase in oxygen vacancies due to the ion bombardment effect of high-
energy plasma ions during Ar plasma treatment. The results of this study demonstrate
that high-conductivity transparent ITO electrodes can be developed by performing MWI
PDA and Ar plasma treatment on solution-processed ITO thin films, thereby enabling
high-performance optoelectronics.

2. Materials and Methods

An ITO precursor solution was prepared via a sol–gel reaction. Anhydrous indium
trichloride (InCl3, purity = 99.9%; Sigma Aldrich, Saint Louis, USA) and anhydrous tin
chloride (SnCl4; Sigma Aldrich) were dissolved in 20 mL of 2-methoxyethanol (C3H8O2;
Sigma Aldrich). To improve the stability of the coating, 2.5 mL of monoethanolamine
(C2H7NO; Sigma Aldrich) was added at room temperature. The mixture was then stirred
using an electronic agitator at 50 ◦C for 2 h in a closed vessel. The prepared ITO precursor
solution was spin coated at 3000 rpm for 30 s on Corning 7059 glass substrates (Corning Inc.,
New York, USA), which were cleaned using the Radio Corporation of America process. The
solvent was removed by baking the substrates in an oven at 180 ◦C in air for 10 min. The
coating process was repeated five times to create five layers. The thicknesses of the layers
were measured as ~100 nm using the DektakXT Bruker stylus profiler (Bruker, Hamburg,
Germany). The fabrication steps for the ITO samples are summarized in Figure 1a, and the
photograph of the ITO-coated glass thin film is shown in Figure 1b.

A cost-effective and low-thermal budget MWI technique was applied for PDA. The
MWI process conditions were as follows: a rated power of 1000 W was delivered for
2 min at a microwave frequency of 2.45 GHz in an O2 atmosphere. Figure 2 shows the
average temperature of the ITO thin film vs. the microwave power. The temperature
was measured using an infrared thermometer. The temperature increased almost linearly
with the microwave power. For comparison, CFA was applied to ITO thin films in an O2
atmosphere at 450 ◦C for 30 min. Under the same temperature condition, the CFA method
transfers the heat slowly by radiation, convection, and conduction mechanisms from an
external heating source, but MWI has a shorter heat treatment time than CFA in a way that
the material absorbs electromagnetic energy volumetrically and converts it into heat by
coupling with microwaves [32].
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treatment processes were conducted by employing reactive ion etching (RIE) equipment 
under the following conditions: 50 sccm of Ar and O2 were individually operated at a 
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Figure 1. (a) Fabrication steps for sol–gel indium–tin–oxide (ITO) thin films; (b) photograph of the
ITO-coated glass sample (MWI: microwave irradiation).
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Figure 2. Variation in the temperature of ITO-coated glass substrate with microwave power.

After PDA, Ar plasma treatment was performed under various conditions to find the
optimized conditions for improving the electrical properties of the ITO film. Furthermore,
O2 plasma treatment was performed to compare the properties of the films. The plasma
treatment processes were conducted by employing reactive ion etching (RIE) equipment
under the following conditions: 50 sccm of Ar and O2 were individually operated at a
vacuum of 300 mTorr in a range of 1–4 min at RIE power of 50, 100, 150, and 200 W. The
electrical properties of the ITO films were investigated by measuring the sheet resistance
(Rs) using a four-point probe (Advanced Instrument Technology Inc, Cumming, GA, USA).
The optical properties of the films were investigated by measuring the transmittance using
an ultraviolet–visible spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) in a
wavelength range of 300–1000 nm. The binding energy and the crystallization of the films
were analyzed via XPS and XRD, respectively.

3. Results and Discussion

Figure 3 shows the plot of Rs vs. the plasma treatment time for the ITO films to which
MWI and CFA (450 ◦C) were applied, respectively. The microwave power was 1000 W. The
initial Rs of the MWI and CFA ITO films before plasma treatment was 1.06 × 104 Ω·sq−1

and 8.09 × 104 Ω·sq−1, respectively. Even in the initial state before plasma treatment,
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the conductivity of the ITO film was about 8 times higher in MWI than CFA. This is
because, as previously reported in our study [27], MWI is superior to CFA in terms of
precursor and solvent decomposition owing to the high transfer efficiency of microwave
energy. Furthermore, MWI is more effective in removing residual organic contaminants and
obtaining a high level of solution condensation and metal oxide film densification [32–35].
After PDA, Rs increased with the plasma treatment time and power in the case of O2
plasma treatment. However, in the case of Ar plasma treatment, Rs considerably decreased
as the plasma treatment time and power increased. The best Rs was obtained at a plasma
treatment power of 200 W, and it became saturated after 1 min. Therefore, a sufficient
increase in conductivity can be ensured when Rs is 4.80 × 102 Ω·sq−1 at 200 W after 1 min,
and the conductivity is about 6 times higher than under CFA condition. This confirms that
conductivity can be significantly improved by employing MWI and Ar plasma treatment.
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Figure 3. Variation in sheet resistance (log scale) with plasma treatment time and power for MWI
and conventional furnace annealing (CFA) ITO films.

Various physical analyses were conducted to examine the improvement in the conduc-
tivity of the ITO film due to Ar plasma treatment. The change in the composition caused
by plasma treatment was measured through XPS analysis. O1s spectra can be used to
analyze the binding energy with oxygen, which is an important part of conductivity in ITO
films [36]. O1s spectra can be deconvoluted into three components using Gaussian shaped
peaks. The component at 530.5 eV corresponds to oxygen in the In2O3 lattice without
oxygen vacancies (M-O). The component at 531.9 eV corresponds to oxygen in the In2O3
lattice with oxygen vacancies (VO) and that at 532.8 eV corresponds to the oxygen of free
hydroxyl groups attached to indium ions (O-H) [36–38]. Figure 4 shows the XPS spectra of
the MWI ITO film after Ar and O2 plasma treatments. The XPS spectra of the MWI ITO film
before plasma treatment are shown in Figure 4a. The XPS spectra of the film after O2 and Ar
plasma treatments are shown in Figure 4b,c, respectively. Plasma treatments were carried
out at 200 W for 1 min. The 532.8 eV component decreased after plasma treatments. This is
known to be mainly caused by surface cleaning during plasma treatment [17]. The 531.9 eV
component increased after Ar plasma treatment but decreased after O2 plasma treatment.
The change in the mole fraction of oxygen vacancies is shown in Figure 4d. During O2
plasma treatment, the abundant high-energy O2 gas plasma affected the oxygen component
of the surface and increased the binding energy, thereby reducing oxygen vacancies [39,40].
On the contrary, during Ar plasma treatment, oxygen vacancies increased because the
binding force with oxygen in the In2O3 lattice was weakened by the ion bombardment
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effect. This has been observed in various other oxide semiconductors [20,41]. The ion
bombardment effect improves conductivity because the carrier concentration increases
with oxygen vacancies.
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Figure 4. X-ray photoelectron spectroscopy patterns of MWI ITO thin films (a) before plasma
treatment, (b) after O2 plasma treatment, and (c) after Ar plasma treatment; (d) mole fraction of
oxygen vacancies.

However, the reduction in the binding force caused by the ion bombardment effect
may affect the crystallinity of the ITO film. Thus, the XRD patterns of the ITO films were
analyzed to investigate crystallinity in detail. Figure 5 shows the XRD patterns of the MWI
ITO films. The stable peaks at (222), (400), (440), and (622) represent the typical XRD peaks
for ITO films. In particular, the preferential growth of the ITO film occurred along the (222)
plane, which strongly depends on the preparation conditions [42]. Crystallinity can be
quantitatively determined by extracting the grain size at the main (222) peak. The average
grain size is obtained through the well-known Scherrer formula given by Dp = 0.9λ

β cos θ ,
where d is the average grain size, β is line broadening in radians, θ is the Bragg angle, and λ
is the X-ray wavelength [43]. The grain size calculated at the (222) peak of the MWI ITO film
without plasma treatment was 9.56 nm. The grain size after Ar plasma treatment reduced
to 8.32 nm. Therefore, it is confirmed that the ion bombardment effect during Ar plasma
treatment decreases the binding force with oxygen and slightly reduces crystallinity.

Figure 6 shows the surface roughness of the MWI ITO thin film in the 5 µm range
measured with a stylus surface profiler (Dektak XT, Bruker). The root-mean-square (rms)
of the MWI ITO thin film was 1.99 nm in the initial MWI state and 1.62 nm after Ar plasma
treatment. The surface roughness was slightly reduced by Ar plasma treatment. This
tendency has been reported in previous studies on plasma-treated ITO thin films [44,45].
The improvement in surface roughness is considered to be due to the crystallinity of the ITO
thin film, which can be inferred from the XRD data in Figure 5. Therefore, the Ar plasma
treatment contributes to the improvement of the conductivity and surface properties of the
ITO thin film, which greatly affects the reliability of optoelectronic devices.
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Figure 6. Surface roughness properties of MWI ITO films (a) before and (b) after Ar plasma treatment.

The ion bombardment effect is also confirmed in the optical characteristics of Ar-
plasma-treated ITO films. Figure 7a shows the optical transmittance spectra of the MWI
ITO films. The transmittance was obtained by normalizing the transmittance of the initial
glass substrate to 100%. Figure 7b shows the plot of the optical absorption coefficient
(α) vs. the optical energy of Ar-plasma-treated and untreated ITO films. The average
transmittances of the initial MWI ITO films and Ar-plasma-treated ITO films in the visible
region (400–800 nm) were 87.17% and 87.18%, respectively. In addition, it is possible to
confirm the ion bombardment effect on the basis of the optical band gap difference, which
is calculated using α. α is obtained from the optical transmittance spectral data using
α = 1

d ln
(

1
T

)
, where d is the film thickness [46]. The optical band gap (Eg) is calculated

using (αhv)
1
n = A

(
hv − Eg

)
, where A is a constant and hν is the incident photon energy.

n depends on the type of transition, where n = 1/2 and 2 are used for direct and indirect
transitions, respectively [47]. Given that the ITO film has a direct band gap, Eg can be
extracted from the plot of (αhν)2 vs. hν. The Eg of the MWI ITO film was obtained as
3.22 eV, and it increased to 3.39 eV after Ar plasma treatment. Transmittance and band gap
changes according to MWI, CFA, and Ar plasma treatment are shown in Table 1.

Therefore, Ar plasma treatment slightly improved the optical properties of the ITO
films. In addition, the increase in optical band gap by Ar plasma treatment was caused
by the ion bombardment effect [48,49]. Ion bombardment weakens the binding force with
oxygen in the In2O3 lattice and thus increases oxygen vacancies. This dominantly leads to
a Burstein–Moss effect that widens the optically measured band gap [50–52]. This explains
why the optical band gap increases after Ar plasma treatment.
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Table 1. Optical properties of sol–gel ITO thin films according to treatment condition.

Treatment Condition Transmittance
(400–800 nm) Optical Band Gap

MWI 87.17% 3.22 eV
MWI + Ar plasma 87.18% 3.39 eV

CFA 87.08% 3.31 eV
CFA + Ar plasma 87.11% 3.54 eV

Figure 8 shows the XPS spectra near the valance band and the band structure model
of the ITO film. To investigate the energy band structure of the ITO film, the energy level
difference between the valence band maximum and the Fermi energy level (EF–EVBM)
was extracted from the XPS valence band spectra [53]. The EF–EVBM values of the initial
MWI ITO films and Ar-plasma-treated ITO films were determined to be 2.17 eV and
2.43 eV, respectively. Subsequently, through the Eg value extracted from optical absorption
coefficient in Figure 7, the energy band structures of the ITO films could be estimated using
these EF–EVBM and Eg values. After Ar plasma treatment on the initial MWI ITO film, it
can be seen that the Eg value increased and the Ef approached the conduction band (Ec).
This proves the effects of ion bombardment during the Ar plasma treatment. The Eg value
increase is due to the Burstein–Moss effect, and the Ec approaches of Ef are due to the
increase in oxygen vacancies (electron concentration), respectively [54].
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4. Conclusions

We investigated a method of improving the electrical properties of sol–gel ITO films
by adapting Ar plasma treatment and MWI. The sheet resistance of MWI and CFA ITO thin
films was compared. The sheet resistance of the ITO films to which MWI was applied at
1000 W was considerably less than that of the ITO films to which CFA (450 ◦C) was applied.
Furthermore, Ar plasma treatment significantly decreased the sheet resistance of the ITO
films, whereas O2 plasma treatment increased the sheet resistance. The cause of this change
in the sheet resistance was identified by analyzing binding energy through XPS. XRD
analysis confirmed that Ar plasma treatment significantly improved the conductivity of the
ITO films and slightly decreased crystallinity owing to the ion bombardment. In addition,
The Burstein–Moss effect and oxygen vacancies increase caused by ion bombardment were
verified by extracting the band structure through optical and XPS characterization. The
results of this study suggest a breakthrough method for using sol–gel ITO thin films as
high-efficiency, low-resistance backplane electrodes in flexible see-through displays.
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