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Abstract
Background/Objective: Neuroimaging studies have reported abnormalities in the examination of
functional connectivity in late-life depression (LLD) in the default mode network (DMN). The
present study aims to study resting-state functional connectivity within the DMN in people diag-
nosed with late-life major depressive disorder (MDD) compared to healthy controls (HCs). More-
over, we would like to differentiate these same connectivity patterns between participants with
high vs. low anxiety levels. Method: The sample comprised 56 participants between the ages of
60 and 75; 27 of them were patients with a diagnosis of MDD. Patients were further divided into
two samples according to anxiety level: the four people with the highest anxiety level and the five
with the lowest anxiety level. Clinical aspects were measured using psychological questionnaires.
Each participant underwent functional magnetic resonance imaging (fMRI) acquisition in different
regions of interest (ROIs) of the DMN. Results: There was a greater correlation between pairs of
ROIs in the control group than in patients with LLD, being this effect preferentially observed in
patients with higher anxiety levels. Conclusions: There are differences in functional connectivity
within the DMN depending on the level of psychopathology. This can be reflected in these correla-
tions and in the number of clusters and how the brain lateralizes (clustering).
© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

According to recent estimates, major depressive disorder
(MDD) may be observed in more than 7% of the population of
elderly individuals (i.e., late-life depression, or LDD)
(Wen et al., 2022). This disorder, therefore, should be con-
sidered as one of the major health issues of this population,
not only because of the direct effect of MDD on individuals’
quality of life and functionality (Zhang, Chen & Ma, 2018)
but also because it is well known that subjects with LLD
have a twofold increased risk of progression to neurodegen-
erative disorders such as Alzheimer’s disease (Habes et al.,
2021). In this context, developing accurate diagnostic meas-
ures and effective prevention and treatment strategies spe-
cifically targeting this population is of paramount
importance. For this purpose, in addition to an accurate
clinical and neurocognitive characterization of patients with
LLD, it is also important to obtain more information about
the neurobiological correlates of this condition, in order to
maximize the effectiveness of clinical strategies using a bio-
logically informed perspective.

Functional magnetic resonance imaging (fMRI) provides a
noninvasive means to explore brain function. Moreover, it
allows not only the assessment of task-related activations
but also interregional functional connectivity (i.e., synchro-
nous patterns of neural activity fluctuations) at rest. This
not only facilitates comparison across studies due to the
lack of differences related to varying task performance but
also allows for the description of brain activity at the net-
work level, that is, in terms of coordinated patterns of activ-
ity across distant brain regions underpinning cognitive and
emotional functioning (Geng et al., 2019; Mancho-
Fora et al., 2020).

The most studied resting-state network is the default
mode network (DMN), which encompasses anterior and pos-
terior regions of the medial wall as well as inferior parietal
areas (Damoiseaux et al., 2008). However, activity in other
brain regions has also been correlated with DMN activity
(Van den Heuvel & Pol, 2010; Wei et al., 2019). Activity in
the DMN is allegedly related to inward attentional processes,
and the pattern of correlations across its different compo-
nents is therefore preferentially observed during resting-
state (i.e., no-task) acquisitions (Harrison et al., 2008).
Moreover, abnormal functional connectivity patterns across
the different components of the DMN have been described in
different disorders of mental health, including MDD
(Wise et al., 2017) and neurodegenerative disorders
(Xue et al., 2019).

Different studies have provided evidence of disturbances
in DMN activity in LLD. Gandelman et al. (2019) observed dif-
ferences in intrinsic functional connectivity, while
Manning, Wang and Steffens (2019) presented an interesting
review regarding DMN alterations and those in other impor-
tant networks, such as the salience network, in LLD, which
may contribute to shared behavioral syndromes. In this
sense, they highlighted the importance of anxiety symptoms
in LLD, which may affect 50% of LLD patients
(Beekman et al., 2000), in relation to the DMN dysfunction
observed in this population. Indeed, some basic alterations
in psychological functioning that are observed both in
depression and anxiety samples, such as rumination (Smith
& Alloy, 2009), may partially account for DMN alterations
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(Jacob et al., 2020). Therefore, comorbid anxiety symptoms
may LLD may indeed play an essential role in DMN disruption
in LLD.

In this study, we aimed to assess abnormal DMN activity in
this population of individuals compared to a group of healthy
controls comparable in age and sex distribution. Moreover,
we also aimed to assess the moderating effect of anxiety on
our findings. Anxiety symptoms have also been related to
DMN alterations (Andreescu, Sheu, Tudorascu, Walker &
Aizenstein, 2014; Laird et al., 2019; Zugman et al., 2022),
and since this is a symptom typically observed in LLD
(Beekman et al., 2000), they may add or interact with MDD
symptoms in accounting for DMN alterations. Finally, in this
study, we used a clustering approach to assess DMN altera-
tions. Clustering analysis in fMRI allows data stratification in
a hierarchical structure, building a dendrogram of all the
members (Wang et al., 2021; Zhou, Zemanov�a, Zamora, Hil-
getag & Kurths, 2006).
Methods

Participants and measurements

The study sample consisted of 56 participants. Patients with
LLD (n = 27, 20 women, mean age M = 68.2 and SD = 4.01)
were consecutively recruited at the Department of Psychia-
try of Bellvitge University Hospital. A control group of 29
subjects (19 women, mean age M = 67.7 and SD = 4.23) was
recruited from the same sociodemographic environment
through advertisements and word-of-mouth. Inclusion crite-
ria for patients included a primary diagnosis of MDD and
aged between 60 and 75 years. MDD diagnoses were estab-
lished by two experienced psychiatrists according to DSM-IV-
TR criteria (which do not substantially differ from DSM-5 cri-
teria and are aligned with the diagnostic criteria of the
interview used to identify comorbid symptoms). Disorder
severity was estimated with the Hamilton Depression Rating
Scale (HDRS) (Hamilton, 1960) and the Geriatric Depression
Scale (GDS) (Sheikh & Yesavage, 1986; Yesavage et al.,
1982), which was not used for diagnostic purposes. Higher
scores in these scales denote higher severity of depression
symptoms. State and trait anxiety were measured through
the State-Trait Anxiety Inventory (STAI, Spielberger,1983).
Similar to above, higher scores in these scales indicate more
severe anxiety symptoms. To identify the current or past
presence of other than depression symptoms, all partici-
pants were also interviewed using the Mini-International
Neuropsychiatric Interview (MINI) (Sheehan et al., 1998),
which provided a fast but accurate assessment of the major
psychiatric diagnoses. Finally, the Vocabulary subtest of the
Wechsler Adult Intelligence Scale, Third Edition (WAIS-III)
(Wechsler, 1999), was administered to all participants to
estimate the premorbid intelligence quotient (IQ; higher
scores, higher premorbid IQ values). Importantly, medica-
tion was not changed in patients and was kept at stable
doses for at least one month before MRI acquisition.

Exclusion criteria included: 1) ages <60 or >75 years
(we set this superior age limit to minimize effects of
altered neurovascular coupling), 2) past or current diag-
nosis of other major psychiatric disorders including sub-
stance abuse or dependence (except nicotine), 3)
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intellectual disability/neurodevelopmental disorders, 4)
neurological disorders, 5) Hachinski Ischemic Score >5,
6) presence of dementia according to the DSM-IV-TR cri-
teria and/or a CDR score>1, 7) severe medical condi-
tions, 8) electroconvulsive therapy in the previous year,
9) conditions preventing neuropsychological assessment
or MRI procedures (e.g., blindness, deafness, claustro-
phobia, pacemakers, or cochlear implants), and 10) gross
abnormalities in the MRI scan. Moreover, although 59 par-
ticipants were recruited initially, three participants (two
patients and one control) were excluded from the study
sample because of excessive movement (half of the voxel
size as criteria) (the two patients) or outlier values in
the psychometric assessment (the control subject).

The study was approved by The Clinical Research Ethics
Committee (CEIC) of Bellvitge University Hospital (reference
PR156/15, 17th February 2016) and performed following the
ethical standards laid down in the 1964 Declaration of Hel-
sinki and its later amendments (revised in 2013). All partici-
pants gave written informed consent to participate in the
study.

Imaging data acquisition and preprocessing

Each participant underwent an 8-minute resting-state func-
tional MRI (fMRI) scan in a 3T Philips Ingenia scan (Philips
Health care, Best, The Netherlands) using a 32-channel head
coil. The functional sequence consisted of 240 echo-planar
image volumes (excluding the four initial dummy volumes)
comprising 40 interleaved slices acquired in the oblique
axial direction perpendicular to the floor of the fourth ven-
tricle (repetition time = 2000 ms; echo time= 25 ms; flip
angle = 90°; 3 mm isotropic voxels; field of view = 24 cm,
80 £ 80 pixel matrix). For anatomical reference and imaging
preprocessing purposes, we also acquired for each partici-
pant a whole-brain T1-weighted anatomical three-dimen-
sional inversion-recovery prepared spoiled gradient echo
sequence (233 axial slices; repetition time = 10.46 ms; echo
time = 4.79 ms; flip angle = 8°; 0.75 mm isotropic voxels;
field of view = 24 cm; pixel matrix =320 £ 318; total
duration = 5 min, 04 s).

Functional time series were initially despiked using the
BrainWavelet toolbox v2.028 (Patek et al., 2014). Next,
using MATLAB version 9.3 (R2017b) (The MathWorks Inc,
Natick, Massachusetts) and the MATLAB-based CONN-fMRI
Functional Connectivity toolbox version 17.f29, imple-
mented in SPM12 (Wellcome Department of Imaging
Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm),
functional images were aligned to the first volume of the
time series using a six-parameter rigid body spatial trans-
formation and least-squares minimization in combination
with an unwarping algorithm aimed at correcting motion
and motion-related distortions. Slice-timing correction was
then applied. ART-based automatic volume outlier detec-
tion (www.nitrc.org/projects/artifact_detect/) was also
run for later scrubbing. Likewise, both functional and struc-
tural images were subjected to simultaneous gray matter,
white matter, and cerebrospinal fluid segmentation, and a
bias correction was performed to remove smoothly varying
intensity differences across images. Such image segments
were subsequently spatially normalized through nonlinear
transformations to the Montreal Neurological Institute
3

(MNI) stereotactic space, and images were resliced to a 2-
mm isotropic resolution. Finally, images were smoothed
with an 8-mm full-width at half-maximum (FWHM) isotropic
Gaussian kernel.

After preprocessing, data were denoised from residual
movement and physiological noise. Denoising steps included
temporal despiking, regressing out confounding factors (i.
e., effect of BOLD signal small ramping effects at the begin-
ning of each scan session and the six rigid body realignment
parameters, as well as their first-order derivatives), control-
ling for total gray matter (GM) signal, the ARTscrubbing pro-
tocol, linear detrending, and bandpass filtering
(0.008�0.09 Hz). Physiological noise was removed with the
anatomical component-based noise correction method
(aCompCor) (Behzadi, Restom, Liau & Liu, 2007). Impor-
tantly, after implementing these different steps, none of
the subjects was removed from the analysis because,
according to current guidelines (Van Dijk et al., 2010), all
individual functional series included at least 95% of the origi-
nal volumes after scrubbing (volume censoring) and spike
regression.
Statistical analyses

Sociodemographic and clinical data were analyzed with IBM
SPSS v 24.0.0.0 for Mac (SPSS Inc., Chicago, IL) and with
libraries and own programming in R. Shapiro-Wills tests
were used to ascertain the normality distribution of these
variables. Between-group differences in quantitative varia-
bles were assessed with Student's t-test or the nonparamet-
ric U test of the Mann-Wittney test, when appropriate. In
contrast, between-group differences in qualitative variables
were explored with the x2 test.

Regarding analyses of imaging data, according to our
study hypotheses, we focused on the DMN, which, following
previous research (Huang et al., 2015), was split into three
different components: the anterior DMN (DMNa), the ven-
tral DMN (DMNv), and the posterior DMN (DMNp). Specifi-
cally, within these components, we defined six, twelve,
and six regions of interest (ROIs) using cortical parcellations
from the automated anatomical atlas (AAL) (Tzourio-
Mazoyer et al., 2002) anatomically corresponding to such
components. All contrasts derived from the image data
were corrected for significance using Family-Wise Error
Rates (FWER) according to Flandin & Friston, (2019) for the
reduction of nominal type I errors. More details are pro-
vided in Table 1.

The MATrix LABoratory program (MATLAB) was used to
analyze functional connectivity. Specifically, for each
subject, we extracted the time-series BOLD signal fluctu-
ations from the above-described ROIs with the different
components of the DMN. Next, we computed a region-by-
region correlation matrix using Pearson correlation coeffi-
cients for each pair of ROIs. Autocorrelations (rxy for
x = y) and anticorrelations (rxy < 0) were eliminated
from this correlation matrix. Moreover, correlations were
transformed to partial correlations by eliminating the
effects of years of schooling. For this, the means and
standard deviations of the observed distribution of years
of schooling were estimated, and distributions adjusted
to these values were simulated to obtain a plausible

http://www.fil.ion.ucl.ac.uk/spm
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Table 1 Regions of Interest and Their Names.

DMNa DMNv DMNp

#ROI Name of Region #ROI Name of Region #ROI Name of Region

1 Insula Left 5 Cingulum Post Left 13 Parietal Superior Left
2 Insula Right 6 Cingulum Post Right 14 Parietal Superior Right
3 Cingulum Ant Left 7 Hippocampus Left 15 Parietal Inferior Left
4 Cingulum Ant Left 8 Hippocampus Right 16 Parietal Inferior Right
23 Lob Temp Med Left 9 Circ ParaHippo Left 21 Temporal Med Left
24 Lob Temp Med R. 10 Circ ParaHipp Right 22 Temporal Med Right

11 Gyrus Fusiform Left
12 Gyrus Fusiform Right
17 Angular Gyrus Left
18 Angular Gyrus Right
19 Precuneus Left
20 Precuneus Right
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estimate of the effect of years of schooling. This proce-
dure is based on the proposal of Ponsoda et al. (2017).
The initial expression is the following:

rxy=z ¼
rxy � rxz ¢ ryz

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rxz2

p ¢ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ryz2

p :

Moreover, at the group level, we computed a correlogram
by averaging the subject-level correlation matrices. We also
conducted a clustering analysis that allowed classifying, for
each group, the different ROIs based on a graph theory
approach, effectively quantifying the degree of functional
connectivity of each ROI (vertex) with its neighbors (Watts &
Strogatz, 1998). Cluster analysis is often used to study func-
tional connectivity (Shakil et al., 2014). We used a hierarchi-
cal clustering analysis to construct two models based on the
connectivity distance, using the Euclidean distance between
each pair of vectors. This distance exists between two points
in a Euclidean space (full vector with internal product). To
optimize the visualization of these results, dendrograms
(graphs of ROI groupings) were computed for each group.

Finally, due to the objectives of the study, the group of
depressed patients was split into two different groups
according to their level of state anxiety prior to MRI. We
estimated two cutoff points from both the mean and the
standard deviation of the MDD group to discriminate
Table 2 Descriptive characteristics of the participants.

Control

x (SD)

Age 67,7 (4,23)
Years of Education 13,17 (4,33)
GDS 0,9 (1,24)
MMSE 28,93 (1,4)
VocWAIS 45,45 (8,53)
IQ 111,62 (9,81)
HDRS 0,86 (1,19)
STAI � S 7,79 (5,91)
STAI � T 11,31 (6,32)

Note: x: Mean; SD: Standard Deviation.

4

individuals with very low anxiety levels from those with very
high anxiety levels (low anxiety group [mean§SD]: 65.25§
5.0; high anxiety group [mean§SD]: 68.80§3.30. The low
anxiety group was made up of the five individuals with the
lowest state anxiety scores, while the high anxiety group
included the four individuals with the highest state anxiety
ratings. Obviously, the sample sizes do not allow for inferen-
tial estimates, but the extreme groups have been kept small
in order to maximize the differences between them, and
these results should be interpreted for a more descriptive
than inferential purpose. To improve the robustness of the
tests, all variability estimates have been carried out using
bootstrap estimates according to Turner, Paul, Miller and
Barbey (2018) and are of special cliical interest.
Results

Analysis of sociodemographic and clinical data

Table 2 displays the descriptive statistics of the study sam-
ple. Groups did not differ in gender [x2 = 0.487; df= 1;
p=.487] or age [t = 0.42; df= 54; p= .68]. Conversely, sig-
nificant differences were observed in the different clini-
cal variables (i.e., HDRS, GDSY, MMSE, vocabulary, STAI-S,
LLD p value

x (SD)

68,2 (4) .68
6,93 (3,69) < 0.0001
5,85 (4,44) < 0.001
26,7 (2,28) < 0.001
29,11 (7,62) <0.001
101,3 (8,15) <0.0001
11,59 (7,27) <0.0001
24,48 (13,78) <0.0001
29,81 (13,46) <0.0001



Table 3 Clustering between groups.

Note: L (Left), R(Right). If the cell is green, then there is a good lateralization. If the cell is red, there is a bad lateralization when
clustering.

5
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Fig. 1 Cluster analysis between groups. A: Clustering of the control group; B: Clustering of the LLD group; C: Clustering of the low
anxiety group; D: Clustering of the high anxiety group.
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and STAI-T). We also observed significant differences
between groups in years of schooling [t = 5.8; df = 54; p
<0.001], although, as described above, the effect of
this variable was removed from data before statistical
analyses.

Between-group differences in correlation values

We observed that the average of pairwise correlations in the
control group was 0.212 (SD = 0.22), while in the MDD group,
this value was 0.181 (SD = 0.24). Although these values were
not significantly different between the study groups
[t = 1.558; df = 550; p = 0.120], when estimating the differ-
ence between the group-level correlation means (i.e.,
0.212�0.181 = 0.031), this value showed a 95% confidence
interval ranging between 0.01 and 0.05. Although this is a
subtle between-group difference, typical of the type of sig-
nal used in the study, this range of correlation difference
values indicates that average correlation values in healthy
controls are consistently higher than average pairwise corre-
lations in MDD patients.

Cluster analyses

Table 3 displays the results of the clusters between groups.
Moreover, Fig. 1 displays the graphical representation. The
clusters of ROIs within the DMN differed between the study
groups. Thus, while 6 clusters in the healthy control group
6

were extracted, with a small distance range (0.7�1.6), in
patients with LLD, only 5 clusters with a greater distance
range (0.8�1.8) were extracted. Additionally, as shown in
Table 3, control group clusters were, in general, more later-
alized than clusters observed in patients with LLD.

Low anxiety group vs. high anxiety group

We repeated the above analyses contrasting the subgroups
of subjects with low and high anxiety derived from the LLD
group. In Table 3 and Fig. 1, the results of the grouping by
anxiety are also shown. The average pairwise correlation in
low anxiety subjects was 0.218 (SD = 0.26) and 0.179
(SD = 0.23) in high anxiety subjects. This difference was not
significant [t = 1.914; df = 540.682; p = .056]. Nevertheless,
similar to what we observed when comparing MDD patients
to healthy controls, the 95% confidence interval of the dif-
ference between these mean values (0.218�0.179 = 0.039)
ranged between 0.01 and 0.07, indicating that this differ-
ence in correlation values may reach 7 correlation units in
the population of origin of the samples, with low anxiety
subjects showing larger pairwise correlation values across
the different ROIs.

In the cluster analysis, we observed that regions clus-
tered differently in low- and high-anxiety subjects, as shown
in Fig. 1. While anatomical ROIs were grouped into 6 clusters
in low anxiety subjects, with a distance range between 0.6
and 1.8, in high anxiety subjects, we only observed 5
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clusters with a distance range between 0.8 and 1.8. Finally,
low-anxiety subjects showed greater lateralization than
high-anxiety individuals.
Discussion

The aim of this paper was to assess abnormal DMN activity in
an LLD group compared to an age- and sex-matched group of
healthy controls. Moreover, a hierarchical clustering analysis
was performed, first comparing LLD patients with healthy
controls and thereafter dividing the late-life depression
group by anxiety symptoms. The results of our study show
the value of the methods used to discriminate patients with
LLD vs. age- and sex-comparable healthy controls. Specifi-
cally, patients with MDD displayed lower interregional corre-
lations, as well as a decreased specialization of the different
areas of the DMN, as reflected by a fewer number of clus-
ters, which were also less lateralized. Finally, high anxiety
levels contribute to such alterations since the pattern
observed in patients with low anxiety levels resembles that
of healthy controls, while patients with high anxiety levels
display the pattern of alterations characterizing the whole
MDD group (i.e., decreased interregional correlations and
decreased regional specialization).

The combination of lower interregional pairwise correla-
tions with an equally decreased number of clusters within
the DMN suggests that this network is less efficiently orga-
nized in patients with LLD than in healthy controls. This find-
ing concurs with previous findings indicating that patients
with MDD show both increased static functional connectivity
and decreased variability within the DMN (Demirtaş et al.,
2016). We observed that activity within the DMN is organized
in larger bilateral clusters, although, at the same time, the
lack of major fluctuations in brain activity may reduce the
strength of interregional correlations in pairwise analyses.
This weaker intramodular functional connectivity has also
been recently reported in a review of graph-theory
approaches to network-level organization in MDD (Yun
&Kim, 2021). Nevertheless, other studies found opposite
findings (Eyre et al., 2016); therefore, although it seems
clear that connectivity within the DMN is altered in MDD,
further research is warranted to elucidate the clinical varia-
bles that may be significantly modulating resting-state activ-
ity and interregional connectivity within the DMN in MDD
samples.

One such variable may be anxiety levels, which we
observed significantly modified the pattern of DMN alter-
ation in patients with MDD, since patients with low anxiety
levels did not differ from controls in the DMN connectivity
and clustering assessments. Anxiety itself is known to
decrease connectivity within the DMN (Northhoff, 2020;
Tumati, Paulus & Northoff, 2021) and between the DMN and
other resting-state networks (Xu et al., 2019), while comor-
bid anxiety symptoms are indeed associated with a worse
outcome of depression (Maarsingh, Heymans, Verhaak, Pen-
ninx & Comijs, 2018) and specific neurobiological alterations
(Laird et al., 2019) in the elderly. Therefore, it seems that
varying anxiety levels in MDD samples may significantly
affect functional connectivity within the DMN and disorder
severity. Likewise, these anxiety levels may also partially
7

account for the differences between studies assessing DMN
connectivity in MDD samples.

As mentioned before, alterations in the DMN have been
found in several mental illnesses, such as neurodegenerative
disorders or dementias. In this sense, the findings of our
study are aligned with others dealing with disorders such as
mild cognitive impairment, Alzheimer’s disease, or autism.
In all cases, a disruption in the DMN is found, always in the
sense of decreased connectivity (Farras-Permanyer et al.,
2019). Therefore, this network seems to be of great impor-
tance across mental health disorders. Although the DMN
function was initially associated with spontaneous neural
activity during resting periods (Raichle et al., 2001), recent
studies suggest that DMN activation is important for differ-
ent the cognitive processes involved in abstract tasks,
including reading comprehension or generating mental con-
tent using information from memory (Zhang et al., 2022).
Our findings suggest these domains may be preferentially
altered in disorders showing DMN alterations at the neural
level.

Our study is not without limitations. First, we assessed a
relatively small sample of patients with LLD, although the
number of subjects recruited for this research was similar to
previous studies. Second, and probably related to the first
point, some of our analyses did not reach statistically signifi-
cant between-group differences. Nevertheless, these same
analyses were significant when using alternative significance
testing approaches, such as the estimation of confidence
intervals. Thirdly, we did not assess the correlations of DMN
regions with other brain networks. Although such compari-
sons are beyond the scope of this manuscript, future
research studies may want to assess such potential internet-
work connectivity alterations, including subcortical net-
works, to further characterize network-level disruptions in
LLD at the whole-brain level. Likewise, we did not exclude
individuals with vascular and metabolic conditions (i.e.,
hypertension or diabetes) which show a very high prevalence
within the age range of the individuals assessed here.
Although this is true both for the control and the MDD
groups, it is also true that some of this health conditions
may show higher prevalence in individuals with MDD (Alexo-
poulos, 2019), and, therefore, a potential effect on our find-
ings cannot be ruled out. Finally, the inclusion of a group of
individuals with anxiety, but no mood, disorders would have
allowed to clarify the effects of anxiety on our findings.
Such comparison is warranted for future research.

In sum, this is, to our knowledge, the first study of late-
life depression using a clustering approach, and the results
appear to be promising. In this sense, our results show that
patients with LLD show a less efficiently organized DMN,
with a decrease in pairwise interregional correlations and
more extended intranetwork clusters. Moreover, anxiety
seems to significantly contribute to such alterations. These
results can help to further characterize the neurobiological
correlates of MDD in the elderly and should allow the specific
comparison with samples of younger patients with MDD and
older patients with cognitive impairments. Such compari-
sons should eventually permit the identification of the brain
functional alterations linking depression with neurodegener-
ative disorders, thus allowing the development of treatment
strategies specifically targeting the brain networks where
such alterations have been detected.
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