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Simple Summary: Expression of the tyrosine kinase receptor ERBB2 in cancer cells leads to drug
resistance. Autophagy, a “self-eating” process inside the cell, is a mechanism for drug resistance
in cancer cells. It has been shown that ERBB2 activation leads to increased autophagy in breast
cancer cells, but the underlying mechanisms remains unclear. In this study, we demonstrated
that ERBB2 promotes autophagy by increasing the protein levels of the autophagy gene ATG12
(autophagy-related 12), contributing to the resistance of breast cancer cells to chemotherapy drugs or
ERBB2-targeted antibody treatments. We further showed that ATG12 expression in breast tumors
containing ERBB2 correlated with a worse patient survival outcome. Finally, lapatinib is an inhibitor
for both EGFR and ERBB2 tyrosine kinases in the EGFR protein family and promotes autophagy in
cells containing only EGFR but inhibits autophagy in cells containing only ERBB2. Taken together,
this suggests that ERBB2 promotes autophagy through upregulation of ATG12.

Abstract: The epidermal growth factor receptor (EGFR) family member erb-b2 receptor tyrosine
kinase 2 (ERBB2) is overexpressed in many types of cancers leading to (radio- and chemotherapy)
treatment resistance, whereas the underlying mechanisms are still unclear. Autophagy is known
to contribute to cancer treatment resistance. In this study, we demonstrate that ERBB2 increases
the expression of different autophagy genes including ATG12 (autophagy-related 12) and promotes
ATG12-dependent autophagy. We clarify that lapatinib, a dual inhibitor for EGFR and ERBB2,
promoted autophagy in cells expressing only EGFR but inhibited autophagy in cells expressing only
ERBB2. Furthermore, breast cancer database analysis of 35 genes in the canonical autophagy pathway
shows that the upregulation of ATG12 and MAP1LC3B is associated with a low relapse-free survival
probability of patients with ERBB2-positive breast tumors following treatments. Downregulation
of ERBB2 or ATG12 increased cell death induced by chemotherapy drugs in ERBB2-positive breast
cancer cells, whereas upregulation of ERBB2 or ATG12 decreased the cell death in ERBB2-negative
breast cancer cells. Finally, ERBB2 antibody treatment led to reduced expression of ATG12 and
autophagy inhibition increasing drug or starvation-induced cell death in ERBB2-positive breast
cancer cells. Taken together, this study provides a novel approach for the treatment of ERBB2-positive
breast cancer by targeting ATG12-dependent autophagy.

Keywords: breast cancer; ERBB2/HER2/Neu; lapatinib; Taxol/paclitaxel; ATG12

1. Introduction

The epidermal growth factor receptor (EGFR) members including EGFR, erb-b2 recep-
tor tyrosine kinase 2 (ERBB2/HER2), ERBB3 and ERBB4, are overexpressed or activation-

Cancers 2021, 13, 1038. https://doi.org/10.3390/cancers13051038 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-6176-2023
https://doi.org/10.3390/cancers13051038
https://doi.org/10.3390/cancers13051038
https://doi.org/10.3390/cancers13051038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13051038
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/5/1038?type=check_update&version=3


Cancers 2021, 13, 1038 2 of 21

mutated in many types of cancers, especially in breast, ovarian and non-small cell lung
cancers, which is associated with (radio- and chemotherapy) treatment resistance, metasta-
sis, and poor prognosis [1,2]. As the most potent oncogene of the EGFR family members,
ERBB2 is over-expressed in the tumors of many types of cancers such as breast cancer,
gastric cancer, colon cancer, bladder cancer, and biliary cancer [3]. In breast cancer, the
most common cancer in women worldwide, ERBB2 is overexpressed in about 11–30% of
all cases [4–6]. Resistance to ERBB2-targeted therapy including the use of trastuzumab, an
anti-ERBB2 monoclonal antibody, and lapatinib, a small molecule kinase inhibitor of ERBB2
and EGFR, is associated with alternations of signal transduction pathways, apoptosis, and
cell cycle control in breast cancer [7]. The underlying mechanisms are still largely unclear.

Autophagy (macroautophagy) is known to play important roles in therapy resistance
in cancers [8,9]. It is an intracellular degradation process characterized by the formation
of the double-membraned structure autophagosome [10,11]. During autophagy, cyto-
plasmic cargos such as dysfunctional organelles and aggregate proteins are enclosed in
autophagosomes that will fuse with lysosomes to form autolysosomes where degrada-
tion of cargos occurs to generate small molecules being used for biosynthesis and energy
sources to support cell survival. However, when autophagy is over-enhanced so that the
essential components for cell survival are degraded, it can induce cell death which is called
autophagic cell death. Our previous study demonstrated that, when cancer cells were
treated under hypoxia, a low level of autophagy promoted cell survival at an early time of
hypoxia, whereas an enhanced level of autophagy induced autosis (a type of autophagic
cell death) at a later time of hypoxia [12]. Thus, autophagy can be a double-edged sword
by either promoting cell survival or cell death depending upon the context [11]. The
pro-cell survival mechanism of autophagy contributes to cancer therapy resistance. For
example, inhibition of autophagy increased cancer cell death induced by docetaxel [13],
and Taxol (paclitaxel) [14,15]. Studies from our and other groups have demonstrated that
the activation of EGFR tyrosine kinase can inhibit autophagy by interacting with Beclin
1 [12,16]. ERBB2 has also been reported to inhibit autophagy by interacting with Beclin
1 [17,18]. However, contradictory roles of the ERBB2 monoclonal antibody Trastuzumab
(Herceptin) in autophagy have been reported to promote [19] or inhibit autophagy [20].
Therefore, the roles of ERBB2 in regulating autophagy and autophagy in ERBB2-induced
treatment resistance need to be further defined.

In this study, we demonstrate that ERBB2 promotes autophagy involving the upregu-
lation of autophagy proteins. Furthermore, ERBB2-induced treatment resistance in breast
cancer is contributed to at least by specific upregulation of ATG12 (autophagy-related 12)
which promotes autophagy.

2. Materials and Methods
2.1. Reagents, Antibodies and Plasmids

Ammonium chloride (NH4Cl) (A9434), chloroquine diphosphate (CQ) (C6628), Sodium
orthovanadate (S6508), Taxol (Paclitaxel) (T7402), docetaxel (01885), trypan blue solution
(T8154), and phosphatase inhibitor cocktails 2 and 3 (P5726, P0044) were purchased from
Sigma-Aldrich (Oakville, ON, Canada), protease inhibitor cocktail (11 836 153 001) from
Roche Diagnostics (Mannheim, Germany), and Pierce™ Protein G Magnetic Beads (88847)
from Thermo Fisher Scientific (Winnipeg, MB, Canada). Lapatinib (L-4899) was purchased
from LC Labs (Woburn, MA, USA).

EBSS Medium for AA (amino acids and serum) starvation (SH30029.02) was purchased
from HyClone Laboratories Inc. (Logan, UT, USA).

The Control siRNA-A (siCon) (Sc-37007), the siRNAs against ERBB2 (siERBB2) (sc-
29405) and ATG12 (siATG12) (sc-72578), ERBB2 double nickase plasmid (sc-400138-NIC)
(NIC-ERBB2) and the control double nickase plasmid (sc-437281) (NIC-Con) were purchased
from Santa Cruz Biotechnology (Dallas, TX, USA).

Primary antibodies: anti-EGFR (2232), anti-ERBB2 (2165), anti-ATG12 (4180), anti-
ULK1 (8054), anti-FIP200 (12436), anti-BECN1 (3495), anti-ATG5 (2630), anti-ATG7 (2631),
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anti-LC3B (2775S), anti-SQSTM1/p62 (D1Q5S) (39749), anti-GFP (2956), and rabbit IgG
control (2729) antibodies were purchased from Cell Signaling Technology (Whitby, ON,
Canada), anti-ATG12 (ab109491) (for immunohistochemistry (IHC)) from Abcam Inc.
(Toronto, ON, Canada), and anti-actin beta (ACTB) (A3853) from Sigma-Aldrich (Oakville,
ON, Canada). Anti-human ERBB2 antibody (research-grade trastuzumab biosimilar)
(MAB9589) was purchased from R&D Systems, Inc. (Minneapolis, MN, USA). Anti-ATG12
(4180) and anti-ATG5 (2630) antibodies mainly identify the ATG12–ATG5 conjugate com-
plex.

Secondary antibodies: goat anti-rabbit IgG (H+L)–HRP (horseradish peroxidase)
conjugate (170–6515) and goat anti-mouse IgG (H+L)–HRP conjugate (170–6516) were
obtained from Bio-Rad Laboratories (Montréal, QC, Canada).

EGFR plasmid (#11011) [21], ERBB2 plasmid (#16257) [22], and pmRFP-LC3B (plasmid
encoding monomeric red fluorescent protein-tagged LC3B) plasmid (#21075) [23] were
purchased from Addgene (Watertown, MA, USA). The empty plasmid vector (EX-NEG-
M45) ((3×)HA/Vector) was purchased from GeneCopoeia (Rockville, MD, USA) and
was used as a control for transfection with EGFR or ERBB2. GFPSpark-ATG12 plasmid
(HG11111-ANG) and its empty plasmid vector (GFPSpark tag empty vector) (CV027) were
purchased from Sino Biological (Burlington, ON, Canada).

2.2. Cell Culture

The breast cancer cell lines MDA-MB-231, SKBR3 and MCF7, and the mouse em-
bryonic fibroblast cell line NIH3T3 were grown in Gibco DMEM (Dulbecco’s Modified
Eagle Medium), high glucose medium (11965092, Thermo Fisher Scientific (Winnipeg, MB,
Canada)) supplemented with 100 units of penicillin per mL plus 100 µg of streptomycin
per mL (15140–122, Thermo Fisher Scientific) and 5% fetal bovine serum, in a humidified
5% CO2, 37 ◦C incubator.

2.3. Western Blot Analysis and IMMUNOPRECIPITATION (IP)

Western blotting was described previously [24]. Immunoprecipitation (IP) is also
similar to that in our previous publication [12]. Briefly, total cell lysate (TCL) was generated
by using NP40 (Sigma, I8896) protein lysis buffer [25], with the addition of protease
inhibitor cocktail, phosphatase inhibitor cocktails 2 and 3 and sodium orthovanadate. TCL
containing 500 µg protein was incubated with anti-ERBB2 or IgG control antibody at 4 ◦C
overnight. Then, 100 µL of Protein G Magnetic Beads was added to the mixture of protein
lysate and a primary antibody, followed by incubation at 4 ◦C overnight. The IP complex
was washed 4 times with NP40 lysis buffer. The pellet was re-suspended in protein loading
dye and immunoblotting followed. ACTB was used as a loading control. The Image J
program (Image J 1.44p, Wayne Rasband, National Institute of Health, Bethesda, MD, USA)
was used to quantify the density of western blot protein bands.

2.4. Measurement of Autophagy

During autophagy, the cytosolic form of microtubule-associated protein 1A/1B-light
chain 3 (LC3), LC3-I, is converted to its lipidated form, LC3-II, in autophagosome mem-
branes. Then, LC3-II in the inner membrane of autophagosome will be degraded in the
autolysosome. To detect functional autophagy, autophagic flux was measured by Western
blotting or fluorescent microscopy. The protein level of LC3-II, in the absence and presence
of a lysosomal inhibitor chloroquine (CQ, 20 µM) or ammonium chloride (NH4Cl, 30 mM),
was measured by Western blotting. An increase in the level of LC3-II in the presence of
CQ or NH4Cl compared to that in its absence indicates a positive autophagic flux and
therefore functional autophagy. Functional autophagy can also be confirmed by West-
ern blotting the protein levels of the autophagy substrate SQSTM1/p62 in the absence
and presence of a lysosomal inhibitor (CQ or NH4Cl). An increase in the protein level
of p62 in the presence of CQ or NH4Cl compared to that in its absence correlates with
functional autophagy. The third method to measure autophagy is to quantify the number
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of autophagosomes/autolysosomes by fluorescent microscopy. Cells were transfected with
pmRFP-LC3B plasmid, treated and then attached onto a microscope slide by Cytospin
centrifugation. Then, the expression of LC3 (red color) was observed with a fluorescent
microscope. The diffused red fluorescent color represents LC3-I and the mRFP-LC3 red
puncta represent LC3-II-located autophagosomes/autolysosomes. Autophagy was quanti-
fied by counting the number of mRFP-LC3 puncta per cell (at least 20 cells were counted
for each treatment). CQ was used to measure autophagic flux.

2.5. Gene Knockdown by RNA Interference (RNAi)

Knockdown of ERBB2 or ATG12 was performed by using siRNAs from Santa Cruz
Biotechnology. Control siRNA (siCon) and ERBB2 siRNA (siERBB2) or ATG12 siRNA
(siATG12) were transfected into cells using Lipofectamine 2000 (11668-019, Invitrogen/
Thermo Fisher Scientific). ERBB2 or ATG12 knockdown was confirmed by Western blotting.
ERBB2 siRNA and ATG12 siRNA are a pool of three to five target-specific 19–25 nt siRNAs
against human ERBB2 gene and ATG12 gene, respectively.

2.6. Generation of Gene Knock-Out Cell Lines Using CRISPR/Cas9 Gene Editing

The double nickase Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR
associated protein 9 (CRISPR/Cas9) plasmids designed by Santa Cruz Biotechnology were
used to knock out ERBB2 in cells. ERBB2 double nickase plasmid (NIC-ERBB2) and the
control double nickase plasmid (NIC-Con) were transfected into SKBR3 cells using Lipofec-
tamine 2000. Then, stable cell lines were developed with puromycin selection followed by
single colony pickup. ERBB2 knockout was verified by Western blotting and its effect on
autophagy was confirmed by comparison experiments with ERBB2 siRNA knockdown.
The pair of cell lines (NIC-Con cell line and NIC-ERBB2 cell line) developed from the
same parental SKBR3 cell line was developed and maintained parallelly so that the results
generated from these two cell lines can be comparable.

2.7. Generation of Stable Cell Lines with Gene Overexpression

Empty vectors EX-NEG-M45 and GFPSpark, and EGFR, ERBB2 and GFPSpark-ATG12
plasmids were transfected into MDA-MB-231, MCF7 or NIH3T3 cells using Lipofectamine
2000 and stable cell lines were generated by treating cells with G418 (Geneticin) (for
Ex-NEG-M45 and ERBB2), puromycin (for EGFR) or hygromycin (for GFPSpark and
GFPSpark-ATG12). Then, a pool of selected cells was used for further experiments. Gene
overexpression was confirmed by Western blotting. Each pair of cell lines (vector alone
cell line and gene overexpression cell line) developed from the same parental cell line
was developed and maintained parallelly so that the results generated from these two cell
lines can be comparable. It should be noted that the results generated from a parental
cell line and its derived cell line with stable gene expression may not be comparable
due to potentially unsynchronized changes of genetic components or signaling pathways
during the selection and maintaining process if these two cell lines were not developed
and maintained parallelly. This is especially true for the comparison of autophagy levels.

2.8. Analysis of Cell Death by Trypan Blue Exclusion Assay

Cell death was measured by flow cytometry as previously described [24] or by count-
ing the percentage of dead cells under microscope [26] after trypan blue staining. Trypan
blue is excluded from live cells but penetrates dead cells giving a red fluorescence that can
be quantified by flow cytometry. Under a microscope, live cells have a clear cytoplasm but
dead cells have a blue cytoplasm following trypan blue staining.

2.9. Bioinformatics Analysis of Autophagy Gene Expression in Human Breast Tumor Tissues

The Cancer Genome Atlas (TCGA) Illumina HiSeq 2000 RNA sequencing (RNA-seq)
data and clinical information of 1218 breast tumor samples were retrieved from the UCSC
(University of California, Santa Cruz) Xena browser (http://xena.ucsc.edu/, accessed
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on 10 March 2020). The mRNA expression was quantified by RNA-seq by Expectation–
Maximization (RSEM) followed by log2 transformation to estimate the gene-level tran-
scription. Clinical immunohistochemistry (IHC) values for HER2 status are available in
776 out of the 1218 breast tumors, where 652 tumors are ERBB2-positive, 114 tumors are
ERBB2-negative, and 10 tumors are ERBB2-equivocal. We excluded the 10 ERBB2-equivocal
tumors and only analyzed the mRNA expression data of autophagy genes including ULK1,
RB1CC1/FIP200, BECN1, ATG12, ATG5, ATG7, and MAP1LC3B in the remaining 766 breast
tumors with ERBB2-positive or -negative. To assess the mRNA expression difference of
each autophagy gene between ERBB2-positive and ERBB2-negative groups of tumors, we
performed a two-tailed Wilcoxon test to compare the means of gene expression of the two
groups and demonstrated gene expression in the two groups using a boxplot.

2.10. Bioinformatics Data Extraction of Survival Probability of Breast Cancer Patients

Relapse-free survival (RFS) refers to the time length starting from the primary treat-
ment of cancer in a patient until the time when the patient survives with no signs or symp-
toms of that cancer. To investigate the upregulation-triggered effects of different autophagy
genes on human breast cancer treatment, we extracted the RFS-based survival probability
data of patients who have breast cancers with high- and low-levels (mRNA levels) of an au-
tophagy gene associated with ERBB2-positive and -negative statuses in the online Kaplan–
Meier Plotter datasets (http://kmplot.com/analysis/index.php?p=service&cancer=breast
(accessed on 19 November 2019)) [27]. In the datasets, 252 patients have ERBB2-positive
(+) breast tumors and 800 patients have ERBB2-negative (−) breast tumors. The difference
between the RFS-based survival probabilities associated with the high-level expression of
an autophagy gene and with the low-level expression of this gene is considered statistically
significant if a value of p < 0.05 is observed. If a low RFS-based survival probability is
significantly correlated with the high-level expression of an autophagy gene, we conclude
that expression of such a gene in breast tumors may contribute to treatment resistance of
breast cancer and therefore the worse outcome (the low survival probability) in patients.

2.11. Real-Time PCR for mRNA Quantification

Total RNA was isolated using the Qiagen RNeasy Plus mini kit (Qiagen, 74134)
according to the manufacturer’s instructions. mRNAs were first reverse transcribed into
cDNA using the Bio-Rad iScript Select cDNA synthesis kit (1708897). To perform qPCR,
a cDNA template was used in combination with iTaq Universal SYBR Green Supermix
(Bio-Rad, 172-5121). The cycling and data collection were performed on Bio Rad CFX
Real-Time Detection System (Bio-Rad, 185-5096) using the supplied software. The primer
pairs used for the human ATG12 gene (Bio-Rad, qHsaCEP0041396) and the housekeeping
gene GAPDH (Bio-Rad, qHsaCED0038674) were pre-designed by Bio-Rad. The GAPDH
gene was used to standardize the results. The qPCR reaction was run as follows: 95 ◦C for
2 min and then 40 cycles of 95 ◦C for 5 s and 60 ◦C for 30 s.

2.12. Statistical Analysis

All data were generated by at least 3 independent triplicate experiments. Data were
represented as means ± standard deviation (SD) (n ≥ 3). The Student t-test with two-tailed
distribution and unequal variances was performed for statistical analysis. A value of
p < 0.05 is considered to be statistically significant. *, p < 0.5; **, p < 0.01; ***, p < 0.001.

3. Results
3.1. ERBB2 Promotes Autophagy

Autophagic flux can demonstrate functional autophagy and is measured by Western
blotting the autophagy marker protein LC3-II and the autophagy substrate SQSTM1/p62,
or by quantifying the number of LC3 puncta containing LC3-II and representing au-
tophagosomes or autolysosomes, without and with the presence of a lysosomal inhibitor,
chloroquine (CQ) or ammonium chloride (NH4Cl). A positive autophagic flux was ex-
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hibited by a higher protein level of LC3-II or p62, or by a larger number of LC3 puncta
per cell in the presence of CQ or NH4Cl compared to that in its absence. To investigate
the role of ERBB2 in autophagy, we knocked out ERBB2 in the breast cancer cell line
SKBR3 expressing a high level of ERBB2 by a double nickase-based CRISPR/Cas9 system
(Figure 1A). The addition of CQ increased the LC3-II protein level by more than 90% in the
control and ERBB2 knockout cells, respectively, increased the p62 protein level by more
than 10% in the control and ERBB2 knockout cells, respectively, and increased the number
of mRFP-LC3 puncta per cell by more than 60% in the control and ERBB2 knockout cells,
respectively (Figure 1A,B and Figure S1A), indicating the existence of a positive basal
level of autophagic flux. In the presence of CQ, ERBB2 knockout decreased the LC3-II
protein level, the p62 protein level, and the number of mRFP-LC3 puncta per cell by 47%,
52%, and 44%, respectively (Figure 1A,B), supporting that ERBB2 knockout inhibited basal
autophagy. Under amino acid starvation, CQ addition increased the LC3-II protein level by
more than 120% in the control and ERBB2 knockout cells, respectively, and increased the
p62 protein level by more than 50% in the control and ERBB2 knockout cells, respectively
(Figure 1A); in the presence of CQ, ERBB2 knockout decreased the LC3-II and p62 protein
levels by more than 30%, respectively (Figure 1A), supporting that starvation-induced
autophagy is functional in both types of cells and is inhibited by ERBB2 knockout. ERBB2
knockout also significantly inhibited amino acid starvation-induced autophagy measured
by quantifying mRFP-LC3 puncta per cell (data not shown). Similar results were also
observed when ERBB2 was knocked down in SKBR3 cells, where when autophagy was
measured by Western blotting LC3-II and p62 in the absence and presence of CQ, siRNA
knockdown of ERBB2 decreased both the basal and amino acid starvation-induced levels
of autophagy by 10–40%, respectively (Figure S1B,C). On the other hand, when ERBB2
was overexpressed in breast cancer cell lines MDA-MB-231 (ERBB2-negative) and MCF 7
(ERBB2-positive) (Figure 2A) and autophagy was measured by LC3-II Western blotting,
basal and amino acid starvation-induced levels of autophagy were increased by at least
40%, respectively (Figure 2B,C). When bafilomycin B1 was used to block lysosomal degra-
dation, similar results were obtained in MCF7 cells (data not shown). Therefore, ERBB2
promotes autophagy.

3.2. Lapatinib Increases Autophagy in Cells Expressing EGFR but Inhibits Autophagy in Cells
Expressing ERBB2

Previous studies reported that the dual inhibitor of EGFR and ERBB2 tyrosine kinases
lapatinib increased autophagy and concluded that ERBB2 inhibited autophagy [17,18,28].
However, the ERBB2-expressing cells used in these studies can also express EGFR. This
makes it unclear whether autophagy promotion by lapatinib was due to the inhibition
of ERBB2 tyrosine kinase. To clarify this question, we expressed EGFR and ERBB2 in
the EGFR family members-negative NIH3T3 cells and observed that lapatinib inhibited
activation of EGFR and ERBB2 tyrosine kinases exhibited by phosphorylation at Y1068 and
Y877, respectively (Figure 3A, Figure S2). The addition of CQ increased the protein levels
of LC3II and p62 in NIH3T3 cells expressing EGFR, vector alone, and ERBB2, respectively
(Figure 3B,C), suggesting that functional basal autophagy exists in these three types of cells.
EGFR and ERBB2 had opposite effects on basal autophagy where, in the presence of CQ,
EGFR expression decreased LC3-II and p62 protein levels by 25% and 34%, respectively,
indicating autophagy inhibition; in contrast, ERBB2 expression increased LC3-II and p62
protein levels by 59% and 56%, respectively, indicating autophagy stimulation (Figure 3B).
Lapatinib slightly decreased autophagy by 20% in vector alone cells but it increased
autophagy by 30% in cells expressing EGFR (Figure 3C), supporting that the inhibition of
EGFR tyrosine kinase by lapatinib increased autophagy. In contrast, lapatinib inhibited
autophagy by 90% in cells expressing ERBB2 (Figure 3C), indicating that the inhibition of
ERBB2 tyrosine kinase by lapatinib decreased autophagy. These results are consistent with
the observations in Figures 1 and 2.
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Figure 1. ERBB2 knockout inhibits autophagy in ERBB2-positive SKBR3 breast cancer cells. (A) Knockout of ERBB2 was
performed by a double-nickase Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein
9 (CRISPR/Cas9) system and demonstrated by Western blotting. Autophagy was measured by Western blotting LC3-II
and p62. Chloroquine (CQ, 20 µM) was used to block lysosomal degradation for autophagic flux measurement (the same
hereafter). No AA, amino acid starvation. Anti-actin beta (ACTB) was used as a loading control (the same hereafter).
Uncropped Western blot images and quantification of the protein band intensities were shown in File S1. (B) Autophagy
was measured by demonstrating the mRFP-LC3 puncta in cells and counting the numbers of mRFP-LC3 puncta per cell.
Data represent or demonstrate the results from at least three independent experiments (the same hereafter). More example
images of mRFP-LC3 puncta are shown in the supplementary data in Figure S1A. *, p < 0.5; **, p < 0.01; ***, p < 0.001 (the
same hereafter). NIC-Con, control cells; NIC-ERBB2, ERBB2 knockout cells.
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Figure 2. Overexpression of ERBB2 promotes autophagy in ERBB2-negative and -ERBB2-positive breast cancer cells.
Western blotting demonstration of ERBB2 overexpression in the ERBB2-negative MDA-MB-231 cells and the ERBB2-positive
MCF7 cells (A). ERBB2 overexpression increased the basal levels of autophagy (B) and amino acid starvation (No AA)-
induced levels of autophagy (C). Autophagy was measured by Western blotting LC3-II in the absence and presence of CQ.
Uncropped Western blot images and quantification of the protein band intensities were shown in File S1.
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Figure 3. Effects of lapatinib on autophagy in NIH3T3 cells expressing EGFR or ERBB2. (A) Western blotting showed the
expression of EGFR and ERBB2. (B) Effects of EGFR and ERBB2 on basal autophagy. (C) Effects of lapatinib (1 µM) on
autophagy in cells expressing vector alone, EGFR or ERBB2. Autophagy was measured by Western blotting LC3-II and
SQSTM1/p62 in the absence and presence of CQ. Uncropped Western blot images and quantification of the protein band
intensities were shown in File S1. *, p < 0.5; **, p < 0.01; ***, p < 0.001.
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3.3. ERBB2 Regulates the Expression of Autophagy Genes

To investigate the underlying mechanism for ERBB2 promotion of autophagy, we
examined the expression of several essential autophagy genes affected by ERBB2 ex-
pression in human breast tumor tissues via bioinformatics analysis of the data in the
Oncomine database. ERBB2 expression significantly increases the mRNA levels of Unc-
51 like autophagy activating kinase 1(ULK1), autophagy-related 7 (ATG7), autophagy-
related 5 (ATG5) and autophagy-related 12 (ATG12), but significantly decreases that of
BECN1/Beclin 1(BECN1) and has no significant effect on that of RB1 inducible coiled-coil
1 (RB1CC1/FIP200) (Figure 4A). ERBB2 expression also has no significant effect on the
mRNA expression of microtubule associated protein 1 light chain 3 beta (MAP1LC3B)
(data not shown). When ERBB2 was overexpressed in MDA-MB-231 cells or MCF7 cells
(Figure 2A), ULK1, ATG7, ATG5 or ATG12 protein was increased by at least 30% (Figure
4B), whereas when ERBB2 was knocked out in SKBR3 cells (Figure 1A), expression of these
autophagy proteins was decreased by at least 50% (Figure 4B), consistent with the change
of mRNA levels (Figure 4A). In agreement with the mRNA change (Figure 4A), the BECN1
protein was reduced by at least 20% by ERBB2 overexpression but was increased by 110%
by ERBB2 knockout (Figure 4B). Interestingly, FIP200 protein was increased by at least 40%
by ERBB2 overexpression but reduced by 80% by ERBB2 knockout (Figure 4B), although
its mRNA level is not significantly affected by ERBB2 expression in patient tumor tissues
(Figure 4A). Therefore, ERBB2 may upregulate the expression of autophagy proteins to
promote autophagy.

3.4. ERBB2-Induced Breast Cancer Treatment Resistance Correlates with ATG12 Upregulation
and Autophagy Promotion

To investigate whether any of the ERBB2-upregulated autophagy proteins ULK1,
FIP200, ATG7, ATG5 and ATG12 (Figure 4B), are required for ERBB2-regulated autophagy
and ERBB2-induced treatment resistance, we first performed bioinformatics analysis. In
cancer clinical studies, relapse-free survival (RFS) is used to evaluate the efficacy of a
treatment. To investigate the upregulation-triggered effects of different autophagy genes
on human breast cancer treatment, we extracted the RFS-based survival data of patients
who have breast cancers with high- and low-levels of an autophagy gene associated with
ERBB2-positive and -negative statuses in the Kaplan–Meier Plotter datasets. Interestingly,
we found that, among the 35 autophagy genes analyzed, upregulation of only ATG12 or
MAP1LC3B in ERBB2-positive breast tumors leads to lower RFS-based patient survival
probability, whereas ATG12 or MAP1LC3B upregulation has no effect on the survival
probability of patients with ERBB2-negative breast tumors, in contrast to the cases with
upregulation of BECN1 and other genes (Figure 5 and Table S1). Since MAP1LC3B coded
protein LC3B has two forms including LC3B-I and LC3B-II and the levels of LC3B-I and
LC3B-II are dynamically changed during a functional autophagy process in ERBB2-negative
(MAD-MB-231) and ERBB2-positive (SKBR3 and MCF7) cells (Figures 1–3), we chose to
further study the roles of ATG12 in ERBB2-regulated autophagy and treatment resistance
in breast cancer cells. Immunohistochemistry (IHC) data showed that ATG12 protein
is expressed in human breast tumor tissues (Figure S3). In MDA-MB-231 cells, ERBB2
overexpression upregulated the ATG12 mRNA level 1.7-fold (Figure S4). This is consistent
with the upregulation of ATG12 protein in the form of ATG12–ATG5 conjugate by ERBB2
overexpression in MDA-MB-231 and MCF7 cells and the downregulation of ATG12 protein
by ERBB2 knockout in SKBR3 cells (Figure 4B). When ATG12 was knocked down in
SKBR3 cells (Figure 6A), the basal level of autophagy was inhibited by 40% and amino acid
starvation-induced autophagy was inhibited by 50% (Figure 6B). On the other hand, ATG12
overexpression increased basal and amino acid starvation-induced levels of autophagy by
30% and 50%, respectively, in MDA-MB-231 cells (Figure 6A,C). These data support that
ERBB2 upregulates ATG12 to promote autophagy.
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Figure 4. ERBB2 regulates the expression of autophagy genes. (A) Bioinformatics analysis of the mRNA levels of different
autophagy genes (ATG genes) in ERBB2-positive and -negative human breast tumor tissues. The data were extracted
from the Cancer Genome Atlas (TCGA) database. RE, relative mRNA expression of an autophagy gene in ERBB2-positive
breast tumors compared to that in ERBB2-negative breast tumors. The mRNA expression was quantified by RNA-seq by
Expectation–Maximization (RSEM) followed by log2 transformation to estimate the gene-level transcription. (B) Western
blotting demonstration of the effects of ERBB2 overexpression and knockout on protein expression of autophagy proteins
ULK1, FIP200 (RB1CC1), BECN1, ATG7, ATG5, and ATG12. Overexpression of ERBB2 in MDA-MB-231 and MCF7 cells and
ERBB2 knockout in SKBR3 cells are demonstrated in Figures 2A and 1A, respectively. Expression of ATG5 or ATG12 was
demonstrated by the level of ATG12–ATG5 complex since it is well known that ATG5 and ATG12 form a conjugate in the
form of ATG12–ATG5 during autophagy. Uncropped Western blot images and quantification of the protein band intensities
are shown in File S1. NIC-Con, control cells; NIC-ERBB2, ERBB2 knockout cells.
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Figure 5. The Kaplan–Meier plots of the relapse-free survival (RFS)-based survival probability of patients with ERBB2-
positive and -negative breast tumors. The plots were downloaded from the Kaplan–Meier Plotter website (http://kmplot.
com/analysis/index.php?p=service&cancer=breast (accessed on 19 November 2019)). (A) Data of patients with ATG12
expression (ATG12 mRNA) in breast tumors. (B) Data of patients with MAP1LC3B (LC3B) expression (MAP1LC3B mRNA)
in breast tumors. (C) Data of patients with BECN1 expression (BECN1 mRNA) in breast tumors.

http://kmplot.com/analysis/index.php?p=service&cancer=breast
http://kmplot.com/analysis/index.php?p=service&cancer=breast
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Figure 6. Autophagy is ATG12-dependent in ERBB2-positive and -negative breast cancer cells.
Autophagy was measured by Western blotting LC3-II in the absence and presence of CQ. (A) Western
blotting demonstration of siRNA knockdown of ATG12 in the ERBB2-positive SKBR3 breast cancer
cells and ATG12 overexpression in the ERBB2-negative MDA-MB-231 breast cancer cells. (B) ATG12
knockdown decreased the basal level and amino acid starvation (No AA)-induced level of autophagy
in SKBR3 cells. (C) ATG12 overexpression increased the basal level and amino acid starvation
(No AA)-induced level of autophagy in MDA-MB-231 cells. Uncropped Western blot images and
quantification of the protein band intensities are shown in File S1.
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It is known that cancer treatment resistance can be caused by the pro-cell survival
role of autophagy [29–31] and by ERBB2 expression [32–34]. To examine whether ERBB2
promotion of autophagy leads to treatment resistance of breast cancer cells, we treated
the breast cancer cell lines with the chemotherapeutic drug Taxol (paclitaxel). In SKBR3
cells, ERBB2 knockout decreased Taxol-induced autophagy by 80% but increased Taxol-
induced cell death by 34% (Figure 7A,B), and Taxol-induced cell death was increased by
36% by ATG12 knockdown (Figure 7B). On the other hand, in MDA-MB-231 cells, ERBB2
overexpression increased Taxol-induced autophagy by 60% but decreased Taxol-induced
cell death by 45% (Figure 7C,D), and Taxol-induced cell death was decreased by 43%
by ATG12 overexpression (Figure 7D). Taxol-induced cell death in SKBR3 cells was also
increased by 59% by the autophagy inhibitor NH4Cl or CQ (Figure S5). Cell death induced
by another chemotherapeutic drug docetaxel was also increased by 34% by ERBB2 knockout
in SKBR3 cells but was decreased by 34% by ERBB2 overexpression in MDA-MB-231 cells
(Figure S6). Furthermore, hypoxia-induced cell death was increased by 22% by ERBB2
knockout in SKBR3 cells but was decreased by 27% by ERBB2 overexpression in MDA-MB-
231 cells (Figure S7). Therefore, ERBB2 promotes ATG12 expression to increase autophagy
leading to resistance of breast cancer cells to cell death induced by a chemotherapeutic
drug or hypoxia.

3.5. ERBB2 Antibody Induces ATG12 Downregulation and Autophagy Inhibition Contributing to
Breast Cancer Treatment Sensitivity

One current therapy for ERBB2-positive breast cancer is to use the anti-ERBB2 mon-
oclonal antibody trastuzumab (Herceptin) [35]. When an anti-human ERBB2 antibody, a
research-grade trastuzumab biosimilar, was used to treat SKBR3 cells for 24 h, the ERBB2
protein level was reduced by 60% in cells with complete medium and by 40% in cells with
amino acid starvation (Figure 8A). This is consistent with previous studies showing that
degradation of ERBB2 protein is a feature for anti-ERBB2 antibody treatment of ERBB2-
positive cells [36–39]. In SKBR3 cells, ERBB2 antibody treatment also led to a decrease in
ATG12 protein by 20% in the cells without and with amino acid starvation, respectively
(Figure 8A) and a reduction in ATG12 mRNA level by 17% (Figure 8B). Furthermore, im-
munoprecipitation data showed that ERBB2 can interact with ATG12 in its ATG12–ATG5
conjugate form (Figure 8C). These data suggest that the downregulation of ATG12 protein
induced by ERBB2 antibody treatment could be caused by the reduction in ATG12 mRNA
level and the degradation of ATG12 protein. ERBB2 antibody treatment decreased the
basal and amino acid starvation-induced autophagy levels by 60%, respectively (Figure
8D) but increased cell death induced by taxol by 40% in 24 h and cell death without
and with amino acid starvation by 180% and 127%, respectively, in 72 h, in SKBR3 cells
(Figure 8E). This is consistent with the observation that the ERBB2 antibody Herceptin
increased the tyrosine kinase activity of EGFR [38] which leads to autophagy inhibition [12].
Thus, ERBB2 antibody-induced autophagy inhibition may be caused by the degradation of
ERBB2, downregulation of ATG12, and increased activation of EGFR tyrosine kinase. These
observations support that ERBB2 antibody treatment sensitizes ERBB2-positive breast
cancer cells to cell death by inhibiting autophagy. Therefore, an important mechanism for
ERBB2-targeting antibody therapy/immunotherapy may be due to autophagy inhibition.
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Figure 7. ERBB2 promotion of autophagy inhibits cell death induced by chemotherapy drug Taxol in
breast cancer cells. (A) ERBB2 knockout decreased autophagy induced by Taxol (paclitaxel, 10 µM)
in SKBR3 cells. Autophagy was measured by Western blotting LC3-II in the absence and presence of
NH4Cl (30 mM). ERBB2 knockout is demonstrated in Figure 1A. (B) Cell death induced by Taxol
was increased by ERBB2 knockout or ATG12 knockdown in SKBR3 cells. Knockdown of ATG12
and the related effect on autophagy are demonstrated in Figure 6A,B. (C) ATG12 overexpression
increased Taxol-induced autophagy in MDA-MB-231 cells. Overexpression of ERBB2 is demonstrated
in Figure 2A. Autophagy was measured by Western blotting LC3-II in the absence and presence of
NH4Cl. (D) Cell death induced by Taxol was decreased by overexpression of ERBB2 or ATG12 in
MDA-MB-231 cells. ATG12 overexpression and the related effect on autophagy are demonstrated in
Figure 6A,C. NH4Cl, instead of CQ, was chosen to measure Taxol-induced autophagy because CQ
can induce higher cell death than NH4Cl (Figure S3 and unpublished data). Uncropped Western blot
images and quantification of the protein band intensities were shown in File S1. NIC-Con, control
cells; NIC-ERBB2, ERBB2 knockout cells. *, p < 0.5; **, p < 0.01; ***, p < 0.001.
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Figure 8. Effects of ERBB2 antibody on ATG12 expression, autophagy, and cell death. An anti-human
ERBB2 antibody (Ab) (research-grade trastuzumab biosimilar) was used to treat SKBR3 cells. (A)
ERBB2 Ab treatment reduced the protein levels of ERBB2 and ATG12. (B) Real-time PCR experiments
showed that ERBB2 Ab treatment decreased ATG12 mRNA level. (C) Immunoprecipitation (IP)
demonstration of the interaction between ERBB2 and ATG12. (D) ERBB2 Ab treatment inhibited
autophagy at the basal and amino acid starvation (No AA)-induced levels. Autophagy was measured
by Western blotting LC3-II in the absence and presence of CQ. (E) ERBB2 Ab treatment increased cell
death without and with Taxol treatment. Uncropped Western blot images and quantification of the
protein band intensities are shown in File S1. *, p < 0.5; **, p < 0.01; ***, p < 0.001.

4. Discussion

Autophagy plays important role in various human diseases such as cancer, neu-
rodegenerative diseases and microbial infections [40]. This triggers strong interest in
investigating the regulation of autophagy for disease management and treatment by tar-
geting autophagy. EGFR signaling plays key role in mammalian cell biology and many
human diseases [41–47].

Among the EGFR family members, EGFR and ERBB2 were demonstrated to regulate
autophagy [1,20]. However, contradictory conclusions have been reported for the role of
ERBB2 in autophagy regulation [17,18,20]. In this study, we showed that ERBB2 promotes
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autophagy at least partially by upregulating the expression of ATG12. Furthermore, this
promotion of autophagy contributes to the resistance of ERBB2 expression to cell death
induced by stresses such as chemotherapy drug treatment in breast cancer cells, which
provides insight into proper strategies for the treatment of cancers expressing ERBB2 by
targeting autophagy.

Studies have reported that ERBB2 inhibited autophagy and interacted with the
autophagy protein Beclin 1 [17,18]. The conclusion of ERBB2 inhibition of autophagy
was drawn mainly based on the observation that lapatinib, an inhibitor for both EGFR
and ERBB2 tyrosine kinases, increased autophagy in ERBB2-expressing breast cancer
cells [17,18,28]. In this study, we clearly demonstrate that ERBB2 promotes autophagy.
Furthermore, we distinguished the effects of lapatinib on autophagy regulated by EGFR
and ERBB2: lapatinib inhibits EGFR leading to autophagy increase, whereas it inhibits
ERBB2 leading to autophagy inhibition. Our findings are consistent with the report that
the ERBB2 specific antibody Herceptin (Trastuzumab) inhibits autophagy [20]. Since the
ERBB2-expressing cancer cell lines, BT474, SKBR3, MDA-MB-361, MCF7, and OE19, used
by the other studies [17,18,28] also express EGFR [48–50], the lapatinib-induced autophagy
promotion reported by these studies may be due to lapatinib inhibition of EGFR. Lapatinib-
induced inhibition of ERBB2-mediated autophagy may contribute to lapatinib-induced cell
death. This is supported by the study that the development of lapatinib resistance of ERBB2-
positive breast cancer cells is correlated with upregulation of autophagy where the addition
of autophagy inhibitors reversed lapatinib resistance by inhibiting cell proliferation and
increasing cell death [51].

Autophagy plays dual roles in cancer. The physiological levels of autophagy in normal
cells can prevent the initiation of cancer possibly by suppressing genomic instability [52].
In contrast, in established cancer cells, basal levels of autophagy promote cell survival
and, when autophagy is over-enhanced, it can induce autophagic cell death [31,53,54].
Promotion of autophagy can be induced by overexpression of an autophagy gene such as
BECN1 [55], ATG3 [56], ATG5 [57], ATG7 [58], and ATG8 [59]. Our bioinformatic analysis
of published datasets shows that ERBB2 expression in human breast cancer tissues leads
to upregulation of several essential autophagy genes including ATG12 (Figure 4). We
further confirmed that ERBB2 expression increased the mRNA and protein levels of ATG12
contributing to autophagy increase. Hence, ERBB2 increasing autophagy is at least partially
due to its upregulation of ATG12. Furthermore, we analyzed 35 autophagy genes involved
in the classical autophagy pathway and found that ATG12 and MAP1LC3B are the only
genes which upregulation is correlated with worse RFS-based survival probability in
patients with ERBB2-positive but not ERBB2-negative breast cancer (Figure 5 and Table S1).
This supports that autophagy promotion by upregulation of ATG12 and MAP1LC3B might
cause treatment resistance of ERBB2-positive breast cancer, leading to a worse outcome for
breast cancer patients.

Increased levels of autophagy in cancer cells can promote cell survival or cell death
under stress conditions such as drug treatment, depending upon the context [11,31]. The
pro-cell survival role of autophagy contributes to treatment resistance of cancer [29–31]. It
is well-known that ERBB2 expression can cause chemo- and radio-resistance in breast can-
cer [32–34]. In this study, we demonstrate that autophagy promotion by ERBB2 expression
protects breast cancer cells from cell death induced by stresses such as chemotherapy drug
treatment. This can be at least the partial mechanism for treatment resistance of ERBB2-
positive breast cancer contributing to worse survival rates in ERBB2-positive breast cancer
patients. In this study, expression of ERBB2 led to autophagy promotion and resistance to
cell death in triple-negative breast cancer cells (lack of ERBB2, estrogen (ER) and proges-
terone (PR)), supporting that in established cancer cells, the level of autophagy correlates
with treatment resistance of cancer. However, the upregulation of autophagy by ERBB2
expression in cancer may provide a therapeutic window for cancer where autophagy can
be targeted as it is demonstrated in this study that ERBB2 antibody inhibited autophagy to
sensitize ERBB2-positive breast cancers to chemotherapy drugs. It might be true that low
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levels of basal autophagy exist in triple negative breast cancer making it hard to treat and
contributing to its most aggressive feature among different subtypes of breast cancer. This
needs to be explored in future studies.

5. Conclusions

In this study, we demonstrate that ERBB2 promotes autophagy by upregulating ATG12
as well as other autophagy-related (ATG) proteins including ULK1, FIP200, ATG5, and
ATG7, leading to breast cancer treatment resistance and worse outcome to patients with
ERBB2-positive breast cancer (Figure 9). One mechanism for the current clinical treatment
of ERBB2-positive breast cancer with the ERBB2 antibody Herceptin/Trastuzumab (and
possibly others) may be due to autophagy inhibition by the antibody-induced ERBB2 degra-
dation and ATG12 downregulation. Our study provides insight into the right strategies to
treat ERBB2-positive cancer via targeting autophagy.

Figure 9. A graphic model for ERBB2 promotion of autophagy and its effect on cancer treatment
and outcome to patients. ERBB2 expression upregulates the protein levels autophagy-related (ATG)
proteins ULK1, FIP200, ATG5, ATG7, and ATG12 increasing ATG12-dependent autophagy. This
leads to treatment resistance of breast cancer and a worse outcome for patients with ERBB2-positive
breast cancer. Treatment with ERBB2 antibody (Herceptin or others) causes degradation of ERBB2
and downregulation of ATG12 resulting in autophagy inhibition.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/5/1038/s1, Figure S1: Knockout/knockdown of ERBB2 inhibits autophagy in SKBR3 cells.
Figure S2: Western blot showed the expression of EGFR and ERBB2 and lapatinib (1 µM) inhibition
of tyrosine (Y) phosphorylation of EGFR (at Y1068) and ERBB2 (Y877). Figure S3: ATG12 protein is
expressed in human breast cancer tissues. Immunohistochemistry(IHC) staining of ATG12 (brown)
was performed using a tumor microarray slide prepared by the Manitoba Tumor Bank. Figure S4:
Over-expression of ERBB2 increased ATG12mRNA expression. Figure S5: Autophagy inhibitors
ammonium chloride (NH4Cl) and chloroquine(CQ) increased Taxol-induced cell death in SKBR3
breast cancer cells. Taxol (paclitaxel), 10 µM; NH4Cl, 30 mM; CQ, 20 µM. *, p < 0.05; ***, p < 0.001.
Figure S6: ERBB2 inhibited docetaxel-induced cell death in breast cancer cells. Figure S7. ERBB2
expression inhibited hypoxia-induced cell death. For hypoxia treatment, cells were maintained under
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hypoxic conditions (<1% oxygen) at 37◦C within a hypoxic chamber (Forma Scientific, Waltham,
MA) filled with 5% CO2balanced with N2. Table S1. Effects of autophagy gene upregulation on
relapse-free survival (RFS)-based survival probability of patients with ERBB2-positive and –negative
breast tumors. File S1: Uncropped Western blots.pdf.
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