
TECHNICAL NOTE Open Access

GenomeTester4: a toolkit for performing
basic set operations - union, intersection
and complement on k-mer lists
Lauris Kaplinski1,2*, Maarja Lepamets1 and Maido Remm1,2

Abstract

Background: K-mer-based methods of genome analysis have attracted great interest because they do not require
genome assembly and can be performed directly on sequencing reads. Many analysis tasks require one to compare
k-mer lists from different sequences to find words that are either unique to a specific sequence or common to
many sequences. However, no stand-alone k-mer analysis tool currently allows one to perform these algebraic set
operations.

Findings: We have developed the GenomeTester4 toolkit, which contains a novel tool GListCompare for
performing union, intersection and complement (difference) set operations on k-mer lists. We provide examples of
how these general operations can be combined to solve a variety of biological analysis tasks.

Conclusions: GenomeTester4 can be used to simplify k-mer list manipulation for many biological analysis tasks.

Keywords: K-mers, Sequence analysis, Next-generation sequencing

Findings
Background
Because of the rapid uptake and progress of next-
generation sequencing techniques, both the time and
cost required to sequence full or partial genomes has de-
creased dramatically. On the other hand, these new
technologies have introduced new bioinformatic prob-
lems resulting from short read lengths, a large number
of sequencing errors, and a huge amount of data that
must be processed. Analysis of genomic data often re-
quires either de novo assembly of the genome, mapping
of the data to a reference genome, or homology searches
from raw reads, all of which are time-consuming and
can introduce additional errors.
In recent years, oligomer-frequency-based methods of

genome analysis have attracted great interest because they
do not require genome assembly and can be performed
directly on sequencing reads [1, 2]. These methods have
the potential to be both faster and less error-prone than
traditional methods, yet have also proven to be useful for

correcting sequencing errors during the initial step of
mapping and assembly pipelines [3] and to detect overlap-
ping reads from sequencing datasets [4]. Oligomer-
frequency-based methods should now be considered
general tools for genomic analysis.
Oligomer frequency analysis is typically conducted by

k-mers (oligomers of length k). The first step involves
counting k-mers from raw sequencing reads or assem-
bled sequences and is performed in an analogous man-
ner for all subsequent k-mer analysis methods. Several
k-mer counting programs have been developed in recent
years, both as part of assembly tools or as separate pro-
grams. One of the fastest and most widely used k-mer
counting tools is Jellyfish [5], which runs on several par-
allel CPU threads and operates on a lock-free hash table
that eliminates waiting for concurrent data access from
different threads. In addition to hashing, k-mer counters
can also use more complex data structures that facilitate
optimal counting for specific cases. For example, Tallymer
[6] uses a suffix array and specializes in counting k-mers
from large eukaryotic genomes with many repeated se-
quences. KMC2 [7] and DSK [8] can run on computers
with limited memory by writing k-mers into several small
temporary tables that are combined onto disk storage.

* Correspondence: lauris.kaplinski@ut.ee
1Department of Bioinformatics, University of Tartu, Riia 23, Tartu 51010,
Estonia
2Estonian Biocentre, Riia 23B, Tartu 51010, Estonia

© 2015 Kaplinski et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kaplinski et al. GigaScience (2015) 4:58
DOI 10.1186/s13742-015-0097-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-015-0097-y&domain=pdf
mailto:lauris.kaplinski@ut.ee
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Turtle [9] uses a combination of Bloom filter and sort-
and-compact to reduce cache misses while operating on
large datasets.
The second step - k-mer analysis - is task-specific.

Analysis of k-mer frequencies has been used to estimate
the size of the genome [3], to detect de novo repeats [6], to
measure gene expression [2], to find similar reads from dif-
ferent metagenomic samples [10] and to identify bacteria
from sequencing reads using k-mer distributions or specific
marker sequences [1]. GSMer [4] can be used to find
taxon-specific barcodes using k-mer counting, whereas
Kraken [1] classifies bacteria by first adding phylogenetic
information to every k-mer in its database and then esti-
mating the origin of the bacteria by its k-mer content. The
Khmer package implements many common k-mer opera-
tions for short-read sequencing [11].
Many k-mer analysis tasks would benefit from the use

of mathematical set operations to find sub- and super-
sets of k-mers from different nucleotide sequences. Here
we present the GenomeTester4 toolkit that aids in both
the creation and the modification of k-mer lists. Geno-
meTester4 can generate lists of k-mer counts from

nucleotide sequences and perform basic algebraic set op-
erations - union, intersection and difference (comple-
ment) - on these lists. Currently there is no other public
toolkit that provides this functionality. We describe the
toolkit and provide examples of how to apply this func-
tionality to perform specific biological analyses.

Overview and working principle of the GenomeTester4
toolkit
The GenomeTester4 software package consists of three
programs - GListMaker, GListCompare and GListQuery
(Fig. 1). The GListMaker routine generates k-mer count
lists from nucleotide sequences, and the GListCompare
tool performs basic algebraic set operations with these lists.
The GListQuery tool searches for user-provided sequences
from lists generated either by GListMaker or GListCom-
pare. Together, these tools can be used to construct cus-
tom k-mer analysis pipelines for a variety of applications.
GenomeTester4 is written in the C programming language
and can be run from the command line on Linux or other
Unix-like operation systems.

Fig. 1 A schematic overview of the workflow of the programs in the GenomeTester4 package. GListMaker takes FASTA or FASTQ as input and
builds a binary list of k-mer counts. GListCompare performs set operations with two k-mer lists and generates a new list as output. GListQuery
can be used to look up the counts from a list using either a text file, FASTA/FASTQ file or another k-mer list as input

Kaplinski et al. GigaScience (2015) 4:58

2

K-mer list format
The central data structure of all three programs is a bin-
ary k-mer list that consists of a small header and an
array of k-mers together with their counts. K-mers are
encoded as 64-bit unsigned integers with two bits repre-
senting each nucleotide. Counts are 32-bit unsigned
integers. To reduce memory usage, the list contains only
the canonical form of each k-mer. This means that one
data entry represents both a k-mer and its reverse com-
plement and is stored using the smaller of the two pos-
sible integer encodings. The maximum length of k-mers
is thus 32 nucleotides and the maximum possible total
count of any given k-mer and its reverse complement is
232 - 1. The full specification of the k-mer list format is
given in Additional file 1.

GListMaker
GListMaker computes k-mer counts from nucleotide se-
quences stored in FASTA or FASTQ format. It uses
temporary arrays to collect all k-mers from the input file
during the reading phase. The arrays are then sorted and
the adjacent instances of the same k-mer are counted
during the collation phase. Multiple CPU threads can be
used if there is more than one file of input sequences.

GListCompare
GListCompare performs the basic set-algebraic opera-
tions - union, intersection and difference - with two
user-specified k-mer lists (Fig. 2). All operations are per-
formed by simultaneously iterating over both lists with
O(N) complexity (the working time is proportional to
the input list sizes). The resulting new list is streamed
directly to disk, thereby requiring very little memory.
The union of two lists contains all entries that were

present in either of the original lists, intersection con-
tains only the entries that were present in both lists, and
complement provides the entries that were present in
the first but not in the second list. The precise definition
of what counts as the presence of k-mer and what will
be the final count in the output list can be specified by
rules. By default, applying a union operation results in a
list in which the final k-mer count is the sum of the
counts from both initial lists, whereas calculating the
intersection results in a default list where the smaller of
the two counts is reported. Calculating the complement
provides the count from the first list by default (Fig. 2).
To speed up the generation of lists of sample-specific

k-mers from a collection of many genomes we have also
implemented a function to find what we term the

Fig. 2 The basic set operations implemented by GListCompare. The default k-mer counts stored in the derived list are the following: for union,
the sum of k-mer counts from both lists; for intersection, the smaller of the k-mer counts in either of the lists; and for complement, the k-mer
count in the first set. The GListCompare program argument for given set operation s shown below each calculated set

Kaplinski et al. GigaScience (2015) 4:58

3

complement from union (Fig. 3). In this case the differ-
ence is calculated with the assumption that the second
list is a union containing the first list. Whenever the
counts of some k-mer in both lists are equal it means that
the first list is the only one among lists in union containing
this k-mer and thus it is included in the output list. This
function is useful because the same composite list can be
used to find the specific k-mers for each of the samples
used to compose it, thus eliminating the need to calculate
separate control lists for each test of uniqueness. GList-
Compare also supports finding a complement with a user-
specified number of mismatches. In this case the comple-
ment outputs the k-mers that are present in the first list
but differ from any k-mer in the second list by at least m
positions. This is calculated in a step-wise process where at
first the complement with no mismatches is calculated,
then the retrieved k-mers are searched with one mismatch,
then two mismatches and so on, up until the user-specified
number of mismatches. Only the k-mers that are not found
from the second list with the previous number of mis-
matches will be considered in the next step. At every step,
the relevant k-mers are stored in an array in RAM.

GListQuery
GListQuery is used to query the counts of k-mers from
k-mer lists. The input can be single k-mer sequences
from the command line, lists of k-mers supplied in a text
file, or other k-mer lists generated with GListMaker or
GListCompare. Input k-mers can also be read from
FASTA/FASTQ files with a sliding window. K-mers are

looked up by binary search, resulting in O(logN) com-
plexity (the working time is proportional to the loga-
rithm of input list size).
GListQuery can also search for k-mers that differ from

the query k-mer by up to a user-supplied number of
mismatches. To accomplish this, it generates all possible
mismatched k-mer versions of each query sequence and
searches for each of them from the input list.

Optimizations
GListCompare and GListQuery do not read lists directly
into RAM but instead memory-map these using the
Linux mmap system function. This guarantees that only
those parts of each file that are being used will be read
from disk to RAM. Parts that are never used will not be
read and those that were not used recently will be silently
cleaned from memory without virtual memory swapping.
This allows the system to use lists larger than the available
amount of physical memory, albeit with a performance
penalty if many look-ups are performed sequentially.
GListMaker uses a pool of CPU worker threads to

speed up list generation. Each input file is processed in
parallel if enough worker threads are available. The sort-
ing and merging of temporary tables into the final k-mer
list is also performed using separate worker threads.

The rules of set operations
To perform the basic set-algebraic operations of union,
intersection and difference on k-mer lists, we made
additional design decisions. The semantics of standard

Fig. 3 The complement from union function within GListCompare. First, a union of two or more lists is calculated that includes the sample-specific list
T1. In this example, this list is T1 ∪ T2. Typically, this union will include k-mers from many species or strains. Next, we find the intersection between T1
and this composite union. We define this as the intersection that only includes k-mers that have the same count in both lists. The result is a list of
k-mers that are unique to T1. Note that in this case the resulting list is the same as that calculated using the complement function in the example
given in Fig. 2

Kaplinski et al. GigaScience (2015) 4:58

4

mathematical set operations are defined only by the
presence or absence of specific elements in the set. In
case of k-mer lists we have richer structure, as for each
k-mer there is also the count of its occurrences.
To accommodate the occurrence count within k-mer

lists, we extended these operations by defining the se-
mantics of presence or absence together with a method
to calculate the final count. For all operations, the k-mer
is counted as being present in one of the input lists only
if its count is equal to or above a minimum cutoff value.
After determining the presence in the two individual
lists, the standard set operation is then applied. If by the
result of the operation the k-mer should be included in
the output set, its final count is calculated by predeter-
mined rule and the k-mer is written to the output list.
The possible rules are:

� 1 - set count value to 1
� 2 - set count value to 2
� add - add up both counts
� subtract - subtract the second count from the first
� min - smaller of the counts
� max - larger of the counts
� first - count in the first list
� second - count in the second list

The default rule for intersection is min, for union add
and for difference first.
To avoid the possibility of zero valued counts in the

output list, union and difference operations implement a
subset of these rules.

Data and resources used in examples
All bacterial genomes used were downloaded from the
RefSeq microbial genomes ftp site [12] and were current as
of 18 June 2014. Plasmids and sequences smaller than 0.5
Mbp (million base pairs) were excluded from the dataset.
Human genome build 37.1 was downloaded from the

RefSeq genomes ftp site [12].
S. aureus and human chromosome 14 sequencing read

datasets were downloaded from GAGE project [13].
Bos taurus genome build 6.1 were downloaded from

RefSeq genomes ftp site [12].

Performance
All software performance tests were conducted on a
CentOS 5.10 Linux server with 32 cores (2.27 GHz) and
512 GiB (gibibyte, 230 bytes) RAM.
By design, GListMaker rapidly processes genomic se-

quences that contain few repeats because it performs
counting by sorting and all data is stored in a single list
structure. However, it is not well optimized for counting
large datasets of next-generation sequencing reads,
which contain many repeated k-mers. Because all k-mers

from a single input file are normally read into memory
during the first step, very large input sequences may eas-
ily consume all available memory even if the number of
unique k-mers in the input is small. This can be miti-
gated by using command-line arguments that specify the
size of in-memory tables. Each k-mer requires 8 bytes of
memory (single 64 bit integer) in the initial reading phase
and each unique k-mer requires 12 bytes (one 64-bit and
one 32-bit integer) during the collation phase. As GList-
Maker does not implement Bloom filter and keeps all
k-mers are in memory, singleton sequencing errors
consume both memory and disk space. For a more detailed
analysis of memory usage, please refer to Additional file 2.
The running speed and memory requirements of

GListMaker depend on both the total number of k-mers
in the input files and the number of unique k-mers. We
found that the performance of GListMaker is compar-
able to that of other k-mer counting tools. Tables 1 and
2 provide a comparison with Jellyfish, KMC and DSK for
specific input sequences.
The speed of GListQuery depends on the size of the

list file being searched. Using a list of 32-mers from a
single bacterial genome we obtained a speed of up to 35
million look-ups per minute. Using a 64 GiB union of all
NCBI bacterial genomes, the look-up speed was roughly
2.7 million 32-mers per minute.
Because the list files are memory-mapped, more parts

of the file will be read into RAM as the number of query
sequences increases, which also speeds up subsequent
look-ups. This guarantees a near-immediate start-up for
the case where only a few look-ups are required because
the entire file does not need to be read from disk, while
also providing near-optimal speeds for a large number of
look-ups.

Usage examples
We have found that many k-mer analysis tasks require
one to combine or partition k-mer lists into sub- and
supersets of k-mers. By implementing optimized set-
algebraic operations within a single tool, GenomeTester4
allows researchers to significantly simplify k-mer ana-
lysis pipelines. Still, because most research questions
cannot be implemented using only simple set opera-
tions on k-mer lists, we expect that both the initial and
final steps of analysis will be performed using custom
task-specific tools.

Example 1: Counting k-mers in a large set of sequences
If the input sequence is composed of many smaller files,
one can combine GListMaker and GListCompare to
generate the final list by trading less RAM usage for lon-
ger list generation time. For example, we used the fol-
lowing approach to generate the union of all k-mers in
NCBI bacterial genome database (2776 whole genomes):

Kaplinski et al. GigaScience (2015) 4:58

5

1. Separate k-mer lists were created for each bacterial
genome with GListMaker.

2. These lists were recursively combined pairwise with
a script MakeUnion.pl (included in GenomeTester4
package) that uses the GListCompare union
function.

The running time of this operation is given in Table 3.
The maximum amount of memory required was deter-
mined by the size of largest bacterial genome.

Example 2: Finding chromosome-specific repeats in a
eukaryotic genome
There are many specific tools that have been developed
to find de novo repeats; however, none of these allows
the user to use control sequences to find repeats that
are specific to certain sequences. In general, we expect
that repeats in regions with significant homology share a
set of common k-mers. We further expect that most of
these k-mers are not present elsewhere in significant
numbers. To demonstrate how the set operations imple-
mented in GenomeTester4 can be used to accomplish
this task, we present an example of how to find sex-

chromosome-specific repeats in a cow genome for fluor-
escence in situ hybridization. The following procedure
was used to restrict the search space by finding a specific
set of repeated k-mers:

1. Created separate 16-mer lists from X and Y
chromosomes with GListMaker

2. Created a single 16-mer list from all autosomes
3. Created subsets of all k-mers whose count was at

least 10 in the sex-chromosome lists using the
GListCompare cutoff option

4. Subtracted the autosome list from repeated k-mer
lists with GListCompare using the difference
function with a cutoff value of 2

5. Subtracted the other sex-chromosome list from the
repeated and unique k-mer lists using GListCompare
with a cutoff value of 1

The resulting lists contained 112,387 Y-specific k-mers.
We removed those that had more than 50 copies so as to
ignore well-known repeats by:

6. Creating a subset of all k-mers that occur at least 50
times in the chromosome Y list

7. Subtracting the list of k-mers of over 50 copies from
the list of Y-specific k-mers using GListCompare
difference function

In total, we identified 4878 X-specific and 137,868 Y-
specific 16-mers.
The final steps in our analysis were performed using

custom Perl scripts. First, we located the regions in
chromosome that had significant over-representation of
unique repeated k-mers. Then we grouped these regions
by similarity using BLAST alignment. Finally, these re-
gions were aligned against the full genome with BLAST.

Table 2 Comparison of the peak memory consumption of
GenomeTester4, Jellyfish 2.2.0, KMC 2.2 and DSK 2.0.7 while
counting 32-mers with 24 threads

Source sequence H. sapiens genome H. sapiens chromosome
14 sequencing reads
(GAGE library 1)

File sizes 24 files, 3.0 Gbp 2 files, 2.55 Gbp

GListMaker 64 GiB 24 GiB

JellyFish 23 GiB 9 GiB

KMC 11 GiB 11 GiB

DSK 32 GiB 2.7 GiB

For KMC, the RAM-only version was used to speed up the counting

Table 1 Comparison of the 32-mer counting speeds of GenomeTester4, Jellyfish 2.2.0, KMC 2.2 and DSK 2.0.7 with a single thread
and 24 threads

E. coli K-12 strain
MG1655 genome

H. sapiens genome S. aureus sequencing
reads (GAGE library 1)

H. sapiens chromosome
14 sequencing reads
(GAGE library 1)

File sizes 1 file, 4.7 Mbp 24 files, 3.0 Gbp 2 files, 86 Mbp 2 files, 2.55 Gbp

1 thread GListMaker 0.9 978.47 16.61 764.17

JellyFish 3.64 1923.99 43.1 1222.48

KMC 0.76 354.32 11.22 338.52

DSK 2.52 102.41 14.41 361.50

24 threads GListMaker 1.52 243.44 12.15 261.7

JellyFish 0.54 112.52 5.65 100.84

KMC 0.25 41.47 2.48 57.19

DSK 2.63 60.76 3.51 59.16

All measurements are taken as the mean of five runs and presented in seconds. For KMC, the RAM-only version was used to speed up the counting; for DSK the
RAM limit was 200 GiB

Kaplinski et al. GigaScience (2015) 4:58

6

The more complete protocol with command used is out-
lined in Additional file 3.

Example 3: Finding group-specific k-mers to identify bacteria
The detection of bacteria at various phylogenetic levels
is often required during medical diagnosis and in both epi-
demiological and ecological studies. To identify whether a
certain bacterium belongs or is closely related to a prede-
fined group of strains, one can find the k-mers that are
unique to that group of strains and search for those from
sequencing reads of the bacterium of interest. We used
GenomeTester4 to generate lists of specific 32-mers from
the genus Streptococcus, of S. pneumoniae species and of
S. pneumoniae strain G54.
First, we created a union of all k-mers contained in all

bacteria in the NCBI database, as described above. Dur-
ing this step we also obtained k-mer lists from all strains
of interest.
Next, we found the intersection of all lists of the

strains of interest. This list contains all k-mers that are
present in all bacteria from the set. It is reasonable to
expect that many of these k-mers will be present in any
new strain as long as it is closely related to any known
strain from this set. Because we want to use the differ-
ence from union operation for finding unique k-mers,
the intersection operation must use the -sum rule (i.e.
the counts in the intersection list are sum of the counts
of source lists). Finally, we found the difference between
the target list and the list of all bacterial genomes using
the difference from union option of GListCompare.
The running times of GListMaker or GListCompare

and the sizes of all lists used in this example are pro-
vided in Table 3. Although we used assembled genomes
to generate target and non-target lists, the assembly
process is probably not required for creating lists. One
can compile these lists directly from sequencing reads to
avoid the time-consuming process of assembly. Also, we
expect that a much lower sequencing coverage is re-
quired to compile representative k-mer lists than the
coverage required for genome assembly. The speed of
the GenomeTester4 package allows one to perform this
kind of analysis as a routine part of sequencing.

Conclusions
GenomeTester4 is a universal toolbox for creating and
using k-mer lists from genomic sequences and its com-
putational speed is competitive with other k-mer count-
ing programs. This package is unique in its ability to
perform fast set operations and list queries with a user-
specified number of mismatches. These routines have
proven to be useful in our research and, because of their
universal nature, we expect that others may find them to
be useful for many possible tasks that require k-mer
counting and/or operations with k-mer lists. This makes
GenomeTester4 a potentially valuable addition to many
k-mer and sequence analysis toolkits.

Availability and requirements
Project name: GenomeTester4
Project (source code) home page: https://github.com/

bioinfo-ut/GenomeTester4
Operating systems: Linux (64-bit)
Programming language: C
Other requirements (when recompiling): GCC version 4
License: GNU General Public License version 3.0

(GPLv3)
Any restrictions to use by non-academics: none

Availability of supporting data
The data sets supporting the results of this article are
available in the GigaDB repository [14].

Additional files

Additional file 1: The GenomeTester4 file format. (PDF 48 kb)

Additional file 2: Memory and CPU usage. (PDF 68 kb)

Additional file 3: Protocol. (PDF 24 kb)

Abbreviations
Gbp: 1 billion base pairs; GiB: gibibyte (230 bytes); KiB: kibibyte (210 bytes);
Mbp: 1 million base pairs; MiB: mebibyte (220 bytes).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LK and MR planned and supervised the study. LK and ML designed and
implemented the software and drafted the manuscript. ML tested the
software and created the example applications. All authors read and
approved the final manuscript.

Acknowledgments
This work was funded by the EU ERDF through the Estonian Center of
Excellence in Genomics, by Estonian IT Academy and grants SF0180026s09
and IUT34-11 from the Estonian Ministry of Education and Research.

Received: 17 April 2015 Accepted: 11 November 2015

References
1. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol. 2014;15:R46.

Table 3 GListCompare running times for the generation of
different bacterial datasets

List List size Number
of unique
k-mers

Generation
time

32-mer lists of all bacteria 2 h 8 m

Union list of all bacteria 64 GiB 5,676,675,273 2 h 30 m

Streptococcus genus specific 1.4 KiB 115 75.2 s

S. pneumoniae species specific 4 MiB 348,970 79.2 s

S. pneumoniae strain G54 specific 922 KiB 78,667 77.3 s

Kaplinski et al. GigaScience (2015) 4:58

7

https://github.com/bioinfo-ut/GenomeTester4
https://github.com/bioinfo-ut/GenomeTester4
dx.doi.org/10.1186/s13742-015-0097-y
dx.doi.org/10.1186/s13742-015-0097-y
dx.doi.org/10.1186/s13742-015-0097-y

2. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nat
Biotechnol. 2014;32:462–4.

3. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, et al. Genome
sequencing reveals insights into physiology and longevity of the naked
mole rat. Nature. 2011;479:223–7.

4. Tu Q, He Z, Zhou J. Strain/species identification in metagenomes using
genome-specific markers. Nucleic Acids Res. 2014;42:e67.

5. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27:764–70.

6. Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute K-mer
frequencies and its application to annotate large repetitive plant genomes.
BMC Genomics. 2008;9:517.

7. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. KMC 2: Fast and
resource-frugal k-mer counting. Bioinformatics. 2015. doi:10.1093/
bioinformatics/btv022.

8. Rizk G, Lavenier D, Chikhi R. DSK: K-mer counting with very low memory
usage. Bioinformatics. 2013;29:652–3.

9. Roy RS, Bhattacharya D, Schliep A. Turtle: Identifying frequent k-mers with
cache-efficient algorithms. Bioinformatics. 2014;30:1950–7.

10. Maillet N, Lemaitre C, Chikhi R, Lavenier D, Peterlongo P. Compareads:
comparing huge metagenomic experiments. BMC Bioinformatics. 2012;13
Suppl 1:S10.

11. Crusoe M, Edvenson G, Fish J, Howe A, McDonald E, Nahum J, et al. The
khmer software package: enabling efficient sequence analysis. figshare.
2014. doi:10.6084/m9.figshare.979190.

12. Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. RefSeq microbial
genomes database: new representation and annotation strategy. Nucleic
Acids Res. 2014;42:D553–9.

13. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, et al. GAGE: A
critical evaluation of genome assemblies and assembly algorithms. Genome
Res. 2012;22:557–67.

14. Kaplinski, L; Lepamets, M; Remm, M. Supporting materials and software for
“GenomeTester4: a toolkit for performing basic set operations - union,
intersection and complement on k-mer lists”. GigaSci database. 2015.
http://dx.doi.org/10.5524/100178

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Kaplinski et al. GigaScience (2015) 4:58

8

http://dx.doi.org/10.1093/bioinformatics/btv022
http://dx.doi.org/10.1093/bioinformatics/btv022
http://dx.doi.org/10.6084/m9.figshare.979190
http://dx.doi.org/10.5524/100178

	Abstract
	Background
	Findings
	Conclusions

	Findings
	Background
	Overview and working principle of the GenomeTester4 toolkit
	K-mer list format
	GListMaker
	GListCompare
	GListQuery
	Optimizations
	The rules of set operations

	Data and resources used in examples
	Performance
	Usage examples
	Example 1: Counting k-mers in a large set of sequences
	Example 2: Finding chromosome-specific repeats in a eukaryotic genome
	Example 3: Finding group-specific k-mers to identify bacteria

	Conclusions
	Availability and requirements
	Availability of supporting data
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

