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The measurement of fluid dynamic shear stress acting on a biologically relevant

surface is a challenging problem, particularly in the complex environment of, for

example, the vasculature. While an experimental method for the direct detection

of wall shear stress via the imaging of a synthetic biology nanorod has recently

been developed, the data interpretation so far has been limited to phenomeno-

logical random walk modelling, small-angle approximation, and image analysis

techniques which do not take into account the production of an image from a

three-dimensional subject. In this report, we develop a mathematical and stat-

istical framework to estimate shear stress from rapid imaging sequences

based firstly on stochastic modelling of the dynamics of a tethered Brownian

fibre in shear flow, and secondly on a novel model-based image analysis,

which reconstructs fibre positions by solving the inverse problem of image for-

mation. This framework is tested on experimental data, providing the first

mechanistically rational analysis of the novel assay. What follows further devel-

ops the established theory foran untethered particle in a semi-dilute suspension,

which is of relevance to, for example, the study of Brownian nanowires without

flow, and presents new ideas in the field of multi-disciplinary image analysis.
1. Introduction
The force per unit area exerted on a surface by a moving fluid, otherwise known as

wall shear stress (WSS), plays an important role in many physical and biological

systems, for example the function and structure of endothelial cells [1,2] and the

design of microfluidic systems [3,4]. While there exist several ways of measuring

WSS directly [5–7], these methods are not suitable for measuring WSS in, for

example, the vasculature, as they either require insertion of deformable micropil-

lars (approx. 100mm tall) or neglect to take into account biologically relevant

aspects of the flow, for example the pulsatile nature of the flow in the vasculature

which also contains fluid particulates and has complex geometries. There are also

other biological factors limiting such flow methods; the viscosity of many fluids of

interest is often not known, and can change with time, introducing additional

error into calculations. We also know that cell surface macromolecules (for

example the glycocalyx) can extend a distance . 0.5mm into the fluid, meaning

that surface effects become important and difficult to calculate. The current

method for measuring WSS in the vasculature relies on measurement of the vel-

ocity gradient on the wall through bulk flow techniques such as micro-particle

image velocimetry (mPIV) [8–10]. However, due to the size of the particles

needed to measure flow through blood vessels, Brownian effects become impor-

tant which can introduce error in the measurement of velocities and uncertainty

in the location of the particles. In this research, we turn the Brownian motion of
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particles to our advantage; instead of needing to correct for

such effects, the Brownian motion of a tethered rod is the

measurement mechanism which underpins this work.

To measure shear stress in the vasculature at the same place

that an endothelial cell can detect requires a sensor that can

respond to shear stress in the same location. We continue the

development of a sensor that can detect shear stress in micro-

vessels as close as a few hundred nanometres from the cell

membrane in real time in live animals. A biological microrod

approximately 1 mm in length, based on M13 bacteriophage

(hereafter referred to as M13), has recently been demonstra-

ted to act as such a surface shear stress sensor [11] through

flow-induced changes to its tethered Brownian motion.

The M13 is 7 nm wide and � 900 nm long, with a persistence

length of 1265.7+220.4 nm [12]. It forms a semi-rigid

‘nanorod’ which can be genetically engineered, or chemically

modified to bind to fluorescent moieties or antibodies. These

monodisperse nano-particles have been used to produce sev-

eral nanoscale devices including nanowires [13,14] and

scaffolds for polymerase chain reaction [15]. Other methods

using orientations of freely suspended nanorods have been

employed by Kim et al. [16], where the real-time measurement

of the collective orientation of nanorods has been used to

measure local shear rate in microfluidic systems. The collective

orientation of suspensions of nanorods has also been used to

detect pathogenic bacteria through the shear alignment of

virus particles and linear dichroism by Pacheco-Gómez et al.
[17]. These characteristics have been used to generate an M13

construct that includes a collagen antibody covalently attached

to one end, and decorated with more than 500 fluorophores

along its length. This construct allows the M13 to bind at

one end to a collagen-coated slide, and be imaged using epi-

fluorescent microscopy. It is this construct that we will focus

on in this report.

The framework for the modelling and measurement of

WSS constructed in this report consists of two key steps:

modelling the dynamics of a tethered Brownian fibre, and

the extraction of experimental data through the use of model-
based image analysis. The modular nature of this framework

will mean that it can be easily extended to investigate related

problems in both microscale biology and areas where reliable,

rational analysis of experimental image data is desired. In what

follows, we simplify the problem by approximating the M13 to

be a stiff thin rod. This is a rational first approximation as the

M13 in the associated experiments of Lobo et al. [11] has lengths

below their associated persistence length, as experimentally

measured by Khalil et al. [12].

Under no flow, the attached M13 oscillates randomly due

to Brownian motion. As a flow is applied, however, the M13

movement is biased towards the direction of flow. This biasing

behaviour is characterized through calculation of the Péclet

number, the ratio between Brownian and advective effects

due to shear. Brownian rotation is inversely proportional to vis-

cosity, and advective rotation is proportional to shear rate.

Therefore, the Péclet number is proportional to the product

of the shear rate and viscosity, i.e. the shear stress. Knowledge

of the Péclet number, combined with temperature and phage

geometry, thereby yields the shear stress (knowledge of the vis-

cosity also then yields the shear rate, and vice versa). Data

interpretation has so far been limited to phenomenological

random walk modelling, and small-angle approximation to

the resulting partial differential equations; however, to apply

the M13 quantitatively and to assess effects such as surface
topography and variations in fibre length, it is valuable to

model the underlying fluid dynamics of the tethered rod. We

develop a mathematical framework for the rotational Brownian

dynamics of a tethered M13, using rational mechanistic model-

ling to gain deep understanding about the behaviour of the

M13 and its relationship to WSS. What follows is relevant to

the established theory for an untethered particle in a semi-

dilute suspension [16,18], and also to, for example, the recent

study of Brownian nanowires without flow by Ota et al. [19].

Owing to the width of the M13 (7 nm) being much smaller

than the wavelength of light used to excite the attached fluoro-

phores (561 nm) the produced image is heavily diffracted and

as such it requires work to calculate the exact location of the

M13. Traditionally, deconvolution algorithms would be

applied to such an image, either with a priori knowledge of

how the light has been diffracted or without (blind deconvolu-

tion); several such schemes are available as packages in

both ImageJ [20] and Matlab [21] as well as others. Current

methods to do this often involve the use of ‘black box’ proces-

sing algorithms. While these tools can be useful, and often

provide good information, a lack of transparency can hinder

interpretation, particularly in a context where statistical prop-

erties of the error are crucial, and as such can never give

complete confidence in the results. Even when the details of

such algorithms are known, they often rely on changing the

image without any knowledge of what the image contains or

how it was formed. To combat this, we develop here the con-

cept of model-based image analysis. Using knowledge of the

physics of image formation, including understanding of how

optical effects such as diffraction of light occur, we construct

a mathematical framework for the inverse problem of image

formation: how, given an experimental image, we can calculate

what originally formed the image by undoing the image for-

mation process. Besides providing a rational framework for

analysing images, model-based image analysis produces con-

sistent results and can be applied to any experimental set-up

where the knowledge of the image formation is sufficiently

well understood.

In this report, we combine work from the areas of synthetic

biology and mathematical modelling, together with fluid

dynamics and the concept of model-based image analysis to

create a framework for the measurement of WSS in biological

systems. In the first part of this work, we present the dynamics

of a tethered Brownian fibre, and relate the angle distribution of

the M13 in flow to the Péclet number, the ratio between Brow-

nian and convective effects in the flow. We continue by

introducing the concept of model-based image analysis and

the inverse problem of image formation, and include algorithms

for the automated processing of the experimental image data.

The automated nature of the image processing, and its high

throughput of data, enables the accuracy of the methods to be

analysed through large-scale simulations of data. Finally, we

combine all these ideas to calculate the WSS for the flow. The

principle will then be demonstrated on the experimental data

of Lobo et al. [11], providing the first mechanistically rational

analysis of this novel assay.
2. Dynamics of a tethered Brownian fibre
We model the rotational Brownian dynamics of a rigid axisym-

metric fibre of length L projecting into the half-space x3 . 0,

attached at (0, 0, 0) to the solid plane boundary x3 ¼ 0 under
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Figure 1. Definition sketch showing the location of the M13 (red), along
with the direction of the applied shear flow. Here the M13 is tethered at
(0, 0, 0) to the solid (x1, x2)-plane, with direction vector d.
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homogeneous unidirectional shear flow u ¼ g_x3e1. A defi-

nition sketch is included in figure 1. This choice of flow and

geometry will provide a strong basis upon which these

methods can be extended to reflect other interesting biological

problems. Working in spherical polar coordinates (r, u, f ) and

following Kim & Karrila [22], we define d(u, f) to be the direc-

tion vector of the M13, with the triple [d, û, f̂] being the basis

vectors. We denote by rd and rd
. the angular parts of the

spherical polar gradient and divergence operators,

rd f ¼ @uf û þ 1

sin u
@fff̂ ð2:1Þ

and

rd � F ¼
1

sin u
@u(sin uFu)þ 1

sin u
@fFf: ð2:2Þ

The problem will be to determine the steady state of the

probability density function c(u, f, t) for the fibre orienta-

tion, on the unit hemispherical domain 08 �u �908 and

08 �f , 3608.1 The probability density will satisfy the

normalization conditionð360�

0�

ð90�

0�
c(u,f,t) sin ududf ¼ 1: ð2:3Þ

Note the change relative to [18,22] in the absence of the 4p

factor in equation (2.3), so that the unscaled c is a probability

density function (the factor of 4p is less appropriate when

working on a hemispherical domain). Two-dimensional ima-

ging will directly yield a projection onto the (x1, x2)-plane, so

we will observe samples from the marginal density function,

F(f, t) :¼
ð90�

0�
c (u, f, t) sin udu: ð2:4Þ

The flux vector of c in (u, f ) space is given by J ¼ c d_,

where d_(u, f) is the rate of change of d due to the combination

of hydrodynamic and Brownian rotations. After some work,

we obtain the advection–diffusion equation

@tcþrd � (ac) ¼ rd � (Drd c), ð2:5Þ

where D(u) is the rotational diffusion matrix and a(u, f ), the

rate of change of d under rigid body rotation, is the rotational

advection vector. Details of the derivation of (2.5) are given in

appendix A. Introducing dimensionless variables t0, D0, a0,

we have

t ¼ tt0, D ¼ t�1D0, a ¼ g_ a, ð2:6Þ
with characteristic time scale t ¼mL3/kT, where k is the

Boltzmann constant and T is the absolute temperature. The

dimensionless advection–diffusion equation is then

@t0cþrd � (Pea0c) ¼ rd � (D0rd c), ð2:7Þ

where the rotational Péclet number Pe ¼ g_t. It is important

to note the inclusion of the shear rate g_ in this definition of

the rotational Péclet number; in what follows, we will use

the measurement of Pe as a proxy for measurement of

shear. In the current work, we make the assumption that c

is independent of time for a given flow (for a fixed Péclet

number), which gives the steady-state dimensionless

advection–diffusion equation

rd � (Pea0c) ¼ rd � (D0rd c): ð2:8Þ

The coefficients D0 and a0 will be calculated by solving the

dimensionless rotational resistance and mobility Stokes flow

problems, respectively, after which the probability density

function c can be calculated by solving (2.8) subject to the

normalization condition (2.3). We solve (2.8) directly using

a centred finite difference scheme in Matlab [21]. The full

expression for (2.8) is given in appendix B.

2.1. Solution of the rotational resistance and mobility
Stokes flow problems

There exist several approaches to solving the resistance and

mobility Stokes flow problems, including finite element,

boundary integral and regularized stokeslet methods, in

addition to approximations based on slender body theory. In

this paper, we apply a novel variation on the method of regu-

larized stokeslets, namely the nearest-neighbour discretization

of Smith [23]. This method retains the ‘meshlessness’ of the

original formulation, with the added benefit of having a

major reduction in computational cost.

The small Reynolds number associated with microscale flow

justifies the use of the (dimensionless) Stokes flow equations,

�rpþr2u ¼ 0, r � u ¼ 0, ð2:9Þ

where p is the pressure and u is the velocity. The relevant

boundary conditions are no-slip/no-penetration on the plane

u(x1, x2, 0, t) ¼ 0, no-slip/no-penetration on the rigid body

u(X, t) ¼ X_, and convergence to a prescribed steady far-field

flow u(x, t)! u1(x) as jxj ! 1.

A solution to equation (2.9) with the given boundary con-

ditions may be expressed as a regularized stokeslet boundary

integral,

u(x, t) ¼
ð

S(t)
B1(x, X) � f (X, t) dSX þ u1(x), ð2:10Þ

where S(t) denotes the body surface, fk the hydrodynamic

force per unit area exerted by the body on the fluid and B1
jk

the regularized ‘blakelet’ found by Ainley et al. [24],

B1
jk(x,j)¼ 1

8pm

djk(r2þ212)þrjrk

r3
1

�
djk(R2þ212)þRjRk

R3
1

�

þ2hDkl
@

@Rl

hRj

R3
1

�
dj3(R2þ212)þRjR3

R3
1

� �
�4phdjlf1(R)

� �

�6h12

R5
1

(dj3Rk�djkR3)

�
,

ð2:11Þ

where 1 is a small regularization parameter, taken to be 1% of

the M13 length. Imposing the boundary conditions on the
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Figure 2. Components of the dimensionless rotational advection vector a 0 plotted for 08� f , 3608 and 08� u � 908.
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surface of the body, along with rigid body rotations about the

origin, we have the first kind Fredholm integral equation for

the unknown force density f(X, t) at each instant t, namely

v� x ¼
ð

S(t)
B1(x, X) � f (X, t) dSX þ u1(x), for all x [ S(t),

ð2:12Þ

with v being the rotational velocity of the M13, and B1(x, X)

being a kernel which is large but finite when x ¼ X. In the

inertialess regime, the system is closed by specifying the

torque on the body due to hydrodynamic stress,

T ¼
ð

S(t)
X � f (X, t) dSX : ð2:13Þ

The mobility problem for this set-up then corresponds to the

system of equations (2.12) and (2.13) with T and u1 prescribed

and v unknown. The resistance problem corresponds to the

same system with v and u1 prescribed and T unknown.

The dimensionless rotational advection vector a0 is

then given by solving the mobility problem for ṽ , pre-

scribing T ¼ 0 (corresponding to zero applied torque) and

u1 ¼ x3e1 (corresponding to unit shear flow). Then we have

that a 0 ¼ ṽ � d. Recall that a0 ¼ a0(u, f ); therefore, it is

necessary to find an approximate solution over the domain

(u, f ) [ [08, 908] � [08, 3608).
The dimensionless diffusion coefficient D0 is given by solving

the resistance problems for Tu
0 and Tf

0 , prescribing, respectively,

v¼ eu and v¼ ef (corresponding to the two rotational modes),

along with zero incident flow u1¼ 0. Once these torques are

found, the dimensionless resistance matrix in (u,f) coordinates

can be assembled as R0 ¼ (T 0u jT
0
f) the dimensionless diffusion
coefficient is thenD0 ¼ (R0)�1. Recall thatD0 ¼ D0(u); an approxi-

mate solution must, therefore, be found forallu [ [08, 908], where,

without loss of generality, we can set f¼ 08.
2.2. Numerical results
The dimensionless rotational advection vectora0 is solved over

a grid with 08 �u �908 and 08 �f �3608, and is then inter-

polated using a cubic spline with periodic end conditions at

the f limits. The resulting components au, and af are shown

in figure 2. Similarly, the dimensionless rotational diffusion

matrix D0(u), solved over 08 �u �908, is again interpolated

using a cublic spline, and is shown in figure 3. In solving for

D0 numerically, we have introduced a small regularization, at

u ¼ 908, through enforcing D0(90�) ¼ d (in our calculations,

we use d ¼ 0.01). This ensures that the solutions for D0
remain regular as u! 90�. Finally, the advection–diffusion

equation (2.8) is solved for 1 � Pe � 200. Here, the bounds on

Pe have been chosen to include the experimentally relevant

range for this project, but could be changed depending on

the problem at hand.

The marginal probability density function F (2.4) is

obtained by integrating c over 08� u � 908; the result is

shown in figure 4. As expected, we see that the larger the

Péclet number, the more likely the M13 is to be aligned in the

direction of the flow. Also as expected, when Pe! 0, we see

the biasing effect decreases rapidly with the M13 approaching

a uniform distribution. This behaviour is consistent with the

physical interpretation of the Péclet number, with the case

Pe ¼ 0 describing purely Brownian dynamics, with large

Péclet numbers corresponding to shear dominated flows.

Having calculated F for a range of Pe, we should now be
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able to estimate Pe for a given set of angles f. The methods by

which we do this will be discussed in §3.2.

In order to measure the Péclet number in a biological

system given the theory presented above, we require methods

for the extraction of orientation data from experimental

images. To this end, we now turn our attention to developing

the concepts of model-based image analysis.
3. Detection of a tethered Brownian fibre
Having established a mathematical model for the dynamics

of a tethered Brownian fibre, we now turn our attention to

the application of the model to the experimental data

of Lobo et al. [11], with a view to calculating the Péclet

number for an applied shear flow. The experimental

procedure for obtaining images of the tethered M13 is con-

tained within [11] and as such is not repeated here, except

for noting that the experimental set-up was that of a fluores-

cently labelled M13 tethered to a collagen-coated slide which

was then imaged with a 1.4NA oil objective with a spinning

disc confocal microscope (Ultraview; PerkinElmer). In what

follows, we attack the problem through novel mathematical

model-based image analysis methods which, along with the

theory presented in §2, will provide a more rigorous and

extensible basis for future work.

3.1. The inverse problem of image formation
We model the experimental M13 as a rigid, inextensible,

axisymmetric rod of length L projecting into the half-space

x3 � 0. The M13 is tethered at the point (x0, y0, z0) of the

Cartesian coordinate system (x1, x2, x3) to the solid plane

boundary x3 ¼ 0, and is subjected to homogeneous

unidirectional shear flow u ¼ g_x3e1. The position of the

M13 (x1, x2, x3) ¼ (x, y, z) is then given, in spherical polar

coordinates, as

x(s) ¼ x0 þ s sin u cosf, y(s) ¼ y0 þ s sin u sinf

z(s) ¼ z0 þ s cos u,
g ð3:1Þ

for given azimuthal and polar angles 08 �u � 908 and

08 �f , 3608, with 0 �s � L being the arclength along the

M13. See figure 1 for a sketch of the set-up noting that, in

what follows, we now model the M13 as being tethered to

some, as yet, unknown point (x0, y0, z0).
Following Zhang et al. [25], we model the optical dif-

fraction of a light source located at the point (X0, Y0, Z0),

diffusing over the focal plane (X, Y, Z), by a Gaussian point

spread function (PSF), namely

P(X, Y, Z) ¼ I0 exp � (X � X0)2

2s2
x
� (Y� Y0)2

2s2
x
� (Z� Z0)2

2s2
z

 !
,

ð3:2Þ

where I0, sx and sz are parameters relating to the experimental

set-up. Note that we have assumed that the optical diffraction

will be equal in both the e1 and e2 directions when imaged from

above, resulting in a circular PSF for a given focal plane z ¼ z0.

The resulting image, I, given by convolution of the PSF

(3.2) with the M13 location (3.1), in the focal plane (x1, x2, 0),

is then

I(x1, x2) ¼ B(x1, x2)

þ
ðL

0

I0 exp � (x1 � x(s))2

2s2
x

� (x2 � y(s))2

2s2
x

� z(s)2

2s2
z

 !
ds,

ð3:3Þ

where B is some background image intensity, which may be

constant or may vary with pixel location.

Given a set of experimental images, and a model for the for-

ward problem of image formation (3.3), it remains to solve the

inverse problem of image formation: estimation of the position

of the M13 given an experimental image. In order to ensure a

good fit between the experimental and simulated images, we

choose the intensity parameter I0 to be

I0 ¼max

� Ei�BiÐ L
0 exp(�(x1i�x(s))2)=2s2

x�(x2i�y(s))2=2s2
x�z(s)2=2s2

zds

 !
,

ð3:4Þ

over all i pixels in the image. We define the M13 location to be

the set of spatial parameters (x0, y0, f, u), and optical par-

ameters (I0, sx, sz and B) which minimize the sum-squared

error between the experimental and simulated images, namely

S ¼
X

i

(Ei � Ii)
2, ð3:5Þ

where Ei and Ii are the ith pixels in the experimental and

simulated images, respectively. Note that the intensity of
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the ith pixel in the image Ii, with index i � 1, should not

be confused with the PSF intensity I0. The minimization is

performed globally using the multi-level coordinate search

algorithm, routine e05jb, from the NAG Toolbox for

Matlab [26], with a set of bounds on each of the

parameters. Owing to the complexity of the problem, and

the lack of detailed information regarding the optical par-

ameter sz, in what follows we model each image as though

it contains an M13 of variable projected length L, inclined

at an angle u ¼ 908 to the vertical. Here, we constrain the

M13 parameters through requiring (x0, y0) to lie within the

image, 0 , L , 2 mm and 2908 �f �908. We then require

that the optical parameters have the following constraints:

jBj � 0 and s�=10 � sx � 10s�, where s� is given by following

Zhang et al. [25].
 rface
14:20170564
3.2. Fitting procedure
In refining our fitting algorithms we found that a small amount

of preprocessing of the experimental images led to a significant

increase in the accuracy of the fits. The preprocessing step

involves applying a 5 � 5-pixel median filter [27] to the exper-

imental image, followed by subtracting the median image

intensity from all pixels in the image, and finally setting the

values of all pixels with negative intensity to zero. The effect

of this preprocessing step is analysed in §4. We then perform

a multi-stage fit in order to find the M13 and optical parameters

which can best replicate the given experimental image

as follows.

— We first fit the spatial parameters for initial optical par-

ameters sx and B. Owing to the preprocessing of the

experimental images, we choose B ¼ 0. The PSF spread

sx is approximated by following Zhang et al. [25] for the

experimental set-up.

— Having calculated a first guess for the spatial parameters,

the value for sx is then fitted, keeping all other parameters

fixed. While, theoretically, the value of sx should be con-

stant for all images from a given experiment, due to the

preprocessing step, we allow some variation in sx to

take place.

— The spatial parameters are now refitted using the updated

value for sx.

— We then fit the image background B, while allowing a

small change in sx if necessary.

— Finally, the new values of sx and B are used to fit the

spatial parameters (x0, y0, L, f ).

Once the M13 and optical parameters have been obtained

for all the experimental images, we can use the theory dis-

cussed in §2 to estimate the Péclet number for a particular

flow. Using the marginal probability density function for the

flow F (shown in figure 4), we can integrate to find the related

cumulative density function (CDF) F1, which can then be com-

pared with the sample CDF F2 through calculation of the

Kolmogorov–Smirnov statistic D [28],

D ¼ sup
�90��f�90�

jF1(f)� F2(f)j: ð3:6Þ

The Péclet number Pe that minimizes D is then chosen as the

fit. This optimization procedure is again done with the multi-

level coordinate search algorithm (e05jb) from the NAG

Toolbox for Matlab [26]. The accuracy of the fitting procedures

is now investigated.
4. Accuracy of fluid dynamics modelling with
model-based image analysis

In order for this model-based image analysis framework to

be useful, it must be able to accurately fit the location of a

series of M13, and the Péclet number corresponding to the

flow over such M13. We investigate the accuracy of the fit

by dividing the problem into two areas where error can be

introduced, namely the image processing stage, and the calcu-

lation of the Péclet number from a sample of orientation data.

For each of these steps, we will generate 180 sample images

for a spread of Péclet numbers 1 �Pe �200, which is compar-

able to both the number of images and the flow rates of the

associated experiments.

4.1. Step 1: error associated with image processing
In investigating the error associated in the image processing

step, both with and without preprocessing, we would like

to have a set of sample orientation data which, when fitted,

return the Péclet number corresponding to the distribution

they were sampled from. To ensure this, we use rejection

sampling from the marginal probability density function F at

a selection of linearly spaced Péclet numbers 1 � Pe � 200,

stopping when we have a set of angles f which, when fitted,

give a Péclet number Pe such that jPe� Pej < 0:5. For each of

these sets of angles, an M13 is then simulated with a given

length L, and is placed at a point (x0, y0), randomly chosen

with 20.5 mm � x0, y0 � 0.5 mm. An image of the M13 is then

generated via (3.3), with sx given by following [25]. The inten-

sity parameter I0 is chosen so that the image has a maximum

intensity of 255, which corresponds to the maximum value

an 8-bit unsigned integer can take, and hence the maximum

intensity in the experimental images. The additive noise B in

(3.3) is simulated by sampling from a normal distribution

with a mean of 76.5 (30% of I0), and s.d. 5. These images are

then put through both the image and Péclet fitting procedures,

after which we are able to compare both the fitted angles �f and

fitted Péclet numbers Pe. In order to evaluate the effectiveness

of the preprocessing step, we analyse the same set of images

twice, with and without the preprocessing step, and compare

the results.

The number of images successfully analysed and the

number of fit orientation angles �f within 18 and 58 of simu-

lated angles f is shown in table 1, and the corresponding

relative frequency histograms of the error between the simu-

lated angles f and fit angles �f are shown in figure 5. It is clear

when looking at these data that the inclusion of the prepro-

cessing step improves the accuracy of the fit significantly.

The Péclet numbers Pe obtained through analysis of the fit

orientation angles �f are then shown in figure 6. We see

here that not including the preprocessing step results in a sig-

nificant underestimation of the Péclet number for the flow,

while the inclusion of the preprocessing step leads to results

which accurately represent the simulated flows. We see from

the least squares line of best fit that the image processing

method provides good results, with a small increase in

error for stronger flows (higher Péclet number). This is

in agreement with the Bland–Altman plot, figure 6b. Here,

we see a mean difference between Pe and Pe of 6.4 with

the preprocessing step, and 72.7 without. Similarly, the stan-

dard deviation for the difference is 25 with preprocessing,

compared with 47 without.
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Table 1. Table showing the number and percentage of successfully fitted frames through the model-based image analysis procedure, and the number and
percentage of fitted angles �f within 18 and 58 of the simulated angles f. Here, step 1 and step 2 correspond to the analyses in §§4.1 and 4.2. A total of 12
060 images were analysed.

dataset method successfully fitted jf� �fj < 1� jf� �fj < 5�

step 1 no preprocessing 11 674 (96.80%) 2337 (20.02%) 5684 (48.69%)

step 1 preprocessing 11 766 (97.56%) 9260 (78.70%) 10 840 (92.13%)

step 2 preprocessing 11 736 (97.31%) 9227 (78.62%) 10 779 (91.85%)
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4.2. Step 2: error associated with the full analysis of
Péclet number from a sample of orientation data

Having shown that the error in the image processing step is

well contained with greater than 90% of fitted angles deviating

from the simulated angles by less than 58, we move on to look
at the error associated with the full analysis of Péclet number

from a sample of orientation data. We do this in the same

way as in §4.1; however, instead of using rejection sampling

to obtain a sample with the required Péclet number, we take

a single sample of 180 angles f from the marginal probability

distribution F at each Pe. This should give insight into the
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accuracy of the full analysis on experimental images, with

additional error being introduced through the generation of

the orientation sample.

The images successfully analysed, along with the number

of fitted orientation angles �f within 18 and 58 of the simulated

angles f, are again shown in table 1, with the corresponding

relative frequency histograms of the error between f and �f

shown in figure 7. We see very similar results to that of

step 1, which is to be expected as we have not changed the

image analysis portion of the methods, which is independent

of angle distribution.

In figure 8, we plot the Péclet numbers obtained from fitting

the angles �f. Included in this figure are the Péclet numbers

given by fitting to the sampled angles (assuming a perfect

image analysis method), where we can see the deviation about

what would be perfect correspondence to the flow, which is a

result of the restricted sample size in the simulations, and analo-

gous to the error from having a restricted sample size in the

related experiments. Here, the Bland–Altman plot, figure 8b,

shows a mean difference between Pe and Pe of 2.52, with the
standard deviation of the difference being 35. We see here

that, despite this additional error, and the error from the

image processing procedure in step 1, we can reliably calculate

the Péclet number relating to a given flow.
5. Calculation of Péclet number from
experimental image data

The angles f obtained from fitting the full series of raw image

data from Lobo et al. [11] are shown in figure 9. Each point rep-

resents a single frame, with the corresponding experimentally

applied nominal WSS, and direction, shown above the plot.

Additionally, red circles show the location of four characteristic

images, which are displayed at the bottom of the figure. It is

clear by eye, before doing any in-depth analysis, that, when

flow is applied, there is a strong biasing of the distribution of

the M13 angle f towards the direction of flow, and that this

biasing effect is more pronounced the greater the nominal

WSS. This is in agreement with the more detailed analysis
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shown in figure 10a,b. In figure 10a, we have fitted a normal-

ized Gaussian model to the data for individual flow rates,

combining data from flows of the same magnitude in different

directions. It is clear from these figures that, as the nominal

WSS increases, the probability that the M13 is aligned with

the flow (towards f ¼ 08) increases, with the standard devi-

ation of the angles about f ¼ 08 decreasing. As expected,

the flow direction does not have an impact on the distribu-

tion of the M13, as can be seen in figure 10b. Finally, we plot

the estimated Péclet number for the flow in figure 10c, where

it is clear that, with increased nominal WSS, we have fitted a

larger Péclet number. We note that the Péclet number calcu-

lated for the 0.5 dyn cm22 flow appears to be larger than

expected. We believe that this is due to the fact that the flow

lies outside the sensitivity range of the M13 in the experiments;

a longer M13 would have more sensitivity to lower levels of

WSS. This assertion is discussed in more detail in §6. We also

see here that there is a slight discrepancy between the fit for

the flows in the positive direction (blue) and that for the nega-

tive direction (red). This is to be expected from the statistical

nature of the fit owing to the Fokker–Planck model, and we

also expect some difference due to the fact that the collagen

IV surface is not completely flat, leading to slight changes in

flow behaviour in different directions. We believe that the fits
in each direction are close enough to give credence to the

viability of the fitting procedure.
6. Conclusion
It has recently been shown that a biological microrod (M13)

can act as a WSS sensor [11] through flow-induced changes

to its tethered Brownian motion. We have now developed

and presented the first mechanistically rational analysis of

this novel assay. This modelling and measurement framework

consists of two steps, as follows.

(1) Dynamics of a tethered Brownian fibre. Here, we have

modelled the rotational Brownian dynamics of a tethered

Brownian fibre system under homogeneous uni-

directional shear flow. Given experimentally calculated

orientation data for an M13 under flow, the modelled

orientation probability distribution for the M13

allows the calculation of a Péclet number for the flow,

and hence a measure of the WSS over a biologically rel-

evant surface.

(2) Model-based image analysis. To complement the mathemat-

ical modelling of the Brownian dynamics, we have

developed a rigorous and extensible framework for the
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analysis of a set of experimental images. We have tackled

the inverse problem of image formation, the solution to

which allows the accurate and reliable calculation of the

M13 location in a heavily diffracted image. This framework

allows the swift, accurate and automated calculation of

orientation data from experimental image data.

6.1. Comparison with previous work
We have applied this model to the problem of calculating

WSS, validating against the work of Lobo et al. [11]. The present

study differs from the previous analysis in that we have devel-

oped a principled and extensible framework based on

modelling and statistics as opposed to small-angle approxi-

mations with pixel intensity thresholding and geometric

operations to estimate M13 length and position calibrated

with the experimental results. In analysing the same data, we

have introduced the concepts of model-based image analysis

and have tackled the inverse problem of image formation in

order to locate the M13 in a series of experimental images. We
believe that this approach to image analysis allows us to have

more faith in the results over more traditional image analysis

techniques. This is not only because of the inclusion of the phy-

sics of image formation in the underpinning model, but also

because of the statistical framework for modelling the Brownian

motion of the M13 which enables multiple sources of error to be

considered in the analysis. The techniques introduced here also

offer the advantage of being completely automated once set up;

there is no manual component unlike many other methods,

which allows the analysis of much larger quantities of data

than would have been previously possible.
6.2. Applications and future extensions
We have shown that the combination of the fluid dynamic

modelling of a tethered M13, together with the model-based

image analysis of the experimental images, can produce an esti-

mated Péclet number for the flow, which quantifies the relative

importance of shear-driven and Brownian effects in the flow.

Through simulations, we have produced an estimation of the
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accuracy of the model, and have shown that this method can

reliably produce biologically relevant results. The methods

can also be tailored to detect particular types of flow. The

material time constant of Bird et al. [29] is calculated for the

flow in this paper as l ¼ 1=6Dr � 6� 10�3 s, which is below

the 0.1 s frame interval of the experiments of Lobo et al. [11].

In the analysis of other flows, the sampling rate must remain

greater than the associated time constant to ensure the inde-

pendent sampling of M13 positions in time. It is also of

interest to note that rotational diffusion scales with length as

D � L�3, so small changes in M13 length have a large impact

on the rotational diffusion coefficient, and hence Péclet

number. The impact of this is that M13 engineered to be slightly

longer will have a smaller diffusion coefficient and hence

enables the detection window to be extended to lower shear

rates; slightly shorter M13 will have a larger diffusion coeffi-

cient, hence enabling the detection window to be extended to

higher shear rates—with the caveat that, for orientation to be

detected, diffraction associated with the emission wavelength

places a lower limit on M13 length.

The theory in this paper provides methods for calculating

the Péclet number (as a proxy for WSS) on a flat surface

through imaging of a tethered M13. The extensibility of the

presented framework means that it will be possible to

modify the fluid dynamic modelling (§2), together with

added information from multi-plane imaging, to estimate

the shear stress over more biologically relevant surfaces

in vivo, e.g. over the endothelial cell lining of a blood

vessel. The rotational Péclet number is proportional to

the product of the shear rate g_ and local viscosity m, i.e. the

WSS (knowledge of the viscosity would then provide

the value of the shear rate). Under the assumption of

Newtonian rheology, uncertainty regarding the viscosity of

a biological fluid is not problematic for the estimation of

WSS because the Péclet number is determined precisely by

WSS, temperature and the geometric properties of the

phage. Given that the last two quantities are known accu-

rately, this allows for highly reliable calculation of WSS in

Newtonian fluids.

One particular application of this method would be in

calculating WSS in the vasculature. While blood is known to

behave as a non-Newtonian fluid macroscopically, on the

microscopic length scale of M13 the relevant surrounding

fluid is that of blood plasma, which behaves as a Newtonian

fluid in shear flow [30]. It may, however, be of interest in

future to characterize how the advective and diffusive terms

in the model are modified by the inclusion of non-

Newtonian rheology. Non-Newtonian properties may include,

for example, shear-thinning or viscoelasticity. In the case of

shear-thinning, we suggest that the shear rate in the vessel is

likely to change on a length scale of an order of magnitude

longer than the phage. Therefore, the advection and diffusion

of the phage can be well approximated by a Newtonian

model. As discussed above, the Péclet number provides infor-

mation about the WSS, so it is not necessary to know about

the viscosity directly. For the case of fluids which have a signifi-

cant viscoelastic rheology on the microscopic scale of M13, for

example mucus, the fluid dynamic framework would need to

be extended to incorporate such effects.

While our model of M13 as a rigid rod-like structure is

a rational first approximation, it could be improved

through coupling the fluid mechanics calculations with

an elastohydrodynamic model for M13 bending, for
example by using the model of Montenegro-Johnson et al.
[31].

Additionally, regarding the model-based image analysis, if

we were able to accurately measure the optical diffusion in a

given experimental set-up, and relate this to the PSF model

(3.2), we should be able to obtain the full three-dimensional

reconstruction of the M13 location, which would then allow

the use of the full probability density function c, rather than

the marginal probability density function, F, as obtained in

§2. We would expect good results in the full three-dimensional

case, even if the surface is not perpendicular to the imaging

plane provided there was some knowledge about the surface

topography. Topographic information could be quantified,

for example via the multiple imaging plane set-up of Dalgarno

et al. [32]. Such experimental techniques would provide knowl-

edge of the instantaneous geometry and potential wall

movements due to elasticity, pulsatile flow or other fluctu-

ations. These effects could then be coupled with the fluid

mechanics calculations via the boundary conditions to increase

the applicability of the model in vivo.

Throughout this work, we have considered the analysis of

a single M13, and the calculation of the Péclet number for the

system. While this is a good method for understanding the

dynamics of a locally spatially homogeneous topography,

problems arise when there is a significant change of topology

in space. In addition to improving the optical approaches to

the problem, the analysis in this method could be extended

to consider data from a set of spatially distributed M13

in order to better understand the behaviour of flow across

complex geometries.

While in this work we have considered only the calcu-

lation of surface shear stress, we believe the ‘ethos’, as well

as the techniques, developed here could have wider appli-

cations in the fields of microscale biology and image

analysis. Of great interest is the application of the model-

based image analysis techniques to experimental data of

motile cells such as sperm. We believe that these techniques

will be able to provide great insight into a variety of topics,

from subcellular structures to flagellated swimming cells

such as sperm, and will have the potential for wide-ranging

impact in fields such as fertility and animal husbandry.
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Appendix A. Derivation of the advection –
diffusion equation for a tethered fibre
The flux of the probability density function c(u, f, t) is given

by J ¼ c _d, where _d(u,f) is the rate of change of d due to the

combination of hydrodynamic and Brownian rotations.

Denoting by ~v(u,f) the torque-free angular velocity of the

particle induced by the shear flow, then the rate of change

of d under rigid body rotation is

_d ¼ ~v� d: ðA 1Þ

In the presence of the shear flow, the hydrodynamic torque

TH produced by a fibre rotating with angular velocity v is

given by

TH ¼ R( ~v�v), ðA 2Þ

where R is the rotational resistance matrix about the origin,

taking into account the effect of the plane boundary. The

u-dependence is a consequence of the boundary effect.

Following [22], the Brownian torque on a suspension is

given by

TB ¼ �d�D(kT logc) ¼ � kT
c

d�rd c, ðA 3Þ

where k is the Boltzmann constant and T is the absolute temp-

erature. Torque balance TH þ TB ¼ 0 then yields

R( ~v�v)� kT
c

d�rd c ¼ 0: ðA 4Þ
By rearranging we have

c _d ¼ c~v� d�R�1rd c

¼ ca�Drd c,
ðA 5Þ

where D ¼ R�1 is the rotational diffusion matrix and

a ¼ ~v� d is the rotational advection vector.
Appendix B. Numerical solution of the
advection – diffusion equation
The diffusion tensor D for an axisymmetric body can be

written,

D ¼ Duu(u)ûûþDff(u)f̂f̂ ¼ Duu(u) 0
0 Dff(u),

� �
: ðB 1Þ

The advective term a is given by

a(f,u) ¼ auûþ aff̂ ¼ �vuûþ vff̂, ðB 2Þ

where a ¼ v � d.

In component form, equation (2.8) can be written as

Pe @u(auc)þ cot uaucþ
1

sin u
@f(afc)

� �

¼ @u(Duu@uc)þ cot uDuu@ucþ
Dff

sin2 u
@ffc , ðB 3Þ

where we have assumed that c is time independent, and

dropped dashes on dimensionless variables for brevity.

The system is solved numerically via a finite difference

method to give an approximate solution [cij] � c(ui, fj) (i ¼
1, . . ., 100, and j ¼ 1, . . ., 100) on the domain 08 , u , 908,
08 �f , 3608 for a given Péclet number Pe.
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