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Abstract

Recently more and more evidence suggest that rare variants with much lower minor allele frequencies play significant roles
in disease etiology. Advances in next-generation sequencing technologies will lead to many more rare variants association
studies. Several statistical methods have been proposed to assess the effect of rare variants by aggregating information
from multiple loci across a genetic region and testing the association between the phenotype and aggregated genotype.
One limitation of existing methods is that they only look into the marginal effects of rare variants but do not systematically
take into account effects due to interactions among rare variants and between rare variants and environmental factors. In
this article, we propose the summation of partition approach (SPA), a robust model-free method that is designed specifically
for detecting both marginal effects and effects due to gene-gene (G6G) and gene-environmental (G6E) interactions for rare
variants association studies. SPA has three advantages. First, it accounts for the interaction information and gains
considerable power in the presence of unknown and complicated G6G or G6E interactions. Secondly, it does not sacrifice
the marginal detection power; in the situation when rare variants only have marginal effects it is comparable with the most
competitive method in current literature. Thirdly, it is easy to extend and can incorporate more complex interactions; other
practitioners and scientists can tailor the procedure to fit their own study friendly. Our simulation studies show that SPA is
considerably more powerful than many existing methods in the presence of G6G and G6E interactions.
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Introduction

Despite of the success of large scale biological studies such as

GWAS in discovering many disease variants, most of which are

common variants with minor allele frequency (MAF) greater than

0.05, for diabetes, heart disease, Alzheimer disease, etc., the

variants identified thus far confer relatively small risk, explain a

small fraction of familial clustering, and add little practical value in

disease prediction. The issue of so-called ‘‘missing heritability’’ has

been a serious concern that has attracted considerable attention

and discussion recently. [1,2,3,4,5] A number of explanations have

been suggested for this phenomenon including: (1) an as-yet

undiscovered larger set of variants of smaller effects, (2) rare

variants with larger effects that may be eluding the current

GWAS, (3) unaccounted effects, due to gene-gene (G6G) and

gene-environment (G6E) interactions, (4) undetected structure

effects including copy number variations (CNVs), and (5) over-

estimated heritability.[6,7,8,9,10,11] This article presents a simple

yet easy-to-extend method to address issues (2) and (3).

In genetic association studies, the ‘common-disease common-

variants’ (CDCV) model states that common diseases are caused

by common variants with MAFs greater than 5% or 1%. [12]

However, recently more and more evidence support the alterna-

tive ‘common-disease rare-variants’ (CDRV) hypothesis which

claims that complex disorders are caused by multiple rare variants

with MAF,1%. [13,14] Unlike common variants that do not

affect protein function directly, most rare variants are missense

mutations in promoter region or protein coding regions and they

are capable of altering gene expression level, changing amino acids

sequence and affecting protein-protein interactions. [15,16]

Furthermore, rare variants may have higher odds ratios (above

2), compared with small odds ratios (1.1,1.5) of common variants.

[17] Therefore, the investigation of rare variants will help

researchers further understand the disease etiology and may

provide new insights into medical treatments. With the develop-

ment and commercialization of next generation sequencing

technologies, large number of SNPs with low frequencies can be

detected in a relatively short time and at relatively low cost. [5] In

the near future, whole-genome sequencing will become possible

for large numbers of individuals, and, as a result, large amounts of

sequence data with rare variants will be generated. Methods that

are capable of detecting these casual variants are very much in

need.

Due to the low frequencies and large number of rare variants,

traditional single-marker association tests that have worked well

for common variants will in general lack power for rare variants.

[18] In recent years, several statistical methods have been

developed based on collapsing rare variants in a specific region

of interest, e.g. a gene or genes from a specific pathway, followed

by performing a region-based test rather than individual tests for
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each variants. The Combined Multivariate and Collapsing (CMC)

method proposed by Li and Leal [19] tests whether the

proportions of rare variants carriers in cases and controls are

significantly different. The weighted sum (WS) method by Madsen

and Browning [20] is designed to weight variants according to

their estimated frequencies in controls, so that less frequent

variants receive higher weights compared with more common

variants. Instead of using the conventional cutoff values 0.05 or

0.01 to define rare variants, Price et al. [21] proposed to choose a

variable threshold (VT) that gives an optimal testing power. Ionita-

Laza et al. [22] developed a replication-based (RB) approach, also

based on a weighted-sum statistic, that can be more powerful in

the presence of both risk and protective variants. Wu et al.

proposed a sequence kernel association test (SKAT) that is a score-

based variance component test. [23] SKAT uses a linear weighted

kernel K Gi,Gi0ð Þ~
PK
j~1

wjGijGi0jto measure the similarity between

individuals i and i0 (K is the number of markers and wj is the weight

of SNP j). A weighted quadratic kernel K(Gi,Gi0 )~

1z
PK
j~1

wjGijGi0j

 !2

was also proposed in [23] to account for

both main effects and genetic interaction effects but it was not

systematically studied. Many alternative methods that have also

been proposed can be considered variations of these approaches.

[24,25,26]

Why another approach?
The aforesaid methods have been shown to work well in

different simulated models (mostly with marginal effects only).

However, all these tests only consider marginal effects from rare

variants and they do not systemically address the issue of

interactions among rare variants (G6G), or between rare variants

and covariates, such as environmental factors (G6E). Therefore,

additional statistical methods are needed to generate scientific

knowledge on the etiology of complex diseases where interactions

among genetic, biological and environmental variables work

together to produce a phenotype. In this article, we propose the

summation of partition approach (SPA), a robust model-free

method that not only tests the marginal effects of rare SNPs but

also naturally incorporates G6G and G6E interactions. As with

existing methods, SPA is based on aggregating information across

rare variants in a region of interest. We shall demonstrate the

power of SPA and compare with existing methods for both

dichotomous and quantitative phenotypes. Simulation studies

show that in disease models without interactions, the performance

of SPA is comparable to or even better than the most competitive

existing method in current literature, and in the presence of G6G

interactions, SPA substantially outperforms all the other methods.

Another advantage of our procedure is its simplicity and

extensibility. We also demonstrate in this article how to

incorporate an environmental factor in the proposed framework

and show that the augmented test score is powerful in detecting

G6E interactions. Similar approaches can be taken to account for

interactions with common variants or other covariates. In

addition, we compare the proposed method with several existing

tests on the dataset provide by Genetic Analysis Workshop 17

(GAW17) and find that SPA is robust for detecting different genes.

When large volumes of datasets with rare variants become

available in the near future, the proposed procedure will become

a powerful tool to detect complicated interaction effects in various

genetic regions and it will help us to better understand the

mechanisms of complex human diseases.

Materials and Methods

To better understand the motivation and rational behind SPA,

we briefly review a general framework that has been adopted for

detecting common variants with interactions. A core element in

this framework is the influence score I derived from what we now

know as the Partition Retention (PR) method. [27] Several forms

and variations were associated with the PR method before it was

finally coined this name in 2009.

A General Framework Used for Detecting Common
Variants

We demonstrate a basic tool adopted by our method. Suppose

there are n subjects with a response variable Y and K discrete

explanatory variables {X1,…, XK}. If each Xi can take three

discrete values, we generate a partition P with 3K non-overlapping

partition elements. Let ni be the number of subjects in partition i,

Y i the average response for subjects in partition i, and Y the

average response from all subjects. An influence measure between

the response and the predictors is defined as:

I(X1,:::,XK )~
X
i[P

n2
i Yi{Y
� �2

It has been shown that under the null hypothesis that none of

the predictors has influence on Y , the normalized I, I=(ns2)(s2

denotes the variance of Y ) is asymptotically distributed as a

weighted sum of x2 random variables of 1 degree of freedom each

such that the total weight is less than 1. [27] The main structure of

this measure is the partition formed by the K discrete variables

with 3K partition elements each containing non-overlapping

observations. This influence measure captures any discrepancy

between the conditional mean and the grand mean of Y and thus

is able to detect X-Y association regardless of the structure of

dependence. It can be easily generalized to any discrete random

variables with finite number of outcomes.

In case-control studies, the influence measure can be rewritten

as:

I~
X
i[P

n2
i p̂pD

i {
NA

NAzNU

� �2

where NA is the number of affected individuals, NU is the number

of unaffected individuals, and p̂pD
i is the proportion of cases in

partition i. Several variations of this partition-based method have

been successful at identifying influential common variants and

their interactions in human diseases, such as Rheumatoid Arthritis

[28,29,30] and breast cancer [31,32]. Its success in detecting

common variants relies on the essence that many partition cells

contain more than singleton subjects, however, this property will

diminish for rare variants due to their extremely low frequencies.

To effectively deal with rare variants, we need to modify the

partition procedure properly to accommodate for the sparseness,

which can be achieved by the proposed summation of partition

approach (SPA). We introduce below several test statistics of SPA,

including the marginal test score I1, G6G interaction score I2, and

G6E interaction scores I�2 .

Rare Variants Marginal Association Score I1
The general framework mentioned above can be extended to

rare variants association analysis for both dichotomous and

continuous phenotypes.

Interaction-Based Rare Variants G6G/G6E Detection
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In population-based case-control studies, suppose there are N

unrelated individuals, among which NA are cases and NU = N2NA

are controls. The region of interest G contains K rare variants and

the genotype of the jth individual is denoted (X
(j)
1 ,:::,X (j)

K ). Each

X
(j)
i (i~1,:::,K) can take values 0, 1 or 2, indicating the number of

rare variants at this position. The SPA test score I1 that accounts

for all marginal information contributed by these K rare SNPs is

defined as:

I1~
XK

i~1

n2
i p̂pD

i {
NA

NAzNU

� �2

where p̂pD
i , for the ith SNP, is the fraction of all observed rare

variants that are from cases, and ni is the total number of ithrare

variant observed in all subjects.

For continuous traits, I1 is defined as:

I1~
XK

i~1

n2
i Yi{Y
� �2

where Y i, for the ith SNP, is the averaged response for subjects

bearing at least one rare variant, Y is the averaged response from

all subjects and ni is defined as above. Different from the original

influence measure, I1 recognizes the partition elements formed by

individual SNP and hence the partitions from different SNPs are

not non-overlapping any more; therefore, I1 does not suffer from

the sparseness of rare variants. Under the null hypothesis of no

influence, the differences between p̂pD
i and

NA
NAzNU

for dichotomous

traits (or between Yi and Y for continuous traits) for all i are small,

so a large I1 value indicates that some rare variants in the region

might be associated with the disease phenotype. Additionally, since

each term of I1 is the squared difference between the conditional

average and the grand average, it can detect both directions of

departure from the expected difference zero, which renders I1 the

ability to capture the association even in a region with both risk

and protective rare variants. Unlike PR’s influence measure I, the

statistical property of I1 is more complicated to obtain since the

dependence between partition cells created by different SNPs will

not asymptotically disappear even under the null hypothesis of no

influence. Therefore, in our analyses we will rely on the method of

permutation to assess its statistical significance.

Rare Variants G6G Interaction Association Score I2
In order to increase the power of detecting the genotype-

phenotype associations as well as to elucidate the biological

pathways that underpin disease, more and more attentions have

been given to the identification of interactions between SNP loci.

[33,34,35] A limitation of I1 is that it considers little interactions

among rare SNPs. From the general framework, we propose a

second SPA test score I2 that evaluates G6G interactions among

rare variants.

As the genotype at each SNP position can take 3 values, in

theory we are facing a maximum of 3K partition elements for all

levels of interactions. However, due to the low frequencies of rare

variants, the higher order (.2) interaction information among rare

SNPs in current sample size will be small. For example, if the

sample size is 1,000 and the SNP frequency is 0.01, the expected

number of observing one specific rare variants triplet is

1,00060.013 = 1023. If a region contains 20 independent rare

SNPs, the expected total number of rare variants triplets would be

20

3

� �
|0:001~1:14, which provides very low signal for 3-way

interaction detection. Therefore, for current sample size, we only

consider an influence measure that takes into account 2-way

interactions among rare variants. For a pair of rare SNPs i and j,

we consider three aggregated cells: individuals with rare variants

only on SNP i (denoted mM), individuals with rare variants only on

SNP j (denoted Mm) and individuals with rare variants on both

SNPs (denoted mm). Note that we do not consider the cell MM

where individuals have no rare variant at either position. For

dichotomous trait, the SPA test score I2 for G6G interaction is

defined as:

I2~
XK

i§1,jwi

n2
ij

p̂pD
ij,mM{

NA
NAzNU

� �2

z p̂pD
ij,Mm{

NA
NAzNU

� �2

z

p̂pD
ij,mm{

NA
NAzNU

� �2

2
64

3
75

where nij is the number of subjects who have at least one rare

variant in either SNP (i or j), p̂pD
ij,mM is the fraction of subjects that

are cases in partition mM, p̂pD
ij,Mm is that fraction in partition Mm,

and p̂pD
ij,mm in partition mm. For quantitative trait, I2 is defined as:

I2~
XK

i§1,jwi

n2
ij

�YYij,mM{ �YY
� �2

z �YYij,Mm{ �YY
� �2

z �YYij,mm{ �YY
� �2

� 	

where �YYij,mM is the average response for individuals in partition

mM, �YYij,Mm in partition Mm, and �YYij,mm in partition mm. If two rare

variants have interactions, the difference between the conditional

average and the unconditional average will be large, leading to a

large I2 value. Again, permutation is used to evaluate the

significance of the test statistic I2. Even though I2 only considers

2-way interaction, it can be easily extended to include higher-

order ($3) interactions by generating partitions based on m-tuples

(m$3) of rare SNPs.

Adaptive Test Score p*
When we are unclear whether G6G interaction is involved in

the onset of disease, we propose an adaptive score p* that is a

compromise between I1 and I2. We first evaluate the significance

of I1 and I2. Then the adaptive test score is defined as:

p �~min(p(I1),p(I2)) where p(I1) and p(I2) are the p-values of I1

and I2 separately. We evaluate the significance of p* by

permutation.

Rare Variants G6E Interaction Association ScoreI�2
Increasing evidence have shown that gene and environmental

(G6E) interactions are widely involved in the etiology of complex

diseases, including diabetes, cancer and psychiatric disorders

[36,37,38,39,40]. Conventional methods to detect G6E interac-

tions are mostly based on regression models, which will lose power

for rare variants. SPA can be easily extended to incorporate

covariates, such as environmental factors in the testing procedure,

considering both the environmental marginal effect and the G6E

interaction information. Here we focus on case-control study

design. Suppose an environmental factor E has J levels. The SPA

test score for detecting the effect of the environmental factor is

expressed as:

Interaction-Based Rare Variants G6G/G6E Detection
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I�2 ~
XJ

j~1

XK

i~1

n2
i , j p̂pD

i,j{
NA

NAzNU

� �2

where p̂pD
i,j is the fraction of rare variants at position i on level j that

are from cases, and ni,j is the total number of ithrare variants

observed at level j. I�2 is a modification of I1 by building additional

overlapping rare variants partition cells to J non-overlapping

partitions created by the environmental factor. The significance of

I�2is evaluated by permutation. We propose two permutation

strategies: (1) global permutation that permutes the phenotype

among all individuals; and (2) local permutation that permutes the

phenotype within each stratum of the environmental factor. Both

permutation strategies are investigated in our study.

Simulation Scheme
We simulated several scenarios for the purpose of evaluation

and comparison of our test scores with several existing rare

variants association methods. The genotype consists of 20

independent rare variants in each scenario. Scenario ‘Null-1’ is a

‘null model’ where none of the 20 variants affects the phenotype.

For dichotomous traits, the phenotypes are determined by the

baseline penetrance only. This is the null setting for I1, I2, p* and

I�2 with global permutation. In scenario ‘Null-2’, the dichotomous

outcomes are affected by the environmental factor. ‘Null-2’ is the

null setting for I�2with local permutation.

For empirical power comparisons, we generate three different

sets of simulations. The first set of simulations are marginal effect

models, in which the MAF of all SNPs are uniformly distributed

between 0.0001 and 0.01. In scenario 1, 5 out of the 20 rare SNPs

are risk SNPs and the effect size is constant. Scenario 2 is similar to

scenario 1 except that the risk effect is negatively correlated with

MAF. Scenario 3 has 5 protective variants and 5 deleterious

variants with effect size negatively correlated with MAF. The

second set of simulations contains 2-way G6G interaction

between rare variants, with MAF 0.01 for all 20 SNPs. In scenario

4, 50% of the SNPs (10 out of 20 SNPs) have interaction effects.

Scenario 5 is similar to scenario 4 but 75% of the SNPs are

involved in G6G interactions. Both main effect and G6G

interaction effect exist in scenario 6. The third set of simulation

models involves G6E interaction effects with a binary environ-

mental factor. Scenario 7 has positive G6E interaction effects and

environmental marginal effect; scenario 8 has both positive and

negative G6E interaction effects. Logistic regressions or linear

regression was used to generate dichotomous or quantitative

phenotypes. 1,000 repetitions were simulated for each scenario

with four different sample sizes, each having equal number of cases

and controls. Detailed simulation models are provided in Table S1

in file S1.

Results

We compared the power of SPA test scores I1, I2 and p* with

existing methods: CMC, WS, VT, RB SKAT (with the weighted

linear kernel) and SKATint (a modified SKAT score with the

weighted quadratic kernel) in a series of simulation scenarios,

including marginal effect models and G6G interaction effect

models for both dichotomous traits and continuous traits. RB only

deals with binary outcomes, so it is not included in our analysis for

continuous traits. We also evaluated the power of I�2 in G6E

interaction effect models for dichotomous traits. (See Material and

Methods for details of simulation models; numerical results from our

simulation studies are presented in Table S22S7 in file S1.)

Type I Error of I1, I2 and p*
The empirical type I error rates for I1, I2 and p* are presented in

Table 1 for nominal levels a= 0.05 and a= 0.01 with four

different sample sizes: 600, 1000, 1500 and 2000. The results show

that I1, I2 and p* are well controlled at both significance levels for

either dichotomous or continuous trait, even when the sample size

is small, indicating that the proposed tests are valid methods.

Additional results of type I error for competing methods are

presented in Fig. S1 in file S1.

Power Comparison in Marginal Effect Models for both
Dichotomous and Continuous Traits

We compare the power of I1, I2 and p* with competing methods

in three marginal effect models when (1) only risk variants exist

and the effect size is constant, (2) only risk variants exist and the

Table 1. Type I error estimates of I1, I2and p�.

Dichotomous Trait

a = 0.05 a = 0.01

Sample Size I1 I2 p� I1 I2 p�
600 0.052 0.055 0.054 0.009 0.012 0.009

1000 0.053 0.055 0.053 0.010 0.010 0.010

1500 0.048 0.049 0.049 0.007 0.007 0.007

2000 0.053 0.057 0.053 0.010 0.013 0.010

Continuous Trait

a = 0.05 a = 0.01

Sample Size I1 I2 p� I1 I2 p�
600 0.055 0.055 0.058 0.013 0.011 0.013

1000 0.05 0.046 0.044 0.009 0.005 0.010

1500 0.061 0.048 0.061 0.015 0.011 0.010

2000 0.045 0.046 0.043 0.013 0.009 0.009

doi:10.1371/journal.pone.0083057.t001

Interaction-Based Rare Variants G6G/G6E Detection
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effect size is negatively correlated with MAF, or (3) a mixture of

risk and protective rare variants exists.

In all three marginal effect scenarios, the performance of I1 and

SKAT are comparable and they are both superior to the other

tests (Fig. 1, 2 and 3). For dichotomous traits, I1 is the most

powerful method, followed by SKAT and p*. For continuous

traits, SKAT and I1 are most competitive; both of them are more

powerful than the other methods. The power of the adaptive score

p* is very close to I1,; p* is much more powerful than CMC, WS,

VT and RB. In addition, I1 and p* are quite robust to different

simulation scenarios, even in the presence of a mixture of risk and

protective variants, while CMC, WS and VT suffer substantial

power loss when causal rare variants have opposite effects (Fig. 3).

It is worth noting that although I1 does not intentionally highlight

Figure 1. Power comparison in the marginal effect model when the effect sizes are constant. Powers were calculated for nominal a levels
0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous traits (lower). Powers were evaluated for I1, I2, p*, SKAT, SKATint, VT, RB,
WS and CMC. Scenarios with different sample sizes were considered. P-values were estimated using 10,000 permutations and power was evaluated
using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g001

Interaction-Based Rare Variants G6G/G6E Detection
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less frequent variants by giving them higher weights, it is still the

most powerful (for dichotomous trait) or the second most powerful

(for quantitative traits) method even in scenarios where the effect

size is negatively correlated with MAF, showing that its good

performance is intrinsic and is not driven by a specific weighting

scheme. The test score I2 does not show a high power in these

marginal effect models as it is designed to detect G6G interaction

effects but not the marginal effect.

Power Comparison for G6G Interaction Effect Models for
both Dichotomous and Continuous Traits

We evaluated the power of different methods in two G6G

interaction effect models (scenarios 4 and 5). The advantage of the

Figure 2. Power comparison in the marginal effect model when the effect sizes of causal variants are negatively correlated with
MAFs. Powers were calculated for nominal a levels 0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous traits (lower). Powers
were evaluated for I1, I2, p*, SKAT, SKATint, VT, RB, WS and CMC. Scenarios with different sample sizes were considered. P-values were estimated using
10,000 permutations and power was evaluated using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g002

Interaction-Based Rare Variants G6G/G6E Detection
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G6G interaction association score I2 over all the other methods is

apparent for both dichotomous and continuous traits (Fig. 4 and

Fig. 5). For dichotomous traits, when the sample size is large, the

power of I2 is substantially higher than all the other methods. For

continuous traits, I2 is uniformly the most powerful method for all

sample sizes; for example, when the sample size is 2000, I2 is 38%

more powerful than SKATint at a= 0.01. Moreover, the adaptive

score p* has a power that is just slightly less than I2, and p* is

substantially more powerful than the rest. On the other hand, VT,

WS and CMC suffer from significant loss of power in the presence

of complicated G6G interaction effects.

We also examine the scenario in which the phenotypes are

influenced by both genetic marginal and G6G interaction effects

(scenario 6). Here the marginal effect is set to be small so that it

Figure 3. Power comparison in the marginal effect model with a mixture of protective and risk rare variants. Powers were calculated
for nominal a levels 0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous traits (lower). Powers were evaluated for I1, I2, p*,
SKAT, SKATint, VT, RB, WS and CMC. Scenarios with different sample sizes were considered. P-values were estimated using 10,000 permutations and
power was evaluated using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g003

Interaction-Based Rare Variants G6G/G6E Detection
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will not mask the interaction effect. I2 is still consistently the most

powerful test and p* is the second best, followed by SKATint

(Fig. 6). For continuous traits with sample size 2000, I2 is 29%

more powerful than SKATint, and p* is 28% more powerful than

SKATint at a= 0.01.

Type I Error and Power of I�2 for Dichotomous Trait
For the G6E interaction score I�2, we investigated its type I

error and power for dichotomous trait using two permutation

strategies – global permutation and local permutation (see Materials

and Methods), denoted by I�2-Global and I�2-Local respectively. As I�2
considers both the genetic and environmental marginal effects as

Figure 4. Power comparison in G6G interaction effect model when 50% of rare variants participate in the interaction effect. Powers
are calculated for nominal a levels 0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous trait (lower). Power was evaluated for
I1, I2, p*, SKAT, SKATint, VT, RB, WS and CMC. Scenarios with different sample sizes were considered. P-values were estimated using 10,000
permutations and power was evaluated using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g004

Interaction-Based Rare Variants G6G/G6E Detection
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well as G6E interaction effect, I�2-Global is appropriate for testing

the null hypothesis of no association at all (no G marginal, E

marginal or G6E interaction effects), and I�2-Local is appropriate

for testing the null hypothesis of no E marginal effect.

The type I error of I�2 are evaluated for two null hypotheses.

The first null hypothesis (null-1) assumes the dichotomous traits

are completely determined by the baseline penetrance. The second

null hypothesis (null-2) assumes that the phenotypes are affected by

environmental marginal (E marginal) effect. Table 2 presents the

type I error of I�2-Global and I�2-Local in these two null settings. In

null-1, both I�2-Global and I�2-Local are correctly controlled at levels

a= 0.05 and 0.01. In null-2, I�2-Local still hits the target level while

I�2-Global has significant higher values. This is because I�2-Global is

able to test any effect from genetic or environmental factors,

Figure 5. Power comparison in G6G interaction effect model when 75% of rare variants participate in the interaction effect. Powers
are calculated for nominal a levels 0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous trait (lower). Power was evaluated for
I1, I2, p*, SKAT, SKATint, VT, RB, WS and CMC. Scenarios with different sample sizes were considered. P-values were estimated using 10,000
permutations and power was evaluated using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g005
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including the E marginal effect; hence the results of I�2-Global in

null-2 are indeed the power of I�2-Global in the presence of E

marginal effect. On the other hand, I�2-Local removes the E

marginal effect, so it shows the correct type-I error in both null-1

and null-2.

Two scenarios are considered to compare the power of I�2-

Global, I�2-Local and competing methods when (1) the phenotypes

are affected by E marginal effect and positive G6E effect, (2) the

phenotypes are affected by E marginal effect and both positive and

negative G6E effects. In computation, SKAT and SKATint

regress the phenotype on the environmental factor when

calculating the test statistic [23]. I�2-Global and I�2-Local use the

environmental factor as in their definition. All the other methods

work on the phenotype and the genotype directly. The results

Figure 6. Power comparison in the scenario with both main effect and G6G interaction effect. Powers are calculated for nominal a levels
0.05 (left) and 0.01(right) and for dichotomous traits (upper) and continuous trait (lower). Power was evaluated for I1, I2, p*, SKAT, SKATint, VT, RB, WS
and CMC. Scenarios with different sample sizes were considered. P-values were estimated using 10,000 permutations and power was evaluated using
1,000 replicates.
doi:10.1371/journal.pone.0083057.g006
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show that I�2-Global has much higher power than all the other tests

because it takes into account both E marginal and G6E

interaction effects, and I�2-Local outperforms all the remaining

methods that do not consider G6E interaction effects (Fig. 7).

Application to the GAW17 Dataset
The genetic analysis workshop 17 (GAW17) provided genotypes

of 3,205 autosomal genes on 697 individuals from the 1000

Genome Project. A dichotomous phenotype was simulated from a

linear model using SNPs from 34 genes and most causal SNPs

were rare variants. A total of 200 simulation replicates were

carried out and the genotype was held fixed for all replicates. See

[41] for more details of the simulation model. Here we chose to re-

analyze two causal genes FLT1 and ANRT. In the workshop, FLT1

has been shown to exhibit a strong signal in many well-known

methods while ARNT could not be identified by any existing

approach. For both genes, an upper frequency of 0.05 was used as

the MAF cutoff to define rare variants and only nonsynonymous

SNPs were examined. We computed the power of our test scores

and competing methods using all 200 replicates. Power was

calculated as the proportion of replicates with p-value less than

0.05 out of the 200 simulations. As shown in Table 3, I1 was fairly

robust for detecting both genes. For FLT1, two count-based

collapsing methods – CMC and WS are most powerful, followed

by VT and I1. For ARNT, I1 is substantially more powerful than

the other methods – its power is 47% higher than the second best

method SKAT. Given that the simulated model is a simple

additive linear model with genetic marginal effects only, methods

considering G6G interactions, including I2 and SKATint, do not

have apparent advantages in power gain for detecting either FLT1

or ARNT.

Computation Time
The computation time of I1, I2 and p* depends on the sample

size, the number of variants and the number of permutations. On

a 2.66 GHz laptop with 4 GB memory, to reach a significance

level of 10-4, the computation times to analyze a region with 20

SNPs for 600, 1000, 1500 and 2000 individuals are 3, 5, 7, 10 sec

for I1, and are about 1000, 1400, 1900, 2500 sec for I2.

Discussion

We propose here the summation of partition approach (SPA), a

flexible robust model-free framework for rare variants association

analysis that incorporates both G6G and G6E interactions. The

proposed SPA test scores create partitions from individual SNP

and combine the information across all rare variants in a region of

interest. I1 is designed to detect marginal effects of rare variants

and I2 is designed to capture the G6G interaction effects among

rare variants. In various marginal effect models, I1 is more

powerful than most approaches examined in our study. Its

performance is comparable to SKAT, which is regarded as the

most competitive existing method. In G6G interaction models or

in the scenario with both marginal and G6G interaction effects, I2

is superior to all the other methods in terms of detection power.

The adaptive score p* is a compromise between I1 and I2 and has

the advantage of both test scores. Its performance is just a little shy

of the better of the two scores I1 and I2, for both marginal effect

models and interaction effect models. Therefore, p* is a self-tuning

adaptive score that is able to gain power automatically regardless

of the simulation scenario. In practice when we have no clue of

how the genotype affects the phenotype, we suggest to use the

adaptive score p*. A significant p-value of p* indicates a potential

true signal from either marginal or interaction effects of rare

variants. In our study, we focus on the situation with 20 rare SNPs.

If the SNP number changes to 30, the simulation results (Fig. S2 in

file S1) are qualitatively similar in that I1 is the most powerful in

marginal effect models and I2 is the most powerful in interaction

effect models.

I�2 is an augmented score of I1 that incorporates covariates. It

can be used to test the hypothesis of no association at all (neither G

marginal, E marginal nor G6E effect) using ‘global permutation’

or to test the hypothesis of no E marginal effect using ‘local

permutation’. By ‘local permutation’, I�2 removes the marginal

effect of the environmental factor while still captures variations of

the genetic effect at different levels of the environmental factor. In

a similar fashion, covariates can be incorporated into I2 and the

resulting augmented score could be used to detect E6G6G 3-way

interactions between an environmental factor and two rare

variants.

Table 2. Type I error estimates of I�2 in two different null settings.

Null-1: No G, E or G6E Effects

a = 0.05 a = 0.01

Sample Size �I�2-Global �I�2-Local �I�2-Global �I�2-Local

600 0.053 0.050 0.007 0.007

1000 0.047 0.046 0.009 0.007

1500 0.045 0.048 0.008 0.009

2000 0.043 0.044 0.009 0.009

Null-2 : Marginal Environmental Effect only

a = 0.05 a = 0.01

Sample Size �I�2-Globala �I�2-Local �I�2-Globala �I�2-Local

600 0.110 0.046 0.027 0.007

1000 0.169 0.050 0.058 0.012

1500 0.239 0.047 0.087 0.011

2000 0.282 0.046 0.114 0.017

aThis is actually the power of I�2 -Global in the presence of marginal environmental effect.
doi:10.1371/journal.pone.0083057.t002
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I�2 can also be used to test the interaction effect between

common and rare variants if one treats the common variant as an

environmental factor. It can be further extended to detect 3-way

interactions among the environmental factor, common and rare

variants by building additional overlapping partitions based on

rare variants on top of the non-overlapping partition cells

generated by the environmental factor and the common variant.

A global permutation can detect both main and interaction effects

Figure 7. Power comparison in two G6E interaction models for dichotomous trait. Powers were calculated for nominal a levels 0.05 (left)
and 0.01(right) when only positive G6E effects exist (upper) and when both positive and negative G6E effects exist (lower). Powers were evaluated
for �I�2(with both global and local permutations), I1, I2, p*, SKAT, SKATint, VT, RB, WS and CMC. Scenarios with different sample sizes were considered.
P-values were estimated using 10,000 permutations and power was evaluated using 1,000 replicates.
doi:10.1371/journal.pone.0083057.g007
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of these factors, and a local permutation that permutes the

phenotype within each non-overlapping partition cell will capture

the E6common6rare 3-way interaction effect.

I�2 deals with categorical covariates naturally. In order to handle

continuous covariates, such as age, height and BMI, we suggest

taking the discretization approach that divides continuous

variables into distinct buckets. These ‘pseudo-categorical’ variables

generated by discretization can be applied to I�2 directly. In

practice, we usually set the number of buckets to be 2,5 and the

results are quite satisfactory. Moreover, a new influence measure

dealing with continuous covariates directly is under preparation.

The insight of SPA is similar to the partition retention (PR)

influence measure as in [27]. The PR method generates non-

overlapping partition elements over the sample space and assigns

each partition cell a weight that is proportional to the probability

of falling into that cell. Its success in detecting influential variables

relies on the essence that weights are not too small for all partition

elements, especially for those cells that generate signals. Therefore,

the PR method may lose power for rare variants association

studies as the partition cells with true signals will have very low

weights due to the extremely low frequencies of rare variants. SPA

differs from the PR method by creating overlapping partition

elements to avoid the sparseness and to boost the signal from rare

variants.

The information measure I1 can be viewed as a special case of

I1~
PK
i~1

wini p̂pD
i { NA

NAzNU

� �2

where fwigare weights that sum to

1. Weights can be defined in various ways. The inherent choice we

take here is wi~ni


PK
i~1

ni. If external information is available on

possible effects of a rare variant to disease, it is straightforward to

incorporate such information in our test approach by tuning the

weight. Some commonly used weights are based on (1) MAF of the

variant as in [20]; or (2) externally-defined weights such as

predictions from SIFT and PolyPhen, as suggested by Price et al.

[21]. In our study, even though we do not incorporate the weight

information, SPA is still superior over the other methods. We

believe that after tuning the weight, SPA will exhibit a better

performance.

Population stratification has been shown to be an important

problem for common variant association analysis. For rare

variants, this problem is more likely to occur due to their low

frequency and possible uneven distribution among populations. It

is straightforward to control population stratification in our

approach as we can consider population as an environmental

factor and apply it to I�2. An alternative is to treat population with

PCA and include the discretized eigenvalues in our analysis.

A major advantage of SPA is that it is highly extensible. The

building blocks of SPA are the partitions formed by individual rare

variant and it is easy to incorporate complex interactions. As

demonstrated in the article, we are able to take into account

interactions with environmental factors. Similar approaches can

be applied when considering interactions with common variants or

other covariates. It can also be generalized to other research areas

to benefit the practitioners and scientists in various fields. We

believe that the proposed framework of SPA will offer substantial

opportunities in detecting potential complicated interactions.

Once interaction effects indeed exist, our approach is capable of

identifying these interactions and thus adding to the detection

power.

This paper presents a simple novel (and easily implemented)

tool SPA as an alternative to existing statistical methods for rare

variants association studies, with a unique additional feature that

SPA can easily incorporate various forms of interaction effects.

This addition may add considerable power to disease-related

detection in the future. From our studies, if the underlying model

is a simple linear additive model with only marginal effects, the

powers of SPA are comparable to several existing methods.

However, if the model is more complex with interaction effects,

the proposed approach provides a more powerful alternative in

rare variants association analysis so that there is a better chance to

find disease-associated factors. With the development of next-

generation sequencing techniques, more and more data with a

large amount of rare variants will be generated. It is highly unlikely

that the disease phenotype is associated with genetic factors

through a simple linear main effect model, so the proposed

approach is going to be a powerful and rewarding tool to explore

the complicated interaction effects revealed by larger datasets. It is

worth noting that any interaction pattern, whether it is linear or

nonlinear, can be detected by SPA, since it is model-free and is not

subject to any distribution assumptions. Therefore, it is very robust

and effective regardless of how the genotype affects the phenotype.

The R code of the proposed test scores is available to download at

http://www.columbia.edu/rf2283/Software.html
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Table 3. Power of two genes in GAW17 dataset.

FLT1 ARNT

#Rare NSb SNPs 19 (10 causal) 9 (5 causal)

I1 0.865 0.345

I2 0.505 0.05

p* 0.775 0.22

SKAT 0.82 0.235

SKATint 0.77 0.1

RB 0 0.005

VT 0.88 0.025

WS 0.95 0.075

CMC 0.95 0.055

bNS: nonsynonymous.
doi:10.1371/journal.pone.0083057.t003
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