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Abstract

Motivation: Co-expression networks are a powerful gene expression analysis method to study how genes co-ex-
press together in clusters with functional coherence that usually resemble specific cell type behavior for the genes
involved. They can be applied to bulk-tissue gene expression profiling and assign function, and usually cell type spe-
cificity, to a high percentage of the gene pool used to construct the network. One of the limitations of this method is
that each gene is predicted to play a role in a specific set of coherent functions in a single cell type (i.e. at most we
get a single <gene, function, cell type> for each gene). We present here GMSCA (Gene Multifunctionality
Secondary Co-expression Analysis), a software tool that exploits the co-expression paradigm to increase the num-
ber of functions and cell types ascribed to a gene in bulk-tissue co-expression networks.

Results: We applied GMSCA to 27 co-expression networks derived from bulk-tissue gene expression profiling of a
variety of brain tissues. Neurons and glial cells (microglia, astrocytes and oligodendrocytes) were considered the
main cell types. Applying this approach, we increase the overall number of predicted triplets <gene, function, cell
type> by 46.73%. Moreover, GMSCA predicts that the SNCA gene, traditionally associated to work mainly in neu-
rons, also plays a relevant function in oligodendrocytes.

Availabilityand implementation: The tool is available at GitHub, https://github.com/drlaguna/GMSCA as open-
source software.

Contact: juanbot@um.es or mina.ryten@ucl.ac.uk.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Gene co-expression networks (GCN) are a combination of gene
clusters and graph networks, based on the correlation of mRNA lev-
els from gene expression profiling (Botı́a et al., 2017; Langfelder
and Horvath, 2008; Miller et al., 2010; Oldham et al., 2008). Genes
appearing together in a cluster or as neighbors in the network are
said to be co-expressed. GCN analysis is a powerful tool for deter-
mining genes associated with molecular mechanisms underlying bio-
logical processes of interest and for defining the function of a gene

in a cell type using bulk-tissue transcriptomic data. GCNs provide
insights into gene function in specific cell types by detecting gene
clusters (i.e. modules) enriched for cell type markers. By applying
the ‘guilt-by-association’ (GBA) heuristic (van Dam et al., 2017;
Wolfe et al., 2005) to GCNs, all genes in a cell-type enriched module
are then predicted to relate to a single cell type within which, they
share the same function.

However, there is ample evidence to suggest that a single gene
may have different biological functions in different cellular contexts.
For example, the tumor suppressor gene, TP53, which encodes
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tumor protein p53 has different roles depending on its interaction
partners and consequently is implicated not only in DNA damage
and repair, but also in the initiation of apoptosis and senescence
(Gillis and Pavlidis, 2011). Yet current GCN analyses cannot cap-
ture such complexity even if it is reflected in transcriptomic data be-
cause commonly used forms of GCN analysis assign a single gene to
a single module (see Supplementary Methods, Section S2.1., for a
detailed discussion on this). This is a significant limitation, especial-
ly when considering tissues with high cellular heterogeneity such as
human brain tissue, where cellular context is likely to be of key im-
portance to the understanding of gene function. Thus, elucidating
the different roles of critical genes, while accounting for different
contexts, such as expression in different cell types, could reveal new
insights into the comprehension of gene function (Eating Disorders
Working Group of the Psychiatric Genomics Consortium et al.,
2020; Hekselman and Yeger-Lotem, 2020; Muratore et al., 2017;
Reynolds et al., 2019).

While cell-specific transcriptomic analyses may provide a means
of addressing that issue, there are significant challenges associated
with the construction of co-expression-based approaches in this con-
text. Although single-cell technology is evolving rapidly, the gene
expression data generated remains sparse in nature, with low sensi-
tivity on the reads per gene and cell types detected when using sin-
gle-cell and single-nucleus RNA-sequencing approaches,
respectively. Other issues include drop-outs or transcriptional burst-
ing (i.e. the time depending variation of transcription activity)
(Buettner et al., 2015; Handley et al., 2015; Haque et al., 2017;
Hicks et al., 2018; Kolodziejczyk et al., 2015; Zhu et al., 2018).
Furthermore, cell-specific human brain gene expression datasets
generated from large numbers of individuals are rare due to the asso-
ciated costs, and are largely limited to single-nucleus RNA-sequenc-
ing (snRNAseq) data as tissue is primarily sampled from post-
mortem tissue. These snRNAseq datasets not only tend to be par-
ticularly sparse, but also have systematic biases, such as the under-
representation of genes expressed within the neuropil (i.e. the synap-
tically enriched area of the central nervous system). To overcome
some of these challenges, alternative techniques have been developed
to study specific cell types in bulk tissue, for example by deconvolut-
ing the specific contribution of each cell type to gene expression
(Baron et al., 2016; Dong et al., 2020; Newman et al., 2015, 2019;
Tsoucas et al., 2019; Wang et al., 2019).

Thus, the development of tools to maximize the value of the
large quantities of deeply sequenced and publicly available human
brain bulk-tissue transcriptomic datasets remains important. In this
study, we develop a new method to investigate gene multifunctional-
ity in bulk-tissue transcriptomic datasets. Here, we define multifunc-
tionality as the association of a gene to multiple biological functions
within a tissue as a result of its different cellular contexts.
Particularly, we are primarily interested in the cell type context of
genes. And our aim is to uncover different cell types and functions
for the same genes and in this way opening new ways to study dis-
eases with a genetic basis. We propose Gene Multifunctionality in
Secondary Co-expression network Analysis (GMSCA) to investigate
gene multifunctionality on gene expression profiling from bulk tis-
sue (see Fig. 1a and b). GMSCA is applicable when single-cell based
data is not available yet but also in settings where there are paired
bulk-tissue and single-cell samples. Importantly, GMSCA has been
developed not to focus on producing estimates of each cell contribu-
tion to gene expression but on predicting gene function in each cell
type the gene is expressed in. This process involves two steps.
Firstly, GMSCA constructs a primary gene co-expression network
(PGCN) from a gene expression matrix to produce a primary set of
triplets <gene, cell type, function> from the annotated PGCN (see
Supplementary Section S2.2. of Supplementary Methods). All genes
found in those triplets are said to be typed. Secondly, GMSCA cre-
ates secondary gene co-expression networks (SGCN) for each of the
target cell types. For each cell type and modules enriched for that
cell type within the PGCNs, GMSCA removes the contribution of
that cell type from the expression matrix. GMSCA now constructs,
with the newly created gene expression matrix (which includes all
the original gene pool), a SGCN and extracts new triplets <gene,

cell type, function> (see Fig. 1c and Supplementary Methods).
When a gene was not identified within a triplet in the PGCN, but
now appears in any triplet from the SGCNs, we say the gene is acti-
vated. If, on the contrary, it appeared within a triplet generated
from the PGCN but not within any of the SGCN triplets, it is termed
deactivated (see Fig. 1b for details).

GMSCA increases the number of triplets obtained by 46.73% on
average compared to conventional GCN, so notably increasing its
utility. Therefore, secondary co-expression networks can augment
existing tissue deconvolution approaches as they generate additional
functional annotation of different cell types. These new functional
annotations include multiple annotations for single genes (i.e. they
shape gene’s multifunctionality), creating new applications for this
well-established analysis.

2 Materials and methods

We created three network families in the form of R packages as
resources: CoExp10UKBEC, CoExpROSMAP and CoExpGTEx.
Networks were created with WGCNA and refined with k-means
with CoExpNets R package (Botı́a et al., 2017).

CoExp10UKBEC comprises GCNs created from confirmed non-
pathological human brain samples of 10 different brain areas.
Samples were profiled for gene expression with Affymetrix Human
Exon v2. Microarrays. Identical gene pool was used to construct co-

Fig. 1. (a) GMSCA generates a list of triplets <gene, cell type, function> for the

genes included in the initial gene expression profiling matrix, MSxG. First, a

WGCNAþk-means co-expression network called the primary network is created.

Its modules are then tested (Fisher’s Exact Test, FET) for enrichment of cell type

markers, in this case with brain cell type marker sets for neurons (in red), microglia

(in green), oligodendrocytes (in light green) and astrocytes (in blue). Those modules

with a clear signal (FET P<0.05 on just a single cell type) are selected and their cor-

responding cell signal removed (see Section 2) from expression to generate a new

M’SxG. GMSCA creates a new co-expression network (these are called secondary)

for each expression matrix and annotates their modules in the same way. Cell-type

enriched modules in both primary and secondary networks generate as many triplets

(gene, cell type, function) as genes in the module. (b) Any gene found in a cell type

enriched module is tagged by GMSCA as ‘typed’. When a gene in a primary co-ex-

pression network shifts from a cell-type enriched module to a non-cell-type enriched

module in the secondary co-expression network, we say the gene is deactivated (red

arrows). When it goes from a non-cell-type enriched module to a cell-type enriched

module, we say the gene is activated (green arrows). A gene is multifunctional when

it goes from a cell-type enriched module to a module with a different cell type en-

richment (black arrows). A gene is strongly typed when it goes from a cell-type

enriched module to another module with the same cell-type enrichment. It is strong-

ly non-typed when the primary module and secondary module are both non-cell-

type enriched. (c) An average primary co-expression network tags 37% of genes as

non-typed, another 30% as neuronal, 10% as oligodendrocytic, 13% as astrocytic

and 8% as microglial. In a secondary network, 37% of non-typed genes become

typed and 42.5% of typed genes become deactivated. Also, as 9.1% of the genes are

tagged as pleiotropic in a single network, we can gain up to 36.4% annotations of

pleiotropy with all four secondary networks GMSCA creates in this case. (d)

Number and size of gene markers set used by GMSCA for each cell type, in this

article
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expression networks [details of GCN construction here (Forabosco
et al., 2013)].

ROSMAP is a transcriptomics human frontal cortex resource
with RNA-seq based gene expression profiling for 640 samples, cor-
rected for batch effect using ComBat. Age, sex, RIN and PMI (Post-
Mortem Interval) were regressed out of individual gene expression.
GCNs were constructed from residuals. The 640 samples were
arranged into four different groups to create 4 GCNs. One with all
samples and three depending on neuritic plaques deposition post-
mortem diagnostic (a group for values 1, a second group for values
2 and 3 and a third group for values 4) with 200, 158 and 221
respectively.

We developed 13 co-expression networks for the 13 available
brain areas in GTEx RNA-seq samples. We corrected samples for
batch effect with ComBat. Then, we generated surrogated variables
to model unknown effects in data and regressed those, age, sex, PMI
and RIN from the overall gene expression. GCNs were constructed
from residuals. See the Supplementary for the effect of sample size in
GCN construction.

The procedure for creating both PGCNs and SGNCs is identical.
The smooth parameter that satisfies scale free topology is found. An
adjacency matrix is calculated and the subsequent topology overlap
matrix (TOM) is obtained. The clustering is performed using 1-
TOM as distance. Gene clusters are obtained by the cuTree algo-
rithm with 100 as the minimum number of genes. A refinement step
based on the k-means algorithm with 50 iteration steps is applied
afterwards. Genes are ranked within the modules through the
Pearson correlation of their expression and the 1st principal compo-
nent of gene expression of the whole module, the module member-
ship, MM. Gene clusters are annotated with function using gProfiler
[see details here (Botı́a et al., 2017)]. All networks are annotated for
cell type as follows.

2.1 Module annotation for function and cell type
To annotate network modules for specific brain cell types, we tested
modules for brain specific gene markers for the four main brain cell
types (neuron, microglia, astrocytes and oligodendrocytes) (see
Fig. 1d) using manually curated cell marker datasets found at the
CoExpNets package. We redesigned the original Fisher’s Exact test
employed in CoExpNets to assess the significance of the overlap be-
tween genes at modules and genes at marker sets to account for
module size as there is significant association between network mod-
ule size and -log10() transformation of P-values from the tests in all
PGCNs, mean R2 0.28, min 0.17, max 0.45 (Supplementary Fig.
S4a and b). After applying Bonferroni correction, to account for
multiple testing, we regressed out gene set size effect from P-values
significance (Supplementary Fig. S4c and d, Supplementary
Methods S2.3.2.) reducing the number of positive tests from an
average of 22 per network to just a mean of 11.03. Note that
GMSCA is not restricted to either to the cell types considered here,
nor the gene marker sets from CoExpNets. It can be tailored to any
tissue and its corresponding cell types of interest provided that there
are suitable cell-type-specific markers.

2.2 Human phenotype ontology enrichment analysis
Human Phenotype Ontology (HPO) terms associated with each
human gene were downloaded from HPO (Köhler et al., 2019). To
determine the enriched Human Phenotype Ontology (HPO) terms
we have selected the relevant overrepresented phenotypes in each
module, these are phenotypes that are in at least 2% of the genes
from the module and Fold Change (FC) is a measure of how many
times that phenotype is more likely to be found in the module than
by chance (HPO ontology).

2.3 Secondary co-expression networks generation
After generating the PGCN of a gene expression matrix, GMSCA
detects modules enriched for the cell types of interest. For each gene
in a module enriched for cell type ct, GMSCA generates a prediction
triplet <gene, ct, function> where function refers to the Gene
Ontology based annotation for all genes in the module. Then it

builds SGCNs by applying a transformation to the gene expression
of genes at modules enriched for the cell types of interest. GMSCA’s
model of gene expression for any gene g as followS

e ¼
X

c2CT
acxc þ b x0;

where e is the gene expression for a specific gene, CT is the set of all
cell types considered of interest for the tissue, xc is the particular

contribution per sample of cell type c to the gene, and xo represents
other unknown factors contributing to the expression. GMSCA

assumes this additive model to decompose the gene expression ma-
trix of each cell type enriched module as follows. Let us suppose
that module m is enriched for a particular cell type. GMSCA

removes the contribution of that cell type to gene expression from
module m by starting with the MS,m matrix (i.e. gene expression of
genes in module m for all samples S), it then obtains the set of PCAs

to explain 90% of the variance, and compounds a new matrix with
them, Tm,m, the transformed gene expression matrix. It then removes

the first PCA from that matrix to create T’m-1, m-1. Note that the 1st
PCA is assumed to be the cell type contribution to gene expression
that we remove. T’m-1, m-1 is finally used to reconstruct the original

expression, using all PCA axes but the 1st. The current matrix, M’S,

m, is now free of the detected cell type contribution. This matrix is

then used by GMSCA to create a new GCN that we call secondary,
i.e. SGCN. GMSCA constructs, in this way, one SGCN for each cell
type. Note that it is extremely rare to find gene modules enriched for

more than one cell type. And in those cases, the enrichment of one
of the cell types is almost marginal, while the other is highly signifi-

cant. GMSCA drops out the marginal signal.

2.4 Cell-type-specific gene expression estimates for

Barres
We downloaded Supplementary Table S4 from Zhang et al. (2016)

which contains expression levels for neurons, mature astrocytes,
microglia and oligodendrocytes. Within each cell type, we averaged

all available values for each gene. We scale and log transform that
matrix. Then we generate a boolean matrix of specific gene expres-
sion in cell types, Mg x ct with genes in rows and cell types in col-

umns such that M[i, j] is set to TRUE when gene i has greater
expression than the mean expression from the whole expression
matrix.

To assess the multifunctionality prediction overlap between
Barres data and GMSCA, we looked at GMSCA predictions from

PGCNs and SGCNs, and assessed the overlap in the corresponding
cell type at the Barres’ data. We report a Fisher’s exact test on this

overlap. In each comparison, we remove known gene markers to
avoid optimistic and unfair overlap assessments.

2.5 Cell-type-specific gene expression estimates for sc-

ROSMAP
We downloaded the sc-ROSMAP filtered count matrix from the
Synapse Web site. In sc-ROSMAP, we can find 48 samples of human

frontal cortex tissue arranged into 24 Alzheimer’s disease cases and
24 controls. We used control, dropped all zero count cell samples
and generated a Boolean matrix of gene expression in neurons,

microglia, mature astrocytes and oligodendrocytes, Mg x ct with
genes in rows and cell types in columns such that M[i, j] is TRUE

when gene i has a fold change of 3 of expression in cell type j, with
respect to the overall mean expression within that gene and cell
type.

We assess the significance (Fisher’s exact test) of the overlap be-
tween all four ROSMAP network predictions and single cell obser-

vations. We removed known gene markers to avoid optimistic and
unfair overlap assessments and aggregated excitatory and inhibitory
neurons into a single type.
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2.6 Using EWCE to replicate cell-specific expression

enrichment from GSMCA predictions
EWCE was used to assess whether multifunctional predictions from
GMSCA show any enrichment in expression in equivalent cell types
from mouse. We tested each predicted cell type gene set from
GMSCA for enrichment in the equivalent cell type at EWCE with
tye bootstrap.enrichment.test() from the EWCE package, we con-
verted human genes in our networks into MGI symbols using the
mouse_to_human_homologs data table from EWCE. Gene markers
were removed from the analysis. We used all MGI genes at the
mouse_to_human_homologs table as the background gene set and
10 000 permutations for each test. Results with P<0.05 were
reported as significant.

3 Results

To investigate the utility of GMSCA for the prediction of gene mul-
tifunctionality in brain, we used 27 co-expression networks from
three brain-derived gene expression datasets (see Supplementary
Table S1), including 13 bulk RNA-seq networks from GTEx’s (The
GTEx Consortium et al., 2015) brain regions and 4 bulk RNA-seq
networks from the ROSMAP (Bennett et al., 2012a, b) project, all
variations of frontal cortex samples. Further, we reused 10 bulk
AffyExon Array networks derived from UKBEC’s 10 brain regions
(Ramasamy et al., 2014). We refer to them as the GTEx, ROSMAP
and UKBEC network families respectively.

The average gene pool for the three network families is 18 682
and the average number of modules (clusters) is 30. As GMSCA
uncovers multifunctionality, it focuses on modules enriched for
markers of the cell types of interest. The average cell type enriched
module size is 622 genes. Note that a percentage of those genes are
cell type markers themselves; on average 158 genes, i.e. 25% of the
whole module. Therefore, 75% of the genes in those modules gener-
ate new <gene, cell type, function> triplets in that cell type.
Overall, the average PGCN generates more than 4500 of those pre-
diction triplets. We focus on the major cell types in brain: neurons,
microglia, astrocytes and oligodendrocytes (see Fig. 1d). We found
that 44% of the PGCN modules enriched for markers of the major
cell types were tagged as neurons, 21% as microglia, 18% as astro-
cytes and 17% as oligodendrocytes. Thanks to this approach, we
gained the capability of studying gene multifunctionality by discov-
ering new gene multifunctionality in specific cells with an additional
46.73% of the overall gene pool. 37% of the gene pool refers to
newly activated genes and 9.73% are additional cell types for genes
that become multifunctional (see Fig. 1c).

3.1 GCN modules enriched for cell type markers are

reliable
Predictions made by GMSCA come from cell marker enriched mod-
ules. Then we assessed whether those modules were replicable (i.e.
preserved), and therefore reliable, across brain areas. If a gene mod-
ule is preserved in a similar tissue, then the module is credible and
replicable. If the module is not preserved, it might be due to two rea-
sons. Either the module is specific for that tissue, and hence reliable,
or the module is not reliable, i.e. most genes are found there just by
chance. We used WGNCA’s preservation analysis based on the esti-
mation of a Z statistic called Z summary (see Langfelder and
Horvath, 2008 for a detailed explanation). Values of Z over 10 for a
module suggest strong module preservation. Values over 2 suggest
some preservation. Modules with Z under 2 are not preserved at the
tissue tested (see Fig. 2).

We first tested GTEx PGCNs’s modules enriched for cell type-
specific markers for preservation across the remaining GTEx
PGCNs. This resulted in 560 preservation tests. 8.6% of those tests
were negative (i.e. Z<2) suggesting that those modules were not
preserved in the remaining brain PGCNs, while 40.4% of the tests
showed signs of preservation (Z � 2) and 50.8% showed strong
preservation (Z � 10). We performed 630 tests at UKBEC networks
and 1.9% were negative. 13.3% pointed to weak preservation and

the remaining 84.7% indicated strong preservation. All ROSMAP
target modules were very well preserved as we may expect: one of
the PGCNs includes all ROSMAP samples, and the other three in-
clude subsets of the samples used within that PGCN.

Next, we assessed the 52 GTEx SGCNs (each PGCN generates
four new GCNs) for preservation. This resulted in 5157 tests being
performed of which 4.4% were negative (a cell type enriched mod-
ule was not preserved in a GTEx tissue), 25.9% implied weak pres-
ervation and 69.6% yielded strong preservation. We performed the
same analysis for the 40 UKBEC SGCNs. In this case, 2310 preser-
vation tests were performed and 1.12% of the tests were negative,
whereas 17.7% of the tests showed signs of preservation and
81.12% showed strong preservation. All preservation tests in
ROSMAP SGCNs showed strong preservation.

Part of the difference in non-preserved modules between GTEx
and UKBEC can be explained due to PGCNs module size. The Z
preservation value correlates positively with module size (R^2 0.38,
Supplementary Fig. S1) (Langfelder et al., 2011). And maximum
module size in GTEx PGCNs is 1663, and 2953 in UKBEC.
Additionally, we wanted to further investigate whether the non-pre-
served GTEx modules could have had some biological meaning. We
performed a functional enrichment analysis on the genes at those
modules, based on the Gene Ontology, REACTOME and KEGG
pathway databases using gProfileR R package (Reimand et al.,
2007). On average, we obtained 164 annotation terms per non-pre-
served module, suggesting these modules were biologically relevant.
Their lack of preservation may indicate that these modules were spe-
cific to their tissue.

3.2 GMSCA multifunctional predictions replicate well in

cell-type-specific datasets
To assess whether GMSCA multifunctionality predictions replicate
in cell-specific brain datasets we considered two cell-specific gene

Fig. 2. distribution of preservation values for all cell-type enriched modules as

detected by GMSCA, for primary (in grey) and secondary (in white) networks. Each

box plot corresponds to all modules within a family found to be enriched for the

indicated cell type (MA for mature astrocytes, MG for microglia, N for neuron and

OLG for oligodendrocytes). Families ending with ‘Sec’ refer to secondary network

modules. The vertical green dashed line marks the strong preservation limit (mod-

ules are easily replicable in other brain tissues and therefore highly reliable). The

vertical orange dashed line marks the weak preservation limit (modules show signs

or preservation and therefore some evidence of reliability). All preservation tests are

performed within each network family. 98.1% of the preservervation tests sustain

network reliability in UKBEC and 95.5% in GTEx. All tests yield strong preserva-

tion within the ROSMAP family
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expression datasets in human brain cortex, sc-ROSMAP and Barres
Lab data, which are different in nature and a mouse brain expres-
sion dataset (Zeisel et al., 2018) through the EWCE (Skene and
Grant, 2016) tool.

One of the human datasets is sc-ROSMAP (Mathys et al., 2019),
from single cell transcriptomics in a fraction of bulk-RNAseq
ROSMAP paired brain cortex samples (24 AD cases and 24 con-
trols). The other is based on immunopanning of temporal lobe cor-
tex samples (Mathys et al., 2019; Zhang et al., 2016) from Barres
Lab. This involved purification of specific cell types using cell sur-
face markers followed by gene expression profiling on these purified
cell types. As we already noted, sc-ROSMAP and Barres’ datasets
are of different nature but both were reduced to a list of cell-type-
specific genes for each of the cell types we are using in this article
(see Section 2). These lists are used then to compare with the cell
multifunctionality predictions generated by GMSCA. Cell markers
within GMSCA are removed from the analysis to avoid optimistical-
ly biased results.

Multifunctionality predictions from all four ROSMAP PGCNs
yielded significant overlap with sc-ROSMAP data (see
Supplementary File S2). For example, in the NotAD network the
overlaps are as follows: Fisher’s Exact Test (FET): P<4.27E-36 for
neurons, P<3.27E-46 for oligodendrocytes, 0.017 for microglia
and 2.94E-42 for astrocytes. SGCN predictions generated overlaps
with the following significance: FET P<2.02E-36 for neurons,
P<2.4E-7 for oligodendrocytes, P<2.3E-3 for Microglia and
P<1.28E-3 for astrocytes.

Barres Lab based predictions were assessed for overlap with our
cortex networks (see Supplementary File S2). Focusing, for example,
on the same tissue used within the Barres paper, temporal lobe (the
10UKBEC TCTX GCN), GMSCA generated highly significant over-
laps in primary predictions with P<4.51E-67 for neurons,
P<1.94E-31 for oligodendrocytes, P<7.2E-13 for microglia and
P<1.01E-84 for astrocytes. Secondary predictions yielded significant
overlaps for neurons (P<1.19E-73), oligodendrocytes (P<4.09E-
42) and astrocytes (P 2.02E-12), but not for microglia (P 0.91).

GMSCA predictions were assessed for replication on a different-
species and more comprehensive single-cell brain transcriptomic
dataset, through EWCE (Expression Weighted Cell Enrichment).
This tool enables easy integration with mouse brain transcriptomics
from 19 brain regions (Zeisel et al., 2015) and can be used to test
whether a given gene list provided by the user presents higher ex-
pression levels in each cell type from the reference dataset than
expected by chance. We tested all cell type predictions from PGCNs
and SGCNs to assess whether EWCE recapitulated similar enrich-
ments. This analysis showed that 100% of the GMSCA gene sets
predicted to be functional in a given cell type were also found to be
significantly enriched in expression by EWCE in the corresponding
cell type (see Section 2, Supplementary File S5).

3.3 GMSCA multifunctional predictions show

concordance across the three network families in

cortex-like tissues
As we used three brain network families, we could compare same-
tissue networks between families to assess the agreement of predic-
tions across their networks. Cortex is the only tissue present in all
three families but also putamen and substantia nigra in GTEx and
UKBEC (remind that ROSMAP is only frontal cortex). We assessed
the significance of each pairwise overlap between (gene, cell-type)
predictions from both primary and secondary networks, for each
cell type and pair of frontal cortex tissues. All Fisher’s exact tests
performed on the pairwise overlaps were highly significant, being
the higher P-value of 1.3E-318 (see Supplementary File S4 and
Supplementary Fig. S2).

In regard to the putamen brain area, 35% of the neuron predic-
tions made from the UKBEC putamen networks (primary and sec-
ondary), are also found as neuron in the GTEx putamen networks.
Note that the putamen UKBEC PGCN generates no microglia
related predictions (it generates 2686 predictions in the SGCN
though). The agreements for oligodendrocytes and astrocytes are

22.01% and 49.76%, respectively. For the substantia nigra brain
area, the numbers for neuron, microglia, oligodendrocytes and
astrocytes are 28.62%, 35.98%, 56.26% and 42.91% respectively
(see Supplementary File S4 and Supplementary Fig. S3).

3.4 GMSCA links the SNCA gene to oligodendrocytes
The SNCA gene encodes the alpha-synuclein protein, located at the
long arm of chromosome 4 at position 4q22.1. Mutations in this
gene cause Parkinson disease (PD) (Appel-Cresswell et al., 2013;
Krüger et al., 1998; Lesage et al., 2013; Polymeropoulos, 1997;
Zarranz et al., 2004). SNCA is also linked to other neuro-degenera-
tive diseases, mainly Alzheimer’s disease (Hashimoto and Masliah,
1999). The alpha-synuclein protein is involved in the regulation of
neurotransmitter release, synaptic function and plasticity of dopa-
minergic neurons (Cheng et al., 2011). SNCA is also are associated
with neuronal dysfunction. Therefore, it has been traditionally seen
as highly relevant to neurons. Thanks to applying GMSCA to our
networks, the generated multifunctionality predictions included an
association of SNCA to oligodendrocytes in 4 SGCNs, see below
(Supplementary File S1).

SNCA is predominantly expressed in brain tissue (Fig. 3a),
according to GTEx control samples bulk expression data V8 (The
GTEx Consortium et al., 2015). Moreover, SNCA is mainly
expressed in neurons and oligodendrocytes (Zhang et al., 2016) in
the human cortex (Fig. 3b and c), as the Barres Lab data shows. In
fact, SNCA was found in neuron-enriched modules in 10 out of the
13 GTEx PGCNs, all 4 ROSMAP networks and in 8 out of the 10
UKBEC networks. The only alternative cell type linked to SNCA is
oligodendrocytes through the GTEx SGCNs of substantia nigra, pu-
tamen and hippocampus and the UKBEC temporal cortex.

The substantia nigra is a central tissue in PD. Therefore we
focused the subsequent analysis on this tissue (Fig. 3d). SNCA is
found in the orangered2 module of the PGCN (module membership,
MM ¼ 0.84, see Section 2). That module is enriched for

Fig. 3. (a) SNCA is predominantly expressed in brain, as the violin plots show. All

13 brain tissues are within the top 16 GTEx tissues expressing SNCA. (b)

Immunopanning data on brain cell expression from Barres Lab shows SNCA pre-

dominantly expresses in neurons and oligodendrocytes. GMSCA tags SNCA as

neuronal and oligodendrocytic in the substantia nigra, putamen and hippocampus.

(c) APP, genetically linked to Alzheimer, is another interesting gene found in the

same module as SNCA. Barres Lab’s data confirms it is predominantly expressed in

neurons and oligodendrocytes. GMSCA tags it as neuronal and oligodendrocytic.

(d) UpSet plot (UpSet R package) on the genes from the predictions by GMSCA on

the GTEx substantia nigra samples. SNCA and APP are found at the intersection be-

tween N (neurons) and OLG (oligodendrocytes) with 378 genes more. (e) gProfileR

enrichment annotation for the secondary network module midnightblue in which

we find SNCA and APP appearing together
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dopaminergic neuron markers (P<4.59E-25) and GO terms like
catecholamine and dopamine biosynthetic processes
(GO:0042423 P<1.1E-5; GO:0042416 P<9.9E-5), locomotory be-
havior (GO:0007626 P<4.1E-4), neurotransmitter transport
(GO:0006836 P<1.9E-5), axonogenesis (GO:0007409 P<6.4E-4),
dopaminergic neuron differentiation (GO:0071542 P<8.0E-3) and
ferric ion transport (GO:0015682 P<4.6E-4). Dopaminergic neur-
onal loss is the hallmark of PD. Moreover, the aforementioned bio-
logical processes are highly relevant to PD (Aggarwal et al., 2019;
Nutt et al., 2004; Sawada et al., 2013). Interestingly, the darkor-
ange2 module includes six more genes linked to PD (Supplementary
Table S1). All this evidence suggests this network module is linked
to PD.

When we applied GMSCA to create the corresponding SGCN,
SNCA is found in the substantia nigra midnightblue module (MM ¼
0.53), which is enriched for markers of oligodendrocytes (P<1.48E-
4). This finding is replicated using the putamen and hippocampus co-
expression networks, belonging to the same network family, GTEx.
Moreover, themidnightblue module shared 27 genes with the SNCA
SGCN module in putamen (Fisher’s exact test on the overlap signifi-
cant, P<5.3E-11) and 45 with the SNCA SGCN module at the hippo-
campus, P<2.2E-16, suggesting function similarity of these modules
across the three tissues linking SNCA to oligodendrocytes. The mid-
nightblue module (Fig. 3e) was enriched for the following GO terms:
synaptic plasticity (GO:0048167 P<1.3E-4), neuronal plasticity
(GO:0048168P<1.9E-3), regulation of synapse organization (GO:
0050807 P<3.5E-3), axonal fasciculation (GO:0007413 P<7.2E-3),
neuron projection fasciculation (GO:0106030 P<7.2E-3), axon devel-
opment (GO:0061564P<3.5E-3), neuron recognition (GO:0008038
P<4.1E-3), regulation of neurotransmitter levels (GO:0001505
P< 5.5E-3), microtubule polymerization (GO:0046785 P<1.4E-3),
regulation of glutamate receptor signalling pathway (GO:1900449
P<3.6E-3) and synaptic vesicle exocytosis (GO:0016079 P<2.1E-3).
Note that BP terms like ‘regulation of neurotransmitter levels’ and
‘synaptic vesicle exocytosis’ are processes found in the orangered2
module of the substantia nigra PGCN. Terms specific to the SGCN
module, and also linked to oligodendrocytic activity, were: regulation
of synapse organization (Eroglu and Barres, 2010), regulation of glu-
tamate receptor signaling pathway (Gautier et al., 2015), axon devel-
opment, axonal fasciculation, neuron projection fasciculation, neuron
recognition or microtubule polymerization [50]. Interestingly, the mid-
nightblue module included APP (MM ¼ 0.84). Mutations in APP in-
crease the risk of Alzheimer’s disease (Köhler et al., 2019). APP’s
expression pattern in specific brain cells is similar to SNCA’s pattern,
mainly expressed in neurons and oligodendrocytes (see Fig. 3c). The
APP gene has been reported to have a role in regulating axonal myelin-
ation in oligodendrocytes (Truong et al., 2019).

A gene based analysis of the phenotypes linked to the mid-
nightblue module (see Section 2) uncovered HPO terms like
Dementia (HP:0000726 fold change 2.55), Myoclonus
(HP:0001336 FC 2.13), Variable Expressivity (HP:0003828 FC
1.85), Anxiety (HP:0000739 FC 1.65), Intellectual severe disability
(HP:0010864 FC 1.56), Depressivity (HP:0000716 FC 1.24),
Tremor (HP:0001337 FC 1.22), Ataxia (HP:0001251 FC 1.2) and
Dystonia (HP:0001332 FC: 1.16).

4 Discussion

We propose GMSCA (Gene Multifunctionality Co-expression
Analysis), as a method and software tool to uncover additional co-
expression profiles for genes, apart from those we obtain with con-
ventional co-expression analyses. GMSCA significantly enhances
the power of GCN analyses, delivering the capability to study gene
multifunctionality in specific cells, as models of gene co-expression
in bulk tissue. GMSCA needs the same inputs as conventional co-ex-
pression analysis on bulk tissue such as gene expression profiles,
gene marker sets for the cell type under study and gene sets enrich-
ment analysis tools as gProfileR for pathway or GO based module
annotation. This article’s experiments are based on brain samples.
Therefore, the SGCN obtained were focused on neurons, microglia,
astrocytes and oligodendrocytes cell types. Interestingly, this

approach increased the number of predictions of gene multifunction-
ality in specific cells with an additional 46.73% of the overall gene
pool.

To demonstrate the potential of this method, we firstly assessed
the reliability of GMSCA prediction triplets by means of its applica-
tion to three network families for three different transcriptomics-
based projects, UKBEC, GTEx and ROSMAP using WGCNA’s pres-
ervation analysis. We demonstrated that the cell-type enriched mod-
ules that GMSCA used to generate multifunctionality predictions
were stable, including those in SGCNs. Part of the difference we
obtained in non-preserved modules between GTEx and UKBEC
could be explained by PGCNs module size.

Secondly, we showed a high level of replication of predictions in
cell-type-specific external datasets. As we already noted, sc-
ROSMAP and Barres’ datasets are of different nature but both were
reduced to a list of cell-type-specific genes for each of the cell types.
Multifunctionality predictions from all four ROSMAP PGCNs
yielded significant overlaps with the single nucleus ROSMAP data-
set. We assessed prediction replication in Barres Lab data by looking
at how our cortex networks’ predictions replicated in Barres cell spe-
cific gene expression profiles. All cell types but microglia showed
highly significant levels of agreement. Moreover, thanks to the
EWCE tool we were capable of assessing GMSCA predictions on
mouse single-cell transcriptomics. 100% of both PGCN and SGCN
gene sets yielded significant expression enrichment in equivalent
brain cells.

Then, we tested the level of agreement in GMSCA predictions on
the same tissues across the three networks families (frontal cortex
tissue across the three families and substantia nigra and putamen tis-
sues across GTEx and UKBEC) and demonstrated that agreement
was high. We compared same-tissue networks between families and
assessed the agreement level of predictions for cell marker enriched
modules across their networks, in PGCNs and SGCNs, for preserva-
tion across brain areas.

We used this SGCN to get details about the biological function
of SNCA within specific cell types, such as how relevant SNCA was
in the corresponding module and what genes SNCA co-expressed
with, e.g. APP linked to dementia and Alzheimer. In this study,
SNCA was found in oligodendrocytes through the GTEx SGCNs of
substantia nigra, putamen and hippocampus and through the
UKBEC SGCNs of temporal cortex. The relationship of SNCA and
oligodendrocytes is supported by previous studies that have
observed alpha-synuclein-containing inclusions (‘coiled bodies’) in
oligodendrocytes in parkinsonian brains (Wakabayashi et al., 2000).
Recently, the link between oligodendrocytes and Parkinson’s disease
was reinforced by integrating GWAS results with single-cell tran-
scriptomic data (Eating Disorders Working Group of the Psychiatric
Genomics Consortium et al., 2020) through testing the genes tagged
by the GWAS outcome into the EWCE tool. Thus, GMSCA has the
potential to shed light on gene function within specific cell types and
molecular processes, particularly in a disease context. To conclude,
we would like to emphasize that the utility of GMCSA is not limited
to brain tissue, but this method could be easily tailored to address
questions around gene multifunctionality in any other tissue assum-
ing the availability of expression profiling data and high quality,
relevant cell-specific markers.
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Krüger,R. et al. (1998) AlaSOPro mutation in the gene encoding a-synuclein in

Parkinson’s disease. Nat. Genet., 18, 106–108.

Langfelder,P. et al. (2011) Is My Network Module Preserved and

Reproducible? PLoS Comput. Biol., 7, e1001057.

Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted

correlation network analysis. BMC Bioinformatics, 9, 559.

Lesage,S. et al.; French Parkinson’s Disease Genetics Study Group. (2013)

G51D a-synuclein mutation causes a novel Parkinsonian-pyramidal syn-

drome: SNCA G51D in Parkinsonism. Ann. Neurol., 73, 459–471.

Mathys,H. et al. (2019) Single-cell transcriptomic analysis of Alzheimer’s dis-

ease. Nature, 570, 332–337.

Miller,J.A. et al. (2010) Divergence of human and mouse brain transcriptome

highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA, 107,

12698–12703.

Muratore,C.R. et al. (2017) Cell-type dependent Alzheimer’s disease pheno-

types: probing the biology of selective neuronal vulnerability. Stem Cell

Rep., 9, 1868–1884.

Newman,A.M. et al. (2015) Robust enumeration of cell subsets from tissue ex-

pression profiles. Nat. Methods, 12, 453–457.

Newman,A.M. et al. (2019) Determining cell type abundance and expression

from bulk tissues with digital cytometry. Nat. Biotechnol., 37, 773–782.

Nutt,J.G. et al. (2004) The dopamine transporter: importance in Parkinson’s

disease. Ann. Neurol., 55, 766–773.

Oldham,M.C. et al. (2008) Functional organization of the transcriptome in

human brain. Nat. Neurosci., 11, 1271–1282.

Polymeropoulos,M.H. et al. (1997) Mutation in the -Synuclein gene identified

in families with Parkinson’s Disease. Science, 276, 2045–2047.

Ramasamy,A. et al.; North American Brain Expression Consortium. (2014)

Genetic variability in the regulation of gene expression in ten regions of the

human brain. Nat. Neurosci., 17, 1418–1428.

Reimand,J. et al. (2007) g: profiler—a web-based toolset for functional profil-

ing of gene lists from large-scale experiments. Nucleic Acids Res., 35,

W193–W200.

Reynolds,R.H. et al.; International Parkinson’s Disease Genomics Consortium

(IPDGC), System Genomics of Parkinson’s Disease (SGPD). (2019) Moving

beyond neurons: the role of cell type-specific gene regulation in Parkinson’s

disease heritability. NPJ Park. Dis., 5, 6.

Sawada,H. et al. (2013) Catecholamines and neurodegeneration in

Parkinson’s Disease—from diagnostic marker to aggregations of a-synu-

clein. Diagnostics, 3, 210–221.

Skene,N.G. and Grant,S.G.N. (2016) Identification of vulnerable cell types in

major brain disorders using single cell transcriptomes and expression

weighted cell type enrichment. Front. Neurosci., 10, 16.

The GTEx Consortium. et al. (2015) The Genotype-Tissue Expression (GTEx)

pilot analysis: multitissue gene regulation in humans. Science, 348,

648–660.

Truong,P.H. et al. (2019) Amyloid precursor protein and amyloid precursor--

like protein 2 have distinct roles in modulating myelination, demyelination,

and remyelination of axons. Glia, 67, 525–538.

Tsoucas,D. et al. (2019) Accurate estimation of cell-type composition from

gene expression data. Nat. Commun., 10, 2975.

van Dam,S. et al. (2017) Gene co-expression analysis for functional classifica-

tion and gene–disease predictions. Brief. Bioinform., 19, 575–592.

Wakabayashi,K. et al. (2000) NACP/a-synuclein-positive filamentous inclu-

sions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta

Neuropathol. (Berl), 99, 14–20.

Wang,X. et al. (2019) Bulk tissue cell type deconvolution with multi-subject

single-cell expression reference. Nat. Commun, 10, 380.

Wolfe,C.J. et al. (2005) Systematic survey reveals general applicability of

“guilt-by-association” within gene coexpression networks. BMC

Bioinformatics, 6, 227.

Zarranz,J.J. et al. (2004) The new mutation, E46K, of a-synuclein causes par-

kinson and Lewy body dementia: new a-synuclein gene mutation. Ann.

Neurol., 55, 164–173.

Zeisel,A. et al. (2015) Cell types in the mouse cortex and hippocampus

revealed by single-cell RNA-seq. Science, 347, 1138–1142.

Zeisel,A. et al. (2018) Molecular architecture of the mouse nervous system.

Cell, 174, 999–1014.e22.

Zhang,Y. et al. (2016) Purification and characterization of progenitor and ma-

ture human astrocytes reveals transcriptional and functional differences

with mouse. Neuron, 89, 37–53.

Zhu,L. et al. (2018) A unified statistical framework for single cell and bulk

RNA sequencing data. Ann. Appl. Stat., 12, 609–632.

Secondary co-expression models for multifunctionality modeling 2911


