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ABSTRACT

During infectious disease outbreaks, health agencies often share text-based information about cases and deaths.

This information is rarely machine-readable, thus creating challenges for outbreak researchers. Here, we introduce a

generalizable data assembly algorithm that automatically curates text-based, outbreak-related information and dem-

onstrate its performance across 3 outbreaks. After developing an algorithm with regular expressions, we automati-

cally curated data from health agencies via 3 information sources: formal reports, email newsletters, and Twitter. A

validation data set was also curated manually for each outbreak, and an implementation process was presented for

application to future outbreaks. When compared against the validation data sets, the overall cumulative missingness

and misidentification of the algorithmically curated data were�2% and�1%, respectively, for all 3 outbreaks. Within

the context of outbreak research, our work successfully addresses the need for generalizable tools that can trans-

form text-based information into machine-readable data across varied information sources and infectious diseases.
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LAY SUMMARY

Machine-readable data regarding the progression of outbreaks are essential to monitoring and mitigation of infectious dis-

ease crises. However, vital information shared online by health agencies—such as counts of cases and deaths over time—

are frequently locked in blocks of text that necessitate time-consuming manual curation by researchers before they can be

utilized for modeling and surveillance efforts. To address this challenge, we present a data assembly algorithm that assem-

bles semistructured text from online information produced by health agencies (ie, formal reports, email newsletters, and

Twitter) into machine-readable data about outbreaks. We explore the generalizability and accuracy of our algorithm by ap-

plying it to 3 recent infectious disease outbreaks with varying degrees of information complexity: measles in Samoa (2019),

Ebola in the Democratic Republic of the Congo (2018–2019), and Middle East Respiratory Syndrome in South Korea (2015).

Because the primary objective of our work is to help outbreak researchers more efficiently curate the data that they need

during infectious diseases crises, we present an implementation process for application of our algorithm to new outbreaks

that may emerge in the future as well.
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INTRODUCTION

Since 2000, thousands of infectious disease outbreaks have been

reported by the World Health Organization (WHO) globally.1 A

considerable subset of these have been due to emerging zoonotic

pathogens, including the novel coronavirus SARS-CoV-2, the causa-

tive agent of the coronavirus disease 2019; its predecessors, Middle

East Respiratory Syndrome (MERS) coronavirus and SARS-CoV-1;

Zika virus, and Ebola virus, among others.2–4 Emergence of these

pathogens has been driven by the increasing permeability of the ani-

mal–human interface, whereas ease of travel has enabled their trans-

mission across borders.5,6 Not all outbreaks from the last 2 decades

have been due to emerging infections, however; notably, due to in-

creasing vaccine hesitancy around the world, re-emerging diseases,

such as measles and mumps, have experienced a resurgence as

well.7,8

During these outbreaks, epidemiological information from a va-

riety of data sources—from formal reports by the WHO to email

newsletters and social media posts from national ministries of

health—is often made available to the public, including researchers

responsible for monitoring and mitigation efforts.1,9–14 Unfortu-

nately, these publicly available data are typically locked in blocks of

text that are rarely machine-readable,15 which poses a considerable

roadblock for surveillance and response activities that hinge on

mathematical modeling (eg, data-driven allocation of ventilators or

vaccines). To overcome this hurdle, researchers typically commit

substantial labor toward manually curating and converting these

text-based data into an analyzable format (eg, comma-separated val-

ues, CSV). The time and effort required are often directly related to

the complexity of the available information and thus, outbreak

researchers have publicly advocated for the development of an algo-

rithm that can be easily implemented to automatically curate such

information across multiple settings.15

In this article, we introduce a generalizable data assembly algo-

rithm to automate curation of text-based, outbreak-related informa-

tion shared online by health agencies and demonstrate its

performance across 3 recent case study outbreaks: measles in Samoa

(2019), Ebola in the Democratic Republic of the Congo (DRC)

(2018–2019), and MERS in South Korea (2015). We implement this

algorithm on semistructured source text of increasing complexity

from social media (ie, Twitter), email newsletters, and WHO disease

outbreak news (DON) reports, respectively, to produce machine-

readable CSV files for each of our 3 case studies. Though the data

available for curation vary across source texts, the underlying struc-

ture of the algorithm—regular expressions to extract pertinent

outbreak-related information—remains constant across applications

and is generalizable.

The source texts considered in this study represent a spectrum of

information complexity, and when combined with mathematical

modeling approaches, can be used to inform decision-making during

infectious disease outbreaks. For measles in Samoa and Ebola in the

DRC, we extract simple aggregate statistics (eg, case counts) over

time, which can be used for case count projections, assessment of in-

tervention performance, and vaccination rate estimation.16–30

Meanwhile, for MERS in South Korea, we extract more complex

multifeature patient-level data (ie, data in which every row is a pa-

tient and every column is a feature), which enable reconstruction of

transmission networks and evaluation of risk factors associated with

mortality.31–39

METHODS

Data on the evolving epidemiology of each outbreak were first man-

ually curated for validation purposes. Summary information for

each study is available in Table 1. Aggregate cases and deaths associ-

ated with the measles outbreak in Samoa were collected from the

Government of Samoa Twitter account from November 22, 2019

(date of first tweet) to December 8, 2019 (date of last tweet).9,10

Similar aggregate statistics were also collected for the Ebola out-

break in the DRC from email newsletters issued by the Ministère de

la Sant�e RDC (MSRDC) from August 6, 2018 (date of first newslet-

ter received) to July 31, 2019 (date of last newsletter received).11,12

Finally, patient-level data were collected from WHO DON reports

for the MERS outbreak in South Korea from May 30, 2015 (date of

first report) to June 9, 2015 (date of last report).13,14 These same

text-based data were then algorithmically collected using our data

assembly algorithm.

The assembly algorithm was developed in the Python program-

ming language and, as shown in Figure 1 and Supplementary Figures

S1 and S2, uses regular expressions and trigger phrases to automati-

cally transform semistructured text-based information from user-

inputted URLs into machine-readable data. Here, trigger phrases are

the phrases that accompany the information of interest in a given

block of text. When these phrases are translated into searchable pat-

terns of characters (ie, regular expressions) in any given language,

they act as “triggers” for the data assembly algorithm to identify

and collect information for the desired fields (ie, variables). This un-

derlying regex-based structure enables generalizability of the algo-

rithm to a wide variety of source texts and information types, as

demonstrated by the 3 case study outbreaks selected.

For the measles case study, the following 3 data fields were auto-

matically curated using our assembly algorithm: cumulative cases,

incident cases, and cumulative deaths. Seventeen rows of data,

where each row is a date, were collected across these 3 fields for a

total of 51 cells. Similarly, data for the following 10 fields were au-

tomatically curated for the Ebola case study: confirmed cumulative

cases, total cumulative cases (confirmed þ probable), confirmed cu-

mulative deaths, total cumulative deaths (confirmed þ probable),

cumulative cases recovered, cumulative vaccinations deployed, cu-

mulative vaccinations deployed in Region A, cumulative vaccina-

tions deployed in Region B, cumulative vaccinations deployed in

Region C, and cumulative vaccinations deployed in Region D.

Table 1. Data collected across case study outbreaks

Case study Data source Reporting period Number of fields Total cells curated

Measles in Samoa Twitter November 22, 2019–

December 8, 2019

3 51

Ebola in the DRC Email Newsletters August 6, 2018–July 31, 2019 10 3600

MERS in South Korea Disease Outbreak News Reports May 30, 2015–June 9, 2015 5 315

Abbreviations: DRC: Democratic Republic of the Congo; MERS: Middle East Respiratory Syndrome.
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Across these 10 fields, 360 rows of data, where again each row is a

date, were collected for a total of 3600 cells. Finally, data for the

MERS case study were automatically curated to populate the fol-

lowing 5 fields: documented sex, age, date of symptoms, date of di-

agnosis, and healthcare worker status. Sixty-three rows of data,

where each row is a patient, were collected for a total of 315 cells

across these 5 fields.

In all 3 case study outbreaks, the manually curated data for the

aforementioned fields were used to validate the performance (ie,

missingness and misidentification) of the assembly algorithm. Miss-

ingness is defined as a cell for which the algorithm did not curate a

value but for which a value was available when compared against

manual curation. Misidentification is defined as a cell for which the

algorithm curated a value but for which the value was incorrect when

compared against manual curation. Given its intended application in

outbreak settings, the assembly algorithm was designed conserva-

tively, placing priority on increasing accuracy over decreasing miss-

ingness. Code for all 3 implementations of the assembly algorithm, as

well as the manually collected validation data, are available at https://

github.com/mmajumder/Data_Assembly_Algorithm.

Though we manually curated all available data for our 3 case

study outbreaks to comprehensively validate algorithmic perfor-

mance, researchers who wish to implement our algorithm for a

new outbreak need only to validate a subset of data early in the

collection process. Figure 2 describes this implementation process

in 3 phases: (1) calibration, (2) execution, and (3) modification.

Each section is disaggregated into actionable steps and includes

guidance regarding common challenges, such as changes to trigger

phrases at the source.

RESULTS

When validating algorithmically collected data against manually

collected data, the data assembly algorithm performed well for all 3

iterations. Across the entirety of each outbreak reporting period,

overall cumulative missingness for the case studies was 0% (0 cells)

for measles, 1% (34 cells) for Ebola, and 2% (7 cells) for MERS,

while overall cumulative misidentification was 0% (0 cells), 0% (0

cells), and 1% (3 cells), respectively.

Because the reporting period for the Ebola outbreak was con-

siderably longer (368 days) than the measles (16 days) and MERS

(11 days) case studies, we also examined missingness and misiden-

tification over time by day for the Ebola case study. Notably, the

assembly algorithm exhibited steady gains in cumulative accuracy

from August 2018 through June 2019, as displayed in Figure 3.

Decreased cumulative availability of data in the source itself (ie,

fields for which MSRDC reported data in May 2019 but no lon-

ger reported in June 2019) coincided with minor decreases in cu-

mulative accuracy between June 2019 and August 2019.

Cumulative missingness dropped from 5% in August 2018 to near

0% in August 2019, and due to the conservative nature of the as-

sembly algorithm, cumulative misidentification was 0% over the

same time period.

DISCUSSION

By showcasing its performance within the context of 3 distinct infec-

tious disease outbreaks, we demonstrated the generalizability of our

data assembly algorithm across diverse source texts and information

types. Intuitively, we found that algorithmic curation of more com-

plex data (eg, multifeature patient-level data for MERS in South Ko-

rea) exhibited slightly higher rates of missingness and

misidentification than simpler data (eg, case counts over time); how-

ever, overall cumulative performance for both metrics was impres-

sive across curated fields for all 3 case study outbreaks.

However, our work has several limitations. First, our algorithm

was not designed to collect data from unstructured text (eg, tweets

by a random user). Instead, we prioritized semistructured source

texts produced by health agencies given that they are widely con-

sidered to be vital information sources during outbreaks.15 Second,

the current version of our algorithm assumes that URLs of source

texts will be manually collected by researchers who are familiar

with health agencies and their information reporting practices. We

also note that the source texts we considered for our case studies

featured unpredictable URL formats (eg, Twitter), which makes au-

tomation of URL collection a nontrivial task that is ripe for future

work. Finally, application of our algorithm to a new outbreak

necessitates an initial period of manual curation and trigger phrase

Figure 1. Assembly algorithm flowchart depicting automatic curation of text-based information into machine-readable data. Three example rows of data from the

Ebola case study are shown for a single field (of 360 rows and 10 fields total). Trigger phrases are shown in purple and the numerical values of interest are shown

in orange.
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identification during the calibration phase, and if needed, ad hoc

instances of these steps during the modification phase. Neverthe-

less, by reducing the overall amount of manual curation that out-

break scientists must perform, our algorithm creates additional

capacity for data validation. In absence of algorithmic assembly, 2

researchers may typically be tasked with manual curation to estab-

lish intercurator accuracy for all data points, but the implementa-

tion process for our algorithm is designed such that only one

researcher must manually curate a mere fraction of said data

points. Moreover, by allowing researchers to identify their own

trigger phrases, our algorithm provides them with the flexibility to

collect data on fields that are of specific interest to them and perti-

nent to their subject matter expertise.

Within the context of the 3 case study outbreaks presented in

this study, the fields for which data were automatically curated

by our assembly algorithm were selected purposefully given their

long-standing utility to mathematical modeling for informed epi-

demiological decision-making. Historically, counts of cases and

deaths over time—fields that were collected both for measles in

Samoa and for Ebola in the DRC—have been used to model the

transmission dynamics associated with outbreaks, including im-

portant epidemiological parameters such as fatality rates and re-

production numbers.17–30,40–45 These parameters are critical to

formulating case count projections17–21 and assessing performance

of interventions,22–25 which enable public health decision-makers

to approach outbreaks from a position of preparedness. Further-

more, these parameters can also be used to model vaccination

rates during outbreaks of vaccine-preventable diseases, which can

be leveraged to lobby for the resources necessary to vaccinate

vulnerable communities.26–30 Meanwhile, patient-level “line list”

data have traditionally been employed to assess risk factors for

different outcomes;31–38 indeed, the data presented in this article

for MERS in South Korea have been used precisely in this way

to assess risk factors for mortality given MERS-CoV infec-

tion,31,32 as well as for transmission to others following infec-

tion.38 Such analyses allow for improvements to resource

allocation both with respect to patient care (ie, preferentially allo-

cate intensive care units to patients who are less likely to survive

infection) and with respect to contact-tracing (ie, preferentially al-

locate resources to contact trace individuals who are more likely

to transmit to others following infection), among other applica-

tions.

Figure 2. Implementation flowchart depicting how a researcher may apply the assembly algorithm to a new outbreak. The process is partitioned into 3 phases:

(1) calibration (using N URLs), (2) execution, and (3) modification. N may vary across use cases; for data reported daily, at least a week is recommended (N¼7).

Figure 3. Assembly algorithm performance curves over time for the Ebola

case study. Cumulative missingness is shown in orange, accuracy in teal,

misidentification in purple, and data availability (at the source) in green.
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As recently noted by George et al,15 tools that can transform

text-based information into machine-readable data are urgently

needed by the outbreak management community. Given the

epidemiological utility of the data types curated by our data assem-

bly algorithm across our 3 case study outbreaks, we believe that the

usefulness of the work we present here will persist as infectious dis-

eases continue to emerge and re-emerge. We encourage other

researchers to apply it to novel contexts (ie, new outbreaks), while

carefully considering the ethical implications before deployment in

new settings.46 Our algorithm is designed to generalize across dis-

eases and enable the democratization of essential epidemiological

data that are otherwise locked in blocks of non-machine-readable

text. However, despite strong accuracy and missingness assessments

for all 3 case study outbreaks considered in this article, we recom-

mend that the implementation process we have outlined above be

employed to validate the robustness of our data assembly algorithm

during future outbreaks as well.
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