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ABSTRACT: An effective NOx prediction model is the basis for reducing
pollutant emissions. In this paper, a real-time NOx prediction model based
on an ensemble deep belief network (DBN) is proposed. Variable
importance projection analysis is adopted to screen variables, the time
delay of each variable is estimated, and the phase space of the original sample
is reconstructed by analyzing the historical data. An ensemble strategy based
on random subspace is presented, including the data set partition method
and ensemble mode of the model. First, subspaces are constructed according
to the component information extracted by partial least squares. Then, the
deep belief network is used as a submodel. Finally, a back propagation neural
network is developed for model combination. The ensemble deep belief
network model has been used to model the NOx emission prediction of a
660 MW boiler. The simulation results show that the ensemble DBN model
can fully exploit the nonlinear mapping relationship between input variables
and NOx concentration by using various learning learners. Compared with the back propagation neural network and support vector
machine, which are commonly used in NOx modeling, the ensemble DBN model has better prediction performance and
generalization ability.

1. INTRODUCTION

NOx emission is one of the main pollutants during the
combustion process in coal-fired power plants. It not only
causes serious environmental problems but also damages human
health. Due to the increasingly stringent emission restrictions,
NOx emission reduction technology for power plants has
attractedmore andmore attention from the industry. At present,
flue gas denitrification technology and low NOx emission
combustion technology are usually used to reduceNOx emission
for coal-fired boilers.
Selective catalytic reduction (SCR) is a common denitrifica-

tion method in power plants, which has the advantages of high
efficiency and simple equipment. Through SCR, the injected
ammonia and NOx are mixed in the flue gas, and under the
catalytic action of catalysts, a redox reaction is carried out in the
reactor to generate nitrogen and water.1,2 In this process, the
amount of ammonia injected is very important. If the amount of
ammonia is too small, the NOx emission cannot be effectively
reduced. Excessive ammonia can reduce NOx emission, but it
will cause waste of ammonia, increase the operating cost of the
unit, and even cause ammonia leakage, and its byproducts will
affect equipment performance. Therefore, timely and accurate
injection of an appropriate amount of ammonia into the SCR
equipment according to the NOx content in the flue gas is
important to achieve a low NOx emission.3

At present, the continuous emission monitoring system
(CEMS) is widely used to measure NOx concentration in
denitrification systems. Measurement of NOx concentration in
flue gas must go through the heat pipe and analysis cabinet,
which requires a certain amount of time, resulting in a time delay
in CEMSmeasurement. The measured results cannot reflect the
change in NOx concentration at the inlet of the SCR reactor in
real time. At the same time, themeasurement delay will affect the
control of ammonia injection in the subsequent denitrification
system, failing feed-forward response, which increases the
difficulty of ammonia injection control. Therefore, an accurate
NOx prediction model can be established to predict NOx

emission at the next moment to achieve a redundant
measurement with CEMSs.
The formation mechanism of NOx in the furnace is very

complex, which involves a variety of chemical reactions and
thermal phenomena.4 The construction of an ideal mechanism
model to predict the dynamics of NOx emissions is still
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challenging. The data-driven approaches provide a new way to
solve this problem: The mapping relationship between boiler
operating parameters and NOx emission is established through
offline training, and then the trained model is applied to online
NOx emission prediction.5 Researchers have made extensive
analyses and improvements to machine-learning models of NOx
emissions, such as an artificial neural network (ANN) and
support vector machine (SVM). Ilamathi et al.6 developed an
ANN model for NOx emission prediction based on the
experimental data from a 210 MW pulverized coal-fired boiler
and obtained an optimum level of operating conditions
corresponding to low NOx emission combined with a genetic
algorithm approach. Tuttle et al.7 mapped the relationship
between the operational parameters and NOx emission through
a genetic algorithm-optimized ANNmodel. Lv et al.8 proposed a
novel least squares support vector machine (LSSVM)-based
ensemble learning to predict NOx emission for the 660 MW
coal-fired boiler. Tan et al.9 developed an SVMmodel combined
with principal component analysis (PCA) for NOx emission
prediction, and the data was acquired from a 1000 MW coal-
fired power plant to validate the model. However, most of the
above algorithms studied are shallow learning, which has limited
ability in data mining and generalization ability when dealing
with complex problems.10 The time delay between variables
cannot be considered in these models,11 which has a great
impact on improving the generalization of the prediction model.
Research on NOx prediction models considering time delay is
limited. Zhai et al.4 reduced the time delay between input
variables through sequential displacement and transfer entropy
(TE). TE is a nonparametric measure that estimates the directed

information flow among stochastic processes to detect cause−
effect between variables. However, there are some disadvantages
such as complex algorithms and large amounts of high-
dimensional computation. Moreover, the sequential displace-
ment only uses the TE between a single input variable and NOx
concentration, and the input variable set is not considered as a
whole.
In recent years, deep learning has gradually become one of the

hottest research fields in machine learning. With the develop-
ment of deep learning and its superior performance in feature
extraction, a few kinds of research have attempted to develop
NOx emission models with deep learning methods. A restricted
Boltzmann machine (RBM),12 long-short term memory neural
network,13 deep artificial neural network,14 and deep belief
network (DBN)15 were applied to modeling NOx concen-
tration. The restricted Boltzmann machine16 is successfully used
as the structural unit of a deep neural network due to its strong
expressive ability. At present, the deep belief network, deep
Boltzmann machine (DBM), and other models based on the
RBM17 are considered to be the most effective deep learning
algorithms. The DBN is a typical representative of deep learning,
which can achieve higher accuracy in data modeling. However,
there are two main problems in the DBN: (1) The training
process of DBN is complex and time-consuming. (2) Sufficient
hidden layers achieve a satisfactory effect, but overfitting may
occur when the number of hidden layers is too large. In this
paper, an ensemble deep belief network (EDBN) based on
random subspace (RS) is proposed, which can solve the above
problems and be used to construct a real-time NOx prediction
model of a 660 MW coal-fired power plant. First, the variable

Figure 1. Framework of NOx emission prediction.
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importance projection (VIP) is utilized to select the input
variables of the model. Then, the delay time between NOx
concentration and the selected variables is determined by the
mutual informationmethod. Finally, the EDBNmodel is applied
to predict the NOx emission through the selected variables. The
performance of the proposed model is compared and analyzed.
The framework of NOx emission prediction is shown in Figure 1.
The rest of the paper is organized as follows. The mechanism

of EDBN is illustrated in Section 2. Section 3 introduces the
observational data. In Section 4, the methods of variable
selection and delay time calculation are proposed. Section 5
presents the experiment results and discussion of the NOx
emission model. Finally, the paper is concluded in Section 6.

2. METHODS
2.1. Deep Belief Network. The DBN is a probabilistic

generation model, which is stacked with restricted Boltzmann
machines (RBMs). RBMs contain a visible layer and a hidden
layer, each containing several neurons. The visible and hidden
layers connect only between the layers, and there are no
connections within each layer. The work of Le Roux and Bengio
shows that RBMs can fit any discrete distribution if the number
of neurons in the hidden layer is large enough.18

The depth network formed by constantly stacking RBMs is
the DBN. As shown in Figure 2, in the network, the visible layer

of the first RBM receives input data, and the output of the
previous RBM will be the input of the next RBM. The learning
process is divided into two stages. First, the unsupervised greedy
algorithm is used to train each RBM layer by layer. In this stage,
the parameter of each RBM can be obtained. The entire network
is then fine-tuned using a supervised back-propagation
algorithm. If each RBM contains n neurons in the visible layer
and m neurons in the hidden layer, the energy function of the
state is

E v h a v b h vw h( , )
i
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i i
j
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j j
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Based on eq 1, the joint probability distribution of (v, h) can
be obtained:
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where a and b, respectively, represent the offsets of the visible
layer and the hidden layer, videnotes the random state of the
neurons of the visible layer and hj denotes the random state of
the hidden layer, and w is the weight matrix between the visible
layer and the hidden layer. The optimal network parameters can
be obtained by training the RBM network θ = [w, a, b].
The probability of activation of hidden layer neurons hj is
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Also, the probability of activation of visible layer neurons vi is
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where σ(x) = 1/(1 + exp(− x)), and the parameters of RBM can
be obtained from the logarithmic likelihood of the training set by
a gradient descent method, as shown below:
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N represents the number of samples in the training set.
2.2. Ensemble Deep Belief Network Algorithm Based

On RandomSubspace.Although the DBN has a strong ability
to express knowledge, it needs to spend a long time to train the
model in the fine-tuning stage when processing large-scale data.
This takes a lot of training time, and the model is easy to overfit.
To solve the above problems, this paper integrates multiple
DBN learners and proposes an ensemble DBN model based on
random subspace, namely, the EDBN. The random subspace
method can construct multiple base learners from the original
feature space by randomly selecting the subspace, and one base
learner can learn a feature subspace data set.19 Finally, the output
of all the base learners is combined and the final prediction result
is obtained through some combination strategies, such as simple
average methods and majority voting methods. The structure of
EDBN is shown in Figure 3. The data samples are divided,
namely, the feature space T is divided into p subspace, and each
base learner is trained independently and in parallel on the
sample subspace, thus forming p DBN models. The output of
EDBN is obtained through a back propagation (BP) neural
network.
The performance of the proposed model will be better than

the classical DBN prediction algorithm. In this method, the
training set is divided into several subsets, and each subset
represents the projection of the training set in a subspace. DBN-
based learners with the same structure are used for parallel
training, and finally, the results are input into the BP neural
network for integration. Ensemble learning can accomplish
learning tasks by integrating multiple learners, and its perform-
ance is better than that of a single learner.
For the random subspace, each randomly selected feature

vector can generate a view of the original sample, so multiple

Figure 2. Structure of DBN.
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views will be generated for multiple random sampling features,
that is, the sample will be analyzed and described from different
views. If the sample has p different representations, there are p
views. According to the projection views of the original samples
in different subspaces, different base learners with the same
structure are designed, and each base learner is trained
independently and parallelly. During the training process, the
gradient of each base learner’s parameter is calculated using the
gradient descent update rule, and the calculation method is as
follows:

w
p v

w
vh v h
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i j
i j i j,
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where ε is the learning rate and ⟨·⟩data and ⟨·⟩recon denote the
expectation of the training sample and the reconstructionmodel,
respectively. The moment gradient descent method is used to
modify the parameters of the base learner as follows:

w m w w( ) ( )i j n i j n i j, , 1 ,= + Δ− (10)

a m a a( ) ( )i n i n i1= + Δ− (11)

b m b b( ) ( )j n j n j1= + Δ− (12)

2.3. Data Partition.With the random subspace method, the
scale of the model should be determined first, that is, the
dimension of the inputs of the constructed subspace and the
number of base learners. To combine base learners with
maximum diverse information, these can be obtained through
partial least squares (PLS) component analysis20 and a Monte
Carlo strategy (Figure 4).
Suppose that the input data X = [x1, x2, ···, xA] ∈ RN × A and

the output data Y∈ RN × 1,N is the number of sample data andA
is the dimension of the input variable. The data are normalized.
The input data after PLS feature extraction is T = [t1, t2, ···, tA],
whereA is the number of PLS components extracted. The first
component t1 is obtained by a linear combination of x1, x2, ···, xA,
which has the greatest correlation with the input data X and the
output data Y. After the regression of the first component t1, the
residual term of the second component t2 can be calculated. By

this method, required PLS components T and corresponding
variance Δ captured can be obtained. The process is shown as
eqs 13−15

X t p E
i

A

i i
T∑= +

(13)

Y u F
i

A

i∑= +
(14)

u b t ei i i i= + (15)

where P = [p1, p2, ···, pA] is the input load matrix,W = [w1, w2, ···,
wA] is the output weight matrix, T = [t1, t2, ···, tA] andU = [u1, u2,
···, uA] are the input and output score matrix, B = [b1, b2, ···, bA] is
the regression coefficient by minimizing the residual, and E and
F are the input and output residuals. Additionally, T =

X*W(PTW)−1 and X x x x A/ ( ) /
A i

A
i i

A
i

1
1 1

2* = ∑ ∑ − ̅= = .

On this basis, the Monte Carlo strategy is used to realize the
partition of the subspace. The steps are as follows:

S1: Through the PLS algorithm, the original training data
setX = [x1, x2, ···, xp] can be reconstructed asT = [t1, t2, ···,
tk], and the resulting variance contributionmatrixΔ = [λ1,
λ2, ···, λk].
S2: Set the dimension of the inputs of the constructed
subspace p(p = 1,2, ···, k).
S3: Randomly select p components as the input of the base
learner and calculate the cumulative variance.

Figure 3. Structure of EDBN.

Figure 4. Flowchart of data partitioning.
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S4: Among the remaining components, continue to select
p components as the new subset and calculate the
cumulative variance.

S5: Repeat S4 until the cumulative variance of all selected
components reaches 85% after q(q = 1,2,3, ···) selection.

S6: Repeat S3−S5 until n(n ≥ 10000) iteration; qi is the
number of base learners of the i iteration.

S7: Obtain the number of base learners q* = ∑ qi/n.

Thus, the relationship between the dimension of the inputs of
the constructed subspace p and the number of base learners q is
obtained. The scale of the ensemble model determines the
degree of the description of the original data by random
subspace. If p or q is too small, the interpretation ability of the
ensemble model will be lower and the information contained
will be less. If q is too large, the risk of dimensional disaster
increases, and the redundancy of the model increases. The
sample data is partitioned into q subsets: X → T → {T1, T2, ···,
Tq}.
2.4. Evaluation Metrics. The following metrics are

employed to evaluate the performance of the EDBN model:

n
y y
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i iMAE
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∑δ = | − ′|
= (16)
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where δMAE is themean absolute error (MAE), δMAPE is themean
absolute percentage error (MAPE), δRMSE is the root-mean-
square error (RMSE), yi is the real NOx emission, yi′ is the NOx

emission predicted by the neural network, and n is the total
number of test samples.

3. DATA DESCRIPTION

The research object of this paper is the 660MW coal-fired boiler
with ultra-supercritical parameters, which adopts an opposed-
wall-firing mode. The data are acquired from the distributed
control system (DCS) of the power plant, the boiler load of
which varied from 300 to 660 MW with comprehensive data
coverage. The sampling interval of the data is 5 s, and more than
10,000 operation data of the boiler are recorded. NOx produced
by the coal-fired boiler is mainly fuel-type NOx and thermal-type
NOx. There are many factors affecting the formation of NOx,
such as coal quality, air/coal ratio, and temperature in the main
combustion zone. In addition, for a given boiler, the combustion
operation of the boiler will have a great influence on NOx

emissions. Considering the basic knowledge of the NOx

formation and the suggestions of the engineer, the variables
related to the boiler operation and NOx formation are selected.
Due to the lack of an on-line coal analyzer, the real-time coal
quality data cannot be obtained, and the kind of coal does not
change during the data collection process. More importantly,

Figure 5. (a−d) Dynamic changes in boiler operating parameters and NOx concentration.
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coal quality can be reflected by operational variables and the
historical sequence of NOx emissions.
The dynamic changes in operating parameters and NOx

concentration of the 660 MW coal-fired boiler are obtained, as
shown in Figure 5. Some nonlinear relationships between NOx
concentration and boiler operating parameters can be observed.
The unit load, OFA flow rate of layer A, and second air
temperature are positively correlated with NOx emission to
some extent. NOx concentration is highly correlated with unit
load, and NOx concentration when the boiler is under high load
is much greater than that when the boiler is under low load.
There may be some delay or negative correlation between NOx
concentration and the oxygen concentration at the outlet of the
furnace. The NOx generation mechanism is complex, and it is
difficult to establish a mechanism model to describe the
nonlinear relationship. In contrast, the data-driven modeling
approach does not need to consider complex mechanistic
processes, and it establishes a nonlinear model to describe a
complex relationship based on input and output data. A large
amount of process data generated during boiler operation
provides the basis for data-driven modeling.

4. VARIABLE SELECTION AND TIME DELAY
4.1. Variable Selection.Data-drivenmodels are sensitive to

data, and the input of the model directly affects its prediction
accuracy and generalization ability. Insufficient input variables
will lead to inaccurate prediction, but too much input will
increase computational complexity and reduce prediction
accuracy. NOx emissions from power stations are affected by a
variety of variables. Studies on the formation mechanism of NOx
have revealed the main factors affecting NOx, but these studies
are usually carried out by field tests or numerical calculations.
Considering the sensitivity of the neural network to data, to
better select variables based on themechanism research, the data
analysis method is used to screen variables.
Variable importance projection (VIP) is a variable screening

method based on partial least squares regression. Whenmultiple
independent variables have a strong correlation, it describes the
explanatory ability of independent variables to dependent
variables through the synthesis principal component of the
dependent variable and selects independent variables according
to their explanatory ability. Chen et al.21 pointed out that VIP
values reflect not only the importance of independent variables
to the model but also the expression of dependent variables. For
the data with strong correlation, the VIP method can be used
appropriately and accurately to screen the independent
variables. Assuming the dependent variable y and the
independent variables x1, x2, ···, xk, the VIP value of the j
independent variable to dependent variable y can be expressed as

k
Rd Y t t

Rd Y tVIP
( ; , , )

( ; )j
h i

h

i ij
1 1

2∑ ω=
··· = (19)

Rd Y t t Rd Y t( ; , , ) ( ; )h
i

h

i1
1

∑··· =
= (20)

Rd Y t r Y t( ; ) ( ; )i i
2= (21)

where k denotes the number of independent variables, h denotes
the total number of components, ωij represents the weight value
of the ith variable in the jth component, Rd(Y; t1, ···, th) denotes
the explanatory ability of t1, ···, th to Y,Rd(Y; ti) is the explanatory
ability of ti to Y, and r(Y; ti) represents the correlation coefficient.
Due to the multidimension and complexity of the training

sample, VIP can be used to extract the data to the maximum
extent and continuously extract effective information from the
residual so as to obtain an appropriate input data set. On this
basis, themulticollinearity between variables can be weakened to
a certain extent, and the low-dimensional input data can be used
as far as possible to obtain the predicted results. The greater the
VIP between the boiler operation parameter and the NOx

emission, the more important the relevant parameter is to the
NOx emission sequence and the more suitable it is to be used as
the input of the predictionmodel. To select variables, VIP values
are sorted in descending order. Then, cutoff thresholds can be
estimated subjectively based on process knowledge or through
iteration to optimize some desired performance criterion. In this
paper, independent variables with a VIP value less than 0.8 are
considered as low-contribution variables, which can be
eliminated. The operation parameter data is processed through
VIP variable selection, and the analysis results are shown in
Table 1.

4.2. Time Delay. During the production, multiple opera-
tional parameters are affecting NOx emission. However, the
measurement of these parameters cannot be obtained
instantaneously, that is, the measurement of different parame-
ters has a corresponding delay time. The existence of time lag
between measurement data will result in the data that cannot
reflect the actual operation at the current moment. Moreover,
the size of time delay parameter has a significant influence on the
performance of time series prediction;22 the nonlinear relation-
ship between NOx concentration and boiler parameters cannot
be correctly reflected by the established prediction model.
Therefore, these time delays need to be determined first to guide
subsequent modeling.
Mutual information23 comes from the concept of entropy in

information theory, and as an information measure, it reflects
the degree of statistical dependence between two variables. For
the industrial process with long time lag, this paper utilizes the
mutual information method to estimate the time delay of each
input variable of the model.
The information entropy of the random variable X is defined

as

Table 1. Variables with VIP Values

over-fire air flow rate

unit
load total air rate

coal-feed
rate flue gas temperature at the furnace outlet

primary air
temperature main steam flow rate A B C D

1.40 1.41 1.39 1.35 1.25 1.39 1.36 0.84 1.39 1.28
second air flow rate

main steam pressure total air primary rate oxygen concentration at furnace outlet secondary air temperature A B C D E F

1.41 1.33 1.04 1.09 1.19 1.35 1.13 1.17 0.89 1.19
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H X P x P x( ) ( )log ( )
i

N

i i
1

2∑= −
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where H(X) represents information entropy and P(X)
represents the probability distribution for a discrete random
variable X by sample size of N that gets values x1, x2, ···, xN, with
probabilities of p1, p2, ···, pn.
Mutual information between two random variables X and Y is

determined by

I X Y H X H Y H X Y( , ) ( ) ( ) ( , )= + − (23)

I X Y P x y
P x y

P x P y
( , ) ( , )log

( , )
( ) ( )x X y Y
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where P(X, Y) is the joint distribution of variables X and Y and
P(X) and P(Y) are the marginal distributions of X and Y,
respectively.
The input variable set can be defined as X(t) = [X1(t), X2(t),

···, Xm(t)]; m denotes the number of the input variables. Y(t) is
the output, which is theNOx concentration. Input variables need
to be considered as a whole, so the delay time for each variable is
calculated based on the average mutual information (AMI)
between multiple variables,24 which is defined as

m
I X YAMI

1
( , )

i

m

i
1

∑=
= (25)

Since the time delay between each input Xi(t) and the output
Y(t) is different, phase space reconstruction is performed on
each xj(t), and the input matrix embedded with different time
delays τi∈ [τmin, τmax] is obtained X = [X1(t− τ1), X2(t− τ2), ···,
Xm(t − τm)]. τmin and τmax are the minimum and the maximum
possible delay time of input variables, respectively, the values of
which are determined by field experience. Considering the
actual situation of the unit in the paper and the suggestions of the
operators, the time delay ranges from 5 to 300 s, and τmin and
τmax are set to 1 and 60, respectively.
According to eq 25, the AMI among variables during the

different embedding time delay was calculated. When the AMI
value is maximum, the corresponding τ is the delay of the input
variable.
Considering the number of input variables m and the time

range of possible delays τmax − τmin, an exhaustive search to
perform this minimization algorithm must explore mτmax − τmin

possible solutions and compute mτmax − τmin times. The
computation of an exhaustive search algorithm makes this
method not feasible in practical application. In order to
overcome this problem, particle swarm optimization (PSO) is
used to jointly estimate the time delay between input variables
and the output variable. As a common optimization algorithm,
PSO has been widely used in many industrial applications. It can
be used to solve complex nonlinear problems with fast
computing speed and a wide application range. The parameters
are set as follows: the population size is 200, the maximum
number of iterations is 100, the acceleration coefficients c1 and c2
are both equal to 2 and remain unchanged in the searching
process, and the lower and upper bounds of the inertia weight
factorω are 0.4 and 0.9, respectively. The goal is to minimize the
value of AMI. The sampling interval of the original data is 5 s.
The actual delay time is calculated using the input variables
selected in Section 4.2, and the results are shown in Table 2.

5. RESULTS AND DISCUSSION
5.1. Data Partition. As shown in Table 2, the paper adjusts

the selected auxiliary variables to the unified timing sequence
according to the calculated time delay, and the variables after
adjustment will be used for the next work. By PLS component
analysis and the Monte Carlo strategy, the adjusted input
sequence is partitioned into different subsets. Figure 6 shows the
results of PLS component analysis, and Figure 7 shows the
relationship between the dimension of components in subspace
and the number of base learners.
From Figure 7, it can be seen that the cumulative variance

capture increases with the increase in the number of input
components of subspace. When the cumulative variance capture
is required to be higher than 85%, the dimension of input
components and the number of base learners are negatively
correlated to a certain extent. When the dimension of
components in subspace is greater than six, the descend rate
of the number of base learners gradually slows down with the
increase in input component dimension. On the premise that the
cumulative variance capture meets the requirements, we should
follow the principle of keeping the model scale as simple as
possible. Therefore, the number of base learners is five and the
dimension of components in subspace is six for ensemble
learning.

5.2. NOx Emission Prediction. The original data is
reconstructed to reduce the influence of time delay between
variables. The reshaped data is divided into the training set and

Table 2. Time Delay Estimated Results of Input Variables

serial
no. variable name τ

delay
time(s)

input
variable

input variable
after adjustment

1 unit load 6 30 x1(t) x1(t − 6)
2 total air rate 40 200 x2(t) x2(t − 40)
3 coal-feed rate 31 155 x3(t) x3(t − 31)
4 main steam pressure 34 170 x4(t) x4(t − 34)
5 main steam flow rate 44 220 x5(t) x5(t − 44)
6 total air primary rate 49 245 x6(t) x6(t − 49)
7 OFA flow rate of

layer A
30 150 x7(t) x7(t − 40)

8 OFA flow rate of
layer B

41 205 x8(t) x8(t − 41)

9 OFA flow rate of
layer C

37 185 x9(t) x9(t − 37)

10 OFA flow rate of
layer D

35 175 x10(t) x10(t − 35)

11 second air flow rate of
layer A

34 170 x11(t) x11(t − 34)

12 second air flow rate of
layer B

46 230 x12(t) x12(t − 46)

13 second air flow rate of
layer C

56 280 x13(t) x13(t − 56)

14 second air flow rate of
layer D

37 185 x14(t) x14(t − 37)

15 second air flow rate of
layer E

28 140 x15(t) x15(t − 28)

16 second air flow rate of
layer F

35 175 x16(t) x16(t − 35)

17 primary air
temperature

34 170 x17(t) x17(t − 34)

18 secondary air
temperature

44 220 x18(t) x18(t − 44)

19 flue gas temperature at
furnace outlet

10 50 x19(t) x19(t − 10)

20 oxygen concentration
at furnace outlet

36 180 x20(t) x20(t − 36)
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testing set. The hyperparameters of the base learner are listed in
Table 3.

Figure 8 shows the NOx emissions between the predicted and
measured values of the data set. As a training set, the first 6000
data are training sets used to verify the learning ability of the
EDBN model. It can be seen that the predicted values of EDBN
are consistent with the measured values. Moreover, when the
NOx concentration changes with time, the predicted values of
EDBN can completely track its change trend, indicating that the
EDBN has a good learning ability for the original training data.
As a testing set, the last 1000 data are used to verify the

generalization ability of the EDBN model. Compared to the
prediction results of the training set, the predicted values of the

Figure 6. Variance explanation of PLS components.

Figure 7. Relationship between the dimension of components in subspace and the number of base learners.

Table 3. Optimal Hyperparameters of the Base Learner

hyperparameter value

iterations 1000
number of hidden layers 2
number of neurons [100,400]
learning rate 0.001

Figure 8. Measured and predicted NOx concentration by the EDBN model.
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testing set fluctuate slightly relative to the measured values.
According to the calculations, the EDBN model has high
accuracy, where MAPE = 0.566%, MAE = 1.970 ppm, and
RMSE = 2.304 ppm. Moreover, while the NOx concentration
changes with time, the predicted values of the EDBN model are
well tracked, indicating that the EDBN model has good
generalization ability, which can realize the prediction of NOx
concentration.
In the study, the BP neural network is used to integrate the

DBN base learners. At the same time, the ensemble strategy of
the weighted average is also implemented, which is the ADBN
shown in Table 4. The average strategy is widely used in

ensemble learning. In addition, the DBNmodel with all 20 input
variables is also established. Also, all models have 5-fold cross-
validation.
Of all the learningmodels applied in Table 4, each base learner

performs worst in the prediction of the training set and the
testing set. The main reason is that different DBN base learners
receive different input components of the same dimension, but
they cannot fully contain all the feature information related to
NOx concentration. Therefore, some information may be
missing. This results in the base learner that performs even
worse than the DBN model with all 20 variables as an input.
Moreover, it is difficult to obtain an excellent result by simply
averaging the base learners. Better predictive performance
depends on the integration strategy. Compared with the base
DBN learner and 20-input DBN model, the EDBN exhibits
better performance on the testing set. This is the advantage of
ensemble learning, which can make up for the different
prediction effects of base learners.
For the comparison of ensemble methods, the performance of

the BP ensemble is better than that of the average ensemble. BP
learning can explore the predictive performance of different base
learners, which is equivalent to the adaptive weighted
integration of different base learners. However, the performance
of the average ensemble is easily affected by the outliers in the
base learners, so the prediction result of the average ensemble is
weaker than that of the BP ensemble.
In addition, Figure 9 shows the performance of EDBN,

ADBN, and DBN models on testing set data in more detail. In
the aspect of accuracy, the prediction results of the three models
all have a slight fluctuation compared with the measured value of
NOx concentration, but the prediction accuracy of EDBN and
ADBN is nearly doubled compared with that of DBN. In terms
of variation trend, the predicted values of EDBN or ADBN can
fully track the trend of NOx concentration, and the real-time
prediction effect of EDBN is better.
5.3. Comparisons with Other Methods. The BP and

SVM are also used in this study to establish comparative models,

both of which have been successfully and widely used in NOx
emission modeling. The widely used BP neural network is a
feed-forward network, which can be considered as nonlinear
mapping of the input pattern to the output pattern. A three-layer
network with Relu hidden neurons is selected to accomplish the
model, and the number of neurons was determined by repeated
attempts. The training set and test set are consistent with the
EDBNmodel. The model is constructed by the training set, and
the performance of themodel is verified by the test set. Similar to
most SVM modeling research studies, the generalization
performance of the model mainly depends on two parameters,
namely, the generalization parameter C and kernel function
parameters γ.25 PSO is also used to optimize these two
parameters so as to ensure high precision prediction results
and optimal generalization performance. Similarly, BP and SVM
models are established based on the data adjusted for time delay.
To compare the performance of each model more intuitively,

Figure 10 shows the distribution of the estimation errors
predicted by the various models on the testing set. It can be
found that the three deep learning models show good
approximation accuracy, and the prediction errors vary within
a small range around [−14, 12]. The BP and SVM model show
poor performance, and the maximum prediction error range is
around [−60, 30]. The errors generated by the deep learning
model are greatly reduced. In particular, the EDBN and ADBN,
the two ensemble models, have most errors within 5%,
exhibiting better prediction accuracy in general on the testing
set, because the prediction errors are distributed more closely to
the zero line on the graph than other models. It further proves
the advantages of ensemble learning.
The boiler combustion process and SCR system have the

characteristics of large time lag, and the measured values of
differentmeasurement points at a time cannot represent the real-
time sequence of the process. The reconstruction of time series
in Table 2 can eliminate the unnecessary lag and improve the
calculation efficiency. The input sequence adjusted is adopted
by the models above. In addition, the models of the original
sequence as an input are also established: EDBN0, DBN0,
SVM0, and BP0.
The impact of VIP variable selection on model prediction

accuracy is also compared. The NOx concentration model is
built based on real data to verify the proposed variable selection
method. The unit in this paper is similar to that in ref 13.
Therefore, for comparison, using the input variables in ref 13, a
total of 35 input variables are selected referring to the
combustion mechanism. Therefore, 35 parameters are selected
as input variables, which include coal-feed rates (A, B, C, D, E,
and F), primary air rates (A, B, C, D, E, and F), secondary air
rates (A, B, C, D, E, and F), OFA air rates (A, B, C, and D), main
steam temperature (1), primary air temperature (2), secondary
air temperature (2), main steam flow rate (1), flue gas
temperature at the furnace outlet (1), boiler load (1), total air
flow rate (1), oxygen concentration at the furnace outlet (1), and
furnace temperature of different layers (3). According to the
variables selected for the mechanism of NOx generation, the
NOx concentration models are established: EDBN1, DBN1,
SVM1, and BP1.
By comparing the boxplot of the estimation error distribution

of the testing data from different prediction models, it can be
seen that the EDBN and DBN of the deep learning model are
much smaller than those of the traditional models BP and SVM.
The error distribution of the former is concentrated, which
indicates that the deep learning model has a better performance

Table 4. Comparison of EDBN and Base Learner Results

RMSE (ppm) MSE (ppm) MAPE (%)

model train test train test train test

EDBN 1.979 2.304 1.328 1.970 0.386% 0.566%
ADBN 2.771 3.225 1.860 2.758 0.543% 0.793%
DBN 3.958 4.608 2.657 3.940 0.776% 1.133%
Base1 6.379 7.890 5.161 5.393 1.501% 1.537%
Base2 7.647 7.863 6.277 5.435 1.816% 1.550%
Base3 6.307 7.990 4.877 6.076 1.418% 1.750%
Base4 6.772 7.793 5.415 5.687 1.572% 1.629%
Base5 7.356 8.484 5.270 6.405 1.524% 1.846%
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in predicting NOx concentration of thermal power plants. For
the same model, the prediction results of the model considering
time delay are slightly better than those of the original model,
and the median of prediction error is smaller, which indicates
that the performance of the model considering time delay is
better than that of the original model. At the same time, Table 5
makes a quantitative analysis of the performance indexes of each
model, and their visual comparison is shown in Figure 11. It can
be found that the prediction accuracy of the models after
sequence reconstruction is higher. This indicates that the delay
time should be taken into account when establishing an accurate
dynamic model.
In addition, when establishing the NOx emission prediction

model of thermal power units, the prediction error of the model
with VIP analysis is smaller than that with variables selected

according to mechanism analysis. If the NOx emission model is
directly established according to the mechanism analysis,
although the forecast trend of the model is still the same as
the original data, its prediction error is much higher than that of
the prediction model after selecting the input variables. This
indicates that after VIP variable selection, a more effective set of
input variables is obtained, the number of input variables is
reduced, and the prediction accuracy is improved while reducing
the complexity of the model and showing better generalization
ability.
In conclusion, the prediction based on the method presented

in this paper has better prediction performance. The EDBN can
better track the change trend of NOx concentration value. It
shows that the EDBN has a good ability to learn data, which
reflects the advantages of the ensemble model. In terms of

Figure 9. (a−d) Real-time prediction results of NOx concentration of different models on the testing data set.
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Figure 10. (a−f) Prediction errors of the testing data for various models.
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sequence, the reconstruction of sequence plays an important
role in improving the prediction performance. Therefore,
adjustment sequence is very important to model prediction
and cannot be ignored. The time delay is detected by statistical
analysis of the data without understanding the mechanism of the
system. The selection of input variables is also necessary.
Insufficient input variables will lead to inaccurate prediction, but

too much input will increase computational complexity and
reduce prediction accuracy. Scientific variable screening has
been proven to be an effective method to improve the accuracy
of model prediction. When selecting variables in practical
application, we should pay attention to important explanatory
factors and follow the principle of keeping variables as few as
possible.

6. CONCLUSIONS
The establishment of an effective NOx prediction model is the
basis for reducing NOx emissions. In this study, the EDBN
model has been successfully established to predict the NOx
emissions of a 660MW ultra-supercritical coal-fired power plant
using historical operating data. The major conclusions are as
follows:

(1) The data-driven model is sensitive to data, and the input
of the model directly affects its prediction accuracy and
generalization ability. To better select variables, based on
mechanism research, the VIP analysis method is used to
screen variables.

(2) There is a delay between the measurement of operating
variables and NOx concentration at the SCR inlet in the
furnace, which can be accurately described quantitatively
by analyzing historical data. The delay time between input
variables and NOx concentration is calculated based on
AMI, and the PSO algorithm is used to estimate the delay
time.

(3) An ensemble strategy based on random subspace is
proposed, including the data set partition method and
ensemble mode of model. The sample data is divided
according to the component information extracted by

Table 5. Performance Comparison of Different Models

performance index

model RMSE
MAPE
(%) MAE

EDBN
35-inputs (mechanism analysis) 5.831 1.532 5.326
20-inputs (VIP analysis) 4.147 1.020 3.546
20-inputs-reconstruction
(considering time delays)

2.304 0.566 1.970

DBN
35-inputs (mechanism analysis) 10.533 2.782 9.668
20-inputs (VIP analysis) 5.529 1.359 4.728
20-inputs-reconstruction
(considering time delays)

4.608 1.133 3.940

BPNN
35-inputs (mechanism analysis) 17.743 4.273 14.838
20-inputs (VIP analysis) 13.593 2.85 9.880
20-inputs-reconstruction
(considering time delays)

10.795 2.15 7.525

SVM
35-inputs (mechanism analysis) 17.081 4.386 15.356
20-inputs (VIP analysis) 12.792 3.12 10.981
20-inputs-reconstruction
(considering time delays)

10.153 2.18 7.644

Figure 11. (a−d) Prediction error distribution of the testing data for various models.
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PLS, and the sample subspaces are constructed. Then,
DBN base learners are trained in each sample subspace,
and finally, the BP network is applied to obtain the result
of ensemble model.

(4) The ensemble DBN model has been used to model the
NOx emissions prediction. The ensemble DBNmodel can
take advantage of each base learner and fully explore the
nonlinear mapping relationship between input character-
istics and NOx concentration so as to improve the
prediction accuracy of the ensemble model. Compared
with the BP and SVM, which are commonly used in NOx
modeling, the EDBN model has better prediction
performance. This is mainly due to the limited capacity
of shallow networks in processing large data sets.

(5) The phase space reconstruction of samples is carried out
by estimating the time delay of each input variable. Based
on this, the NOx emission model is established by the data
rearranged according to the delay time. By comparing the
models before and after data reconstruction, the
prediction results show that the model after data
reconstruction obtains better performance for predicting
NOx emission.
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