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Abstract: In this work, more than 70 wt % of ferromanganese slag (containing 40 wt % CaO) was used
to synthesize high-calcium, CaO-MgO-Al2O3-SiO2 (CMAS) glass ceramics. The effect of SiO2/CaO
on the structure, crystallization behavior and microstructure of high-calcium, CMAS, slag glass
ceramics was studied by IR, NMR, DSC, XRD and SEM. The results showed that in the high-calcium,
CMAS glass ceramics, the main existing forms of silicon–oxygen tetrahedra (Qn) were Q0 and Q1.
With the increase in the SiO2/CaO, Qn changed from Q0 and Q1 (main units) to Q1 (main units)
and Q2, and then to Q1 and Q2 (main units). The polymerization degree of Qn changed from low
to high, making the glass more stable, which led to the increase in crystallization temperature and
the decrease in crystallization kinetic constant (k) and frequency factor (υ). At the same time, the
change in the Qn structure resulted in a gradual change to the main crystal, from akermanite to
diopside–wollastonite.

Keywords: high-calcium CMAS; glass ceramics; ferromanganese slag; structure; crystallization

1. Introduction

Ferromanganese is an important mineral resource and has a significant influence
on the construction industry. The smelting efficiency of ferromanganese is significantly
affected by the smelting process and its ore grade. In the smelting process, in order to
improve the smelting efficiency, the ratio of CaO/SiO2 needs to be controlled and kept in
the range 1.3~1.5 [1–3]. Therefore, ferromanganese slag is a slag with high CaO content.
In China, ferromanganese slag has a higher content of CaO as the grade of manganese
ore is lower than that of the average for the rest of the world [4,5]. According to statistics,
the annual emissions of ferromanganese slag in China were about 18 million tons in 2017,
the majority of the ferromanganese slag ended up in landfill [6,7]. The minority of the
ferromanganese slag was used in the building-materials industry, and its dosage did
not exceed 30 wt % [8,9]. Hence, high-volume utilization of ferromanganese slag is an
important factor affecting the healthy and orderly development of the ferroalloy industry,
which also leads to significant economic and environmental benefits.

Slag glass ceramics are environmentally friendly materials prepared using slag as
the main raw material, which is a low-cost and high-value-added material. CaO–MgO–
Al2O3–SiO2 (CMAS) is one of the important components in the field of glass–ceramic
materials, whose main precipitation is diopside. Due to the crystal structure of diopside,
CMAS-system glass ceramics show advantages, which include high strength and excellent
chemical resistance [10–12]. CMAS systems are often used to design slag glass ceramics,
because its main chemical composition is close to that of slag [13–15].

In the field of glass ceramics, using ferromanganese slag to prepare architectural glass
ceramics is rarely studied. This is because, compared with other slags, the ferromanganese
slag cannot be used at such a high content in traditional CMAS systems [16–18]. In
traditional CMAS glass ceramics, the CaO content is generally not higher than 20 wt %
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for the sake of diopside crystallization [19,20]. This means that the utilization rate of high-
calcium slag, such as ferromanganese slag (CaO ≥ 40 wt %), cannot exceed 50 wt%. When
using ferromanganese slag at high dosages, the CaO content in the glass composition will
be higher than that of traditional CMAS systems. Therefore, studying the glass structure
and crystallization behavior of high-calcium CMAS systems is conducive to realizing the
use of higher contents of high calcium slag.

SiO2 and CaO are important components of glass, and the ratio of SiO2/CaO will
have a significant impact on the basic structure and crystallization behavior of the glass.
Li et al. found that an increase in calcium oxide content will increase the content of low-
polymerization silica tetrahedra in glass structures [21]. Jia et al. found that when the
content of CaO is less than 32 wt %, adjusting the ratio of SiO2/CaO from 1.34 to 2.44 caused
a series of changes in the viscosity, crystal form, structure and mechanical properties of
the glass [22]. Wang et al. prepared glass ceramics by using 37~56 wt % blast furnace slag,
and when the SiO2/CaO ratio was reduced from 3.33 to 1.58, the crystal changed from
diopside to akermanite [23]. Hence, it is of critical importance to study the influence of the
SiO2/CaO ratio in high-calcium CMAS systems.

In this work, ferromanganese slag was used as the main raw material to prepare
high-calcium CMAS glass ceramics, and the slag content was higher than 70 wt %. Infrared
spectroscopy (IR), nuclear magnetic resonance (NMR), differential scanning calorimeter
(DSC), X-ray diffraction (XRD) and field-emission scanning electron microscopes (SEM)
have been used to study the effects of the SiO2/CaO ratio on the structure and crystallization
of high-calcium CMAS glass ceramics.

2. Materials and Methods
2.1. Materials Preparation

The ferromanganese slag and bauxite used in the experiment were obtained from
YW Ferroalloy Factory in Lvliang, Shanxi Province, China. The oxide compositions of
ferromanganese slag and bauxite are listed in Table 1.

Table 1. Oxide composition of main materials (wt %).

Material LOSS SiO2 Al2O3 CaO MgO Fe2O3 MnO

Ferromanganese slag 0.27 40.87 4.46 41.78 6.87 0.26 3.99
Bauxite 12.83 34.84 43.52 0.76 0.29 2.61 0.04

2.2. Glass Composition

Ferromanganese slag was used as the main raw material and bauxite as the auxiliary
material. By adding SiO2, Al2O3, MgO and other chemical reagents, the mass ratio of
Al2O3, MgO, Fe2O3 and MnO were kept unchanged. Each sample was premilled by ball
milling and kept at 1500 ◦C for 2 h. The samples were quenched with water, ground by a
vibrating mill and passed through a 200 mesh sieve for subsequent testing. Specific oxide
composition is shown in Table 2.

Table 2. Oxide composition of glass ceramics.

Sample SiO2/CaO Al2O3 SiO2 CaO MgO Fe2O3 MnO

S1 0.98 4.5 40.9 41.8 6.9 0.26 4.0
S2 1.20 4.5 45.11 37.59 6.9 0.26 4.0
S3 1.40 4.5 48.24 34.46 6.9 0.26 4.0
S4 1.60 4.5 50.89 31.81 6.9 0.26 4.0
S5 1.80 4.5 53.16 29.53 6.9 0.26 4.0
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2.3. Characterizations

Infrared spectra of the sample were detected by infrared spectrometer (Nexus,
Therno Nicolet, USA) in the range 400–2000 cm−1.

29Si magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra were
obtained at 79.49 MHz using a 400 MHz AVANCE III spectrometer (Bruker, Switzerland,
9.8 T, wide-bore, using 7 mm zirconia rotors spinning at 5 kHz at ambient temperature).
The 29Si MAS-NMR samples were spun with a recycle delay time of 5 s and the number
of scans was 1024. Chemical displacement was quoted in parts per million (ppm) from
tetramethylsilane (TTMS).

The glass crystallization temperature was collected by a differential scanning calorime-
ter (DSC, Netzsch STA 449F3, Germany) with alumina as the reference. The temperature
was scanned over a range from room temperature to 1000 ◦C at a heating rate of 5, 10, 15
and 20 ◦C/min.

Crystalline phases of glass ceramics were identified by X-ray diffraction (XRD, D/MAX-
RB Rigaku, Japan) with Cu radiation (λ = 0.15405 µm) at 40 kV and 40 mA. The diffraction
patterns were recorded from 10◦ to 70◦, with a scanning speed of 2◦/min.

The microstructure of the samples was observed on fresh fracture surfaces using a
field emission scanning electron microscope (SEM, JSM-IT300, JEOL, Japan). The fracture
surface was chemically etched by 4% HF for 40 s. The internal structural properties were
determined by field-emission, high-resolution transmission electron microscope (TEM,
JEM-2100F, JEOL, Japan).

3. Results
3.1. Characterization of Basic Glass

Figure 1 shows the XRD patterns of quenched samples with different SiO2/CaO
ratios. Obvious crystallization peaks can be seen in S1, which contained 100% slag. This
indicated that the raw-slag melt was prone to crystallize. This is because SiO2, as a glass
network former, mainly participates in the composition of the glass network structure. The
stable silicon–oxygen tetrahedral structure will increase the difficulty of particle migration,
thereby reducing the tendency of crystallization [24]. CaO, as a network modifying oxide,
can provide free oxygen (Onb) to destroy the glass network structure, thereby reducing
the degree of polymerization of the glass network structure [25,26]. The decrease in
polymerization degree was conducive to the migration of particles, thereby increasing the
tendency of crystallization. The SiO2/CaO ratio of S1 was 0.98. this low silicon-to-calcium
ratio made the glass network structure unstable, so S1 had a greater tendency to crystallize.
As the ratio of SiO2/CaO increased, there was no obvious crystallization peak in S2–S5.
This showed that the increase in the SiO2/CaO ratio was conducive to stabilizing the glass
network structure.
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Infrared spectroscopy (IR) can reflect the transition of vibrational and rotational energy
levels in specific molecules by detecting the absorption of infrared light. Figure 2 shows the
infrared spectra of S1–S5. The common structures in glass are [AlO4], [AlO6] and [SiO4],
and the tetrahedral structure can be connected by bridge oxygen (Ob) to form anionic
groups with a higher degree of polymerization. Corresponding characteristic vibrations of
CAMS glass are listed in Table 3 [27,28].
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Table 3. Characteristic vibrations of CAMS glass.

Wavenumber/cm−1 Corresponding Characteristic Vibration

430~550 Bending vibration of Si-Ob-Si
520 The Al-O bending vibration in [AlO6]
700 The Al-O bending vibration in [AlO4]
760 Symmetric stretching vibration of Si-Ob-Si

780~800 Symmetric bending vibration of O-Si-O
950 Anti-symmetric stretching vibration of Si-Onb

1020~1060 Anti-symmetric stretching vibration of Si-Ob-Si

It can be seen from Figure 2 that there are three obvious absorption peaks located
around 450~550 cm−1, 640~800 cm−1 and 850~1150 cm−1, and the peak positions shifted
significantly. As shown in Table 3, the peak around 450~550 cm−1 was ascribed to the
Si-Ob-Si bending vibration and Al-O bending vibration in [AlO6]. The peak shifts to
lower wavenumbers indicated that the bending vibration of Si-Ob-Si was strengthened.
Therefore, the structure of Si-Ob-Si and the amount of Ob in the glass increased. The
peak around 640~800 cm−1 was ascribed to the Al-O bending vibration in [AlO4], Si-Ob-
Si symmetric stretching vibration and O-Si-O symmetric bending vibration. The peak
around 850~1150 cm−1 could be assigned to the Si-Onb anti-symmetric stretching vibration
and Si-Ob-Si anti-symmetric stretching vibration. Both peaks tended to shift to higher
wavenumbers, which also explained the increase in the amount of Ob. The IR results
indicated that the increase in the SiO2/CaO ratio could effectively form Ob.

3.2. The Influence of SiO2/CaO on the Silicon–Oxygen Tetrahedron Structure

In silicon-based glass, the basic structural units are composed of a spin silicon–oxygen
tetrahedron structure, in which a silicon atom is connected to four oxygen atoms. The
silicon–oxygen tetrahedral structure with a silicon atom at the center can be denoted as Qn,
where Q represents the silicon atom and n represents the number of Ob connected to the
silicon atom. IR results showed that the number of Ob increased, and the polymerization
degree of silicon–oxygen tetrahedra increased. However, a specific existing forms of
the Qn structures in the high-calcium CMAS systems was still unclear. As NMR is a
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technique commonly used for short-range and medium-range structure analysis of glass,
including 29Si, 27Al, 17O, the study was further carried out by NMR. The relative contents
of each silicon–oxygen tetrahedral structure could be obtained by fitting and analyzing the
measured curve [29,30].

It can be seen from Figure 3 that the center of the 29Si NMR peak was around
−70~−80 ppm, indicating that the silicon–oxygen tetrahedra structures in the high-calcium
CMAS systems were mainly Q0, Q1 and Q2 [31–33]. This was different from traditional low-
calcium CMAS systems, whose main existing forms of silicon–oxygen tetrahedra are Q1,
Q2 and Q3 [34,35]. With the increase in the SiO2/CaO ratio, the chemical shift of the S1–S5
peak centers became smaller. This indicated that the existing forms of the silicon–oxygen
tetrahedra gradually changed from low polymerization degrees to high polymerization
degrees, which was consistent with IR results.
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Figure 3. 29Si NMR spectra of S1–S5.

Fourier transformation was performed to smooth the curves. The spectra intensities
were normalized, and the peaks were deconvoluted (the peak centers were at −64 ppm
for Q0, −74 ppm for Q1, −83 ppm for Q2, −94 ppm for Q3). Figure 4a shows a typical
deconvolution for S1–S5. Figure 4b shows the relative peak-area ratio of different Qn

changing with the SiO2/CaO ratio.
As shown in Figure 4, the main forms of silicon–oxygen tetrahedra in S1 were Q0

and Q1 (main units). This was because the SiO2/CaO ratio of S1 was 0.98, and the molar
ratio of oxygen atoms to silicon atoms was larger than 3.5, which made the silicon–oxygen
tetrahedron unable to form a high degree of polymerization anion group [36]. As the ratio
of SiO2/CaO increased (Figure 4f), the content of Q0 and Q1 gradually decreased, and the
content of Q2 gradually increased. This was because, with the increase in SiO2/CaO, the
free oxygen introduced by CaO decreased, whereas the Si atoms that could form silicon–
oxygen tetrahedra increased. Low-polymerization-degree [SiO4] needs to be bonded with
oxygen atoms to form glass structures with a high polymerization degree, so as to achieve
a balance of valence. When SiO2/CaO changed from 1.6 to 1.8, the content of Q2 was
reduced, because Q3 (higher degree of polymerization) was formed in the glass.

In high-calcium CMAS systems, an increase in the SiO2/CaO ratio will cause three
significant changes in the main existing form of Qn. When SiO2/CaO increased from 0.98
to 1.2, the main forms of silicon–oxygen tetrahedra changed from Q0 and Q1 (main units)
to Q1 (main units) and Q2. When the SiO2/CaO ratio increased from 1.4 to 1.6, the main
forms of silicon–oxygen tetrahedra changed from Q1 (main units) and Q2 to Q1 and Q2

(main units). When the SiO2/CaO ratio reached 1.8, a glass structure with a higher degree
of polymerization, i.e., Q3, began to appear.
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3.3. The Effect of SiO2/CaO on Crystallization Behavior

Figure 5 shows the DSC curves of the samples with different SiO2/CaO ratios, at
a heating rate of 10 ◦C/min. The DSC curves of the original slag sample and the modi-
fied samples are depicted respectively. As for S1, the DSC curve exhibited a low initial
exothermic temperature and a broad and coarse exothermic peak in the range 700~1000 ◦C,
which indicated that S1 had a wide crystallization range. According to XRD pattern of
the water-quenched samples (Figure 1), S1 had already undergone crystallization during
the cooling process. In the subsequent crystallization process, when the temperature rose
above the glass transition temperature, these precipitated crystals would grow further.
Therefore, the initial temperature of the exothermic process, caused by crystal growth, was
lower. At the same time, a new nucleation process and crystal growth process would occur,
so the entire crystallization process lasted for a long period of time, which caused a wide
exothermic peak on the DSC curve.
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Compared to S1, the exothermic peak width of S2–S5 were significantly narrowed and
the initial exothermic temperature was increased from 700 ◦C to 850 ◦C. This was because
the rapid crystallization of the slag was solved as the SiO2/CaO ratio increased. In detail,
S2–S5 needed to undergo a nucleation process before the crystallization process during the
heating process. Therefore, the initial exothermic temperature was significantly increased.

The narrower crystallization peak indicated that the crystallization process of the
samples occurred in a narrow temperature range, which was conducive to controlling the
appropriate crystallization temperature so that the uniform crystal grain could be precipi-
tated. For S2–S5, with the increase in the SiO2/CaO ratio, the shape of the crystallization
peak did not change significantly, but the temperature of the crystallization peak kept
shifting to higher temperatures. This was because the silicon–oxygen tetrahedron changed
from Q1 (main units) to Q2 (main units) as the ratio of SiO2/CaO increased. Qn changed
a from low polymerization degree to a higher polymerization degree. The stable glass
structure made it more difficult for particles to migrate during the crystallization process,
so the corresponding crystallization peak temperature increased.

In order to investigate the effect of the SiO2/CaO ratio on the crystallization mech-
anism of glass, the crystallization activation energy (Ec) of S1–S5 was evaluated by non-
isothermal DSC curves. The crystallization peak temperatures (Tp) of S1–S5 are shown
in Table 4. The non-isothermal crystallization kinetics of glass can be described by the
Kissinger equation [37].

ln

(
T2

p

α

)
=

Ec

RTp
+ ln

(
Ec

R

)
− ln v

Table 4. Tp of S1–S5 at different heating rates.

Sample
Tp/◦C·min−1

5 ◦C·min−1 10 ◦C·min−1 15 ◦C·min−1 20 ◦C·min−1

S1 882.8 899.2 909.1 914.2
S2 870.3 891.4 902.1 909.3
S3 905.6 927.4 941.7 952.8
S4 912.7 934.2 951.9 960.1
S5 915.4 937.8 957.1 965.8

The crystallization kinetic constant (k) is related to the crystallization peak temperature
and can be described by the Arrhenius equation.

k = υ× exp
(
− Ec

RTp

)
where Tp is the crystallization peak temperature, α is the heating rate and R is the gas
constant. Figure 6a shows the correlation between ln

(
Tp

2/α
)

and 1000/
(

R× Tp
)

of S1–S5.
The Ec, k and υ were calculated, and the relationship of Ec, k and υ with SiO2/CaO was
plotted, as shown in Figure 6b–d.

It was found that as the ratio of SiO2/CaO increased, the activation energy of the
sample gradually decreased. Similar results were found by Deng when a high content
of stainless-steel slag (more than 50 wt %) was used [38]. Cheng et al. pointed out that
activation energy could not be directly used to judge the stability of glass. It was necessary
to introduce the crystallization kinetic constant k and frequency factor υ to evaluate the
thermal stability of glass [39]. Hu et al. also pointed out that k and υ could reflect the
thermal stability and internal structure of the glass [40]. The stability of the glass increased
as the values of k and v decreased. As the ratio of SiO2/CaO increased, the kinetic constant
and frequency factor of the sample decreased, indicating that the glass structure became
more stable, which was consistent with the IR and NMR results.
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Figure 7a,b are the XRD patterns of S1–S5 crystallized at 950 ◦C for 1 h and S3 heated
at 850 ◦C, 900 ◦C and 950 ◦C for 1 h, respectively. As shown in Figure 7a, only akermanite
(Ca2MgSi2O7) was precipitated in S1. With the increase in the SiO2/CaO ratio, the content
of akermanite gradually decreased until it disappeared. The main crystal phase of the
sample gradually changed from akermanite to diopside–wollastonite (CaMgSi2O6-CaSiO3),
and the amount of diopside gradually increased with the increase in SiO2/CaO ratio.

By comparing crystal form and the content of Qn, it was found that the content of
akermanite changed with Q1 and the content of diopside–wollastonite changed with Q2.
When SiO2/CaO increased from 0.98 to 1.2, the main forms of the silicon–oxygen tetrahedra
changed from Q0 and Q1 (main units) to Q1 (main units) and Q2. The appearance of Q2 cor-
responded to the precipitation of diopside–wollastonite. When SiO2/CaO increased from
1.4 to 1.6, the main forms of the silicon–oxygen tetrahedra changed from Q1 (main units)
and Q2 to Q1 and Q2 (main units), which corresponded to the disappearance of akermanite.
This was because the transformation of Qn affected the precipitation of crystals [41].
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As shown in Figure 8, Qn corresponded to different anion group structures. Q1 con-
tained a bridging oxygen, which corresponded to the anionic group structure of [Si2O7]6−.
When the SiO2/CaO ratio was low, the main existing form of the silicon–oxygen tetrahe-
dron in the glass structure was Q1, which made it easier to precipitate crystals with the
anionic group structure of [Si2O7]6−, that is, akermanite. Q2 contained two bridge oxygens,
which could be formed in different anionic group structures such as [Si3O9]6−, [Si4O12]8−,
[Si6O18]12− and [Si2O6]4−. When the main form of silicon–oxygen tetrahedron in the glass
structure was Q2, it was easier to precipitate crystals (wollastonite and diopside) with the
corresponding anion group structure. Therefore, when the tetrahedral structure in the glass
changed, the crystal form corresponding to different SiO2/CaO changed at the same time.
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It can be seen from Figure 7b that the diopside phase was first precipitated in the
sample during the crystallization process, and the wollastonite phase was gradually precip-
itated as the temperature rose. This was because Qn underwent structural transformation
during the heating process, such as Qn↔Qn−1 + Qn+1 [42]. The anion group of diopside
(CaMgSi2O6) and wollastonite (CaSiO3) both belong to Q2. As for [Si3O9]6−, [Si4O12]8−

and [Si6O18]12−, the formation of these ring-like structures was difficult, and required
breaking, bonding and bending of several Si–O bonds from Q1. However, [Si2O6]4− is a
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chain structure, so its transformation from Q1 required the breaking and bonding of fewer
bonds. Therefore, diopside was easier to crystallize than wollastonite.

Figure 9a–e shows the microstructure of S1–S5, which were made from powders
kept at 950 ◦C for 1 h. Figure 9f shows the TEM image of S1. As shown in Figure 9a,
herringbone crystals, with a grain size of approximately 1 µm, and sphere particles, with
grain size of 0.2 µm, could be found in S1. These crystals with different grain sizes were
both akermanite, according to the XRD result. This indicated that the growth process of
grains in S1 differed. The TEM image of S1 showed that there were obvious diffraction
spots in the water-quenched sample, indicating that crystals had already precipitated
during the cooling process at the low SiO2/CaO ratio. From DSC, the growth of existing
crystals could occur at a low temperature. However, the new crystal needed to form a
nucleus first, and then grow, so there was a significant difference in crystal sizes. For S2,
the main crystal phase was still akermanite, so herringbone crystals could be seen in SEM
image. The increase in the SiO2/CaO ratio stabilized the glass structure, so the grain size
in S2 was more uniform than that in S1. The main crystal form of S3 was akermanite and
diopside–wollastonite, so a variety of crystals could be clearly seen in the SEM image of S3.
When the SiO2/CaO ratio was further increased, there was almost no akermanite in the
sample, so the SEM mainly existed in the form of dendrites.
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Figure 9. (a–e) SEM images of S1–S5 treated at 950 ◦C for 1 h. (f) TEM image of S1 quenched by water.

4. Conclusions

(1) In the high-calcium CMAS systems, the type of crystals precipitated in the sample was
closely related to Qn. When the ratio of SiO2/CaO was 0.98, the main forms of Qn were
Q0 and Q1 (main units). At this time, only akermanite was precipitated. As the ratio
of SiO2/CaO increased, the main forms of Qn changed from Q0 and Q1 (main units) to
Q1 (main units) and Q2. The sample began to precipitate diopside–wollastonite. When
the SiO2/CaO ratio was greater than 1.6, the main existing form of the silicon-oxygen
tetrahedron changed from Q1 (main units) and Q2 to Q1 and Q2 (main units). At
this time, akermanite in the sample disappeared, and only diopside–wollastonite
was precipitated.

(2) A low SiO2/CaO ratio reduced the stability of the glass, and caused rapid crystal-
lization during the melt–cooling process in high-calcium CMAS systems. As the
ratio of SiO2/CaO increased, the anionic groups in the glass changed from a low
polymerization degree to a high polymerization degree. The glass stability was
obviously improved. The crystallization peak temperature of the sample continu-
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ously increased, and the crystallization kinetic constant k and the frequency factor υ
gradually decreased.

(3) In high-calcium CMAS systems, the rapid crystallization problem in the cooling
process, caused by low SiO2/CaO, caused significant differences in grain size. As
the ratio of SiO2/CaO increased, the homogeneity of the crystal improved, and the
crystal changed from herringbone shape (akermanite) to dendritic shape (diopside–
wollastonite).
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