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Abstract. Craniocerebral injury (CBI) is tissue damage caused 
by a sudden mechanical force. CBI can result in neurological, 
neuropsychological and psychiatric dysfunctions. Currently, 
the severity of CBI is assessed using the Glasgow Coma Scale, 
brain perfusion pressure measurements, transcranial Doppler 
tests and biochemical markers. This study aimed to determine 
the applicability of the S‑100B protein levels and the time‑aver‑
aged mean maximum cerebral blood flow velocity (Vmean) as a 
means of predicting the treatment outcomes of CBI in the first 
4 days of hospitalization. The results validated the standard 
reference ranges previously proposed for the concentration of 
S‑100B (0.05‑0.23 µg/l) and the mean of cerebral blood flow 
velocity (30.9  to 74.1 cm/sec). The following stratification 
scheme was used to predict the success of treatment: Patients 
with a Glasgow Outcome Scale (GOS) score ≥4 or GOS <4 were 
stratified into ‘favorable’ and ‘unfavorable’ groups, respec‑
tively. The favorable group showed relatively constant levels of 
the S‑100B protein close to the normal range and exhibited an 
increase in Vmean, but this was still within the normal range. The 
unfavorable group exhibited a high level of S‑100B protein and 
increased Vmean outside of the normal ranges. The changes in the 
levels of S‑100B in the unfavorable and favorable groups were 
‑0.03 and ‑0.006 mg/l/h, respectively. Furthermore, the rate of 
decrease in the Vmean value in the unfavorable and favorable 
groups were ‑0.26 and ‑0.18 cm/sec/h, respectively. This study 
showed that constant levels of S‑100B protein, even slightly 
above the normal range, associated with an increase in Vmean 
was indicative of a positive therapeutic outcome. However, 

additional research is required to obtain the appropriate statis‑
tical strength required for clinical practice.

Introduction

Craniocerebral injury (CBI) is a heterogeneous group of 
non‑congenital tissue damages caused by a sudden mechanical 
force, which results in neurological, neuropsychological and 
psychiatric dysfunctions (1,2). Currently, CBI is one of the 
leading causes of death in addition to cardiovascular disease 
and cancer  (3). A histogram of age‑related CBI shows a 
bimodal distribution with the first and second maximums for 
subjects aged 15 and >75 years old, respectively (4). CBI is 
more common amongst men than among women, showing a 
ratio between 1.9:1‑2.8:1 (4‑8).

Current clinical diagnosis of CBI is based on a number of 
methods, including the Glasgow Coma Scale (GCS) (9), the 
measurement of cerebral perfusion pressure, the Transcranial 
Doppler Test (TCD) and analysis of the levels of biomarkers, 
allowing quantitative evaluation and treatment monitoring of 
brain tissue damage (10,11).

Amongst a variety of biomarkers of CBI, the serum 
levels of S‑100B reflects the degree of posttraumatic brain 
damage (10,12‑30). S‑100B is secreted primarily by astro‑
cytes in the cerebral cortex (31,32) and is present in large 
quantities in astroglial cells (33). It also plays an essential 
role in cell growth metabolism (34). S‑100B secretion triggers 
autocrine and paracrine effects in glial cells, microgel cells 
and neurons (35). Furthermore, S‑100B stimulates neuronal 
growth in nanomolar and picomolar concentrations (36), and 
induces apoptosis in micromolar concentrations (37).

TCD spectral analysis is used to determine the velocity 
of blood flow through the maximum systolic velocity, the 
end‑diastolic velocity and the time‑averaged mean maximum 
velocity (Vmean) in insolated blood vessels (38). The clinical 
practicality of Vmean values has been confirmed in the treat‑
ment of severe cases of traumatic brain injury (TBI) (39).

Given the importance of precise prognostic methods for the 
diagnosis and effectiveness of TBI treatment, advances in the 

Prognostic properties of the association between the S‑100B 
protein levels and the mean cerebral blood flow velocity in 

patients diagnosed with severe traumatic brain injury
SEBASTIAN DZIERZĘCKI1,2,  MIROSŁAW ZĄBEK1,2,  ARTUR ZACZYŃSKI3  and  RYSZARD TOMASIUK4

1Department of Neurosurgery, Postgraduate Medical Centre;  
2Gamma Knife Centre, Brodno Masovian Hospital, 03‑242 Warsaw;  

3Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of  
the Interior and Administration, 02‑507 Warsaw; 4Faculty of Medical Sciences and Health Sciences,  

Kazimierz Pulaski University of Technology and Humanities Radom, 26‑600 Radom, Poland

Received August 24, 2021;  Accepted December 21, 2021

DOI: 10.3892/br.2022.1541

Correspondence to: Dr Sebastian Dzierzęcki, Gamma Knife 
Centre, Brodno Masovian Hospital, Kondratowicza 8 Str Building H, 
03‑242 Warsaw, Poland
E‑mail: smd@neurochirurg.pl

Key words: S‑100B protein, mean maximum blood velocity, early 
diagnosis, cerebrospinal injury



DZIERZĘCKI et al:  EARLY DIAGNOSIS OF CEREBROSPINAL INJURIES2

quality of the early diagnosis of CBI are essential. Therefore, 
the time‑related changes in S‑100B protein levels and the 
Vmean, as well as the associations between these parameters in 
patients diagnosed with severe CBI as defined by a GCS score 
≤8 were investigated in the present study.

Materials and methods

Study subjects. All experiments and methods were performed 
following relevant guidelines and regulations  (40). The 
Bioethics Committee of the Postgraduate Education Medical 
Center (Warsaw, Poland) approved the experimental proto‑
cols (approval no. 501‑2‑1‑20‑49/04). Informed consent was 
obtained from all subjects or their guardians, and a parent/legal 
guardian of subjects under 18 years of age.

The present study included patients with severe CBI (GCS 
score ≤8) admitted to the Department of Neurosurgery and 
Trauma of the Nervous System at the Medical Center of 
Postgraduate Education (Warsaw, Poland).

Sample stratification. The total number of patients included in 
the study was 60, consisting of 51 patients in the unfavorable 
group and 9  patients in the favorable group. The mean 
age ± standard deviation were 48.41±15.24 years (age range, 
19‑73 years) and 47.20±16.64 years (age range, 14‑75 years) in 
the unfavorable and favorable groups, respectively.

The GCS score was calculated at admission using an 
internal encoded GCS calculator (41,42) written in Python 
(Python Software Foundation; python.org/).

According to the European Consortium of Brain Injury 
Guidelines, all patients were subjected to the standard diag‑
nostic and therapeutic protocols (43). In patients for whom 
poor ventilation was suspected, a gasometric examination, 
using a CDI™ blood parameter monitoring system  500, 
was performed to optimize pCO2 (range, 30‑40  mmHg). 
Furthermore, hematocrit and hemoglobin levels were main‑
tained at 30‑40% and 12‑14 g/dl, respectively.

On discharge from the Department of Neurosurgery, the 
patient's health was evaluated using the traditional Glasgow 
outcome scale (GOS) (44), which is comprised of the following 
five categories: 1, death; 2, persistent vegetative state; 3, severe 
disability; 4, moderate disability; and 5, low disability. For this 
study, patients with a GOS ≥4 and GOS <4 were classified as 
‘favorable’ and ‘unfavorable’, respectively.

The inclusion criteria, based on an analysis of GOS as 
described above, resulted in a study group of 60 patients 
(48 men and 12 women). The clinical description of the study 
group after admission to the hospital according to the GCS 
and Marshall (MCTC) classification (45) is presented in Fig. 1. 

The S‑100B protein levels were measured in 5 ml venous 
blood samples collected from patients upon admission to the 
hospital. Subsequent blood samples were collected at 24‑h 
intervals for 96 h. After clotting and centrifugation for 10 min 
at 2,000 x g at 4˚C, blood samples were stored for further use at 
‑22˚C. The S‑100B protein concentration was measured using 
a Anti‑S‑100 antibody kit (S1‑61; cat. no. sc‑53438; Santa Cruz 
Biotechnology, Inc.) according to the manufacturer's protocol 
(Liaison Sangtec 100; Sangtec Ltd.). The Sangtec 100 kit uses 
three different monoclonal antibodies (SMST12, SMSK 25 
and SMSK 28) directed against the β‑chains of the S‑100B 

homodimer, and has a wide detection range (0.02‑30 µg/l). 
Protein concentration was measured using a LIAISON 
analyzer (DiaSorin) calibrated with a freeze‑dried Sangtec 
100 Cal (Low/High) calibrator. The sensitivity threshold for 
this test was 0.02 µg/l.

Vmean was measured by subjecting patients to a transcra‑
nial Doppler examination using a Medasonic Transpect 
CDS Doppler (Medasonics, Inc.) in the power motion mode 
TCD (46,47). First, the arteries of the brain base, accessible 
through the temporal window, were examined. The middle 
cerebral arteries on the side of the dominant lesion or on the 
right side of the extent of the lesion were further analyzed. This 
examination was performed at 24‑h intervals for 96 h after the 
patient was admitted to the Department of Neurosurgery.

Similar to that for the S‑100B protein levels, the refer‑
ence value for Vmean, (<30.9 cm/s) was derived from the study 
in a group comprising 40 healthy volunteers (22 men and 
18 women). The mean age of the reference was 43.4±9.17 years 
(range, 30‑61 years).

Statistical analysis. A Shapiro‑Wilk test  (48) was used 
to assess the distribution of the parameters investigated. 
Parameters exhibited either skewed or normal distribution, and 
the subsequent analysis used was based on the distribution of 
the data. Data are presented as the mean ± standard deviation, 
and the minimum and maximum values. Differences between 
study groups (favorable vs. unfavorable) at a specific time 
were assessed by analyzing the bootstrapped difference in the 
means, in which a sample of 10,000 repeats with replacement 
was used (49). Differential statistics on continuous outcomes 
of S‑100B protein concentration and Vmean were performed 
using a one‑way aligned rank transform for nonparametric 
factorial ANOVA (50). The clinical treatment outcome factor 
encompassed two levels (favorable and unfavorable). Due to 
the shortcomings of current statistical methods in handling 
advanced nonparametric statistics, it was decided only to 
discuss one‑way nonparametric factorial ANOVA results.

Given the repeated nature of the data and the mortality 
of the patients, the data was censored to balance the factorial 
ANOVA model. Post hoc analysis was performed using the 
estimated marginal means (emmeans) procedure. The velocity 
of time‑dependent changes in a specific parameter is defined 
by the slope (tangent) of a line obtained from connected means 
at consecutive measurement times. P<0.01 was considered to 
indicate a statistically significant difference. All analyses were 
performed in R (51).

Results

This study was carried out using two groups of patients strati‑
fied by the GOS score (52) at discharge; patients were classified 
into either an unfavorable (GOS score <4) and favorable (GOS 
score ≥4) group. No significant differences in age were found 
between the groups. Fig. 1 shows a general description of the 
severity of craniotrauma in patients assessed using the GOS 
and MCTC scores (53).

The reference range obtained from a healthy patients 
reference group consisting of 40 healthy volunteers [22 men 
and 18 women; 47.0±14.77 (age range, 21‑80)] for the S‑100B 
levels used in this study was 0.05‑0.23 µg/l. A graphical and 
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numerical representation of the changes in S‑100B levels 
is shown in Fig. 2 and Table I. The results showed that the 
patients in the unfavorable group had higher levels of S‑100B 
than those in the favorable group at all measured time points. 
No statistically significant time‑dependent differences, 
defined by the lack of an overlay between specific confidence 
intervals, in S‑100B concentrations were found within the 
unfavorable group. However, a significant decrease in serum 
S‑100B protein levels was found between measurements 
at 24 vs. 48 h, 24 vs. 72 h and 24 vs. 96 h in the favorable 
group. The difference in the S‑100B decrease velocity between 
the two groups showed a relative decrease equal to 5.4, with 
velocities of VS‑100B_U=‑0.03 µg/l/h and VS‑100B_F=‑0.006 µg/l/h 
for the unfavorable and favorable groups, respectively.

Cerebral flow impairment was analyzed using Vmean 
levels as a function of hospitalization time. The respective 
data are presented in Table II and Fig. 3. Analysis showed 
that the patients in the unfavorable group had a signifi‑
cantly lower Vmean value than those in the favorable group. 
Statistically significant differences in Vmean were observed 
between 24 and 96 h and between 48 and 96 h in the unfa‑
vorable group. The relative difference in the Vmean increase 

between the unfavorable and favorable groups was 1.44 
(Vmean_U=0.26 cm/sec/h, Vmean_F=0.18 cm/sec/h, respectively).

Discussion

Due to the poor prognosis of the treatment outcomes of TBI 
patients (54‑63), rendered by the insufficient discriminatory 
capacity of the current prognostic indicators, the present study 
assessed the clinical applicability of S‑100B protein levels and 
the Vmean as potential prognostic factors.

Briefly, this study introduced and validated a novel concept 
for predicting a treatment outcome in patients in a favorable 
and unfavorable group using an amalgam of physical and 

biochemical parameters collected during the initial hospi‑
talization stage, encompassing the first 4 days after hospital 
admission.

Over the past 20 years, studies have focused on patient 
treatment outcomes following a TBI (64‑66). Mercier et al (56) 
summarized 41 reports on the applicability of correla‑
tions between TBI and the S‑100B levels in patients with 
severe TBI for long‑term prognosis. However, the report 
described unfavorable treatment results for increased levels 
of S‑100B protein. The present study improved on predicting 
treatment outcomes based on a combination of physical and 
biochemical parameters collected during the initial stage of 
hospitalization.

Figure 2. Changes in S‑100B protein concentration stratified by GOS level 
evaluated on discharge from the Department of Neurosurgery. The error bars 
represent the standard error of S‑100B concentration at each specific time 
point. The blue arrows show differences in the means between the unfavor‑
able and favorable groups. The red arrow shows the statistically significant 
differences in S‑100B levels within the unfavorable group at different time 
points. The green arrow shows the statistically significant differences within 
the favorable group at different time points. *P<0.01.

Figure 1. Clinical classification of patients admitted to the Department of Neurosurgery and Trauma of the Nervous System of the Medical Center of 
Postgraduate Education (Warsaw, Poland). (A) In group GCS, the numbers 3‑8 correspond to GCS classification level and (B) MCTC distribution. Numerals 
correspond to the number of cases (percentage of cases). TBI, traumatic brain injury; GCS, Glasgow Coma Scale; MCTC, Marshall classification of traumatic 
brain injury.
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The therapeutic outcomes of treatment were validated 
against the GOS, which was evaluated on the 4th day of hospi‑
talization. Patients with a GOS score <4 or GOS score ≥4 were 
stratified into unfavorable and favorable groups, respectively. 
The mean age of the study sample was 48.73±16.3 years, which 
is slightly higher than previously reported (67,68). However, 
no significant differences were determined were found 
between the age distribution of the present study and those 
of Jain et al (67) and Jennett (68) using a Student's t‑test. The 

mortality rate of the patients in the current study was 26.6%, 
which is higher than previously reported (69). The reasons for 
these differences are unknown.

The reference range for the normal concentration of 
S‑100B established in the present study was 0.05‑0.23 µg/l. 
The lower limit of the reference range was similar to that 
shown in previous studies. However, the upper limit was twice 
as high (70). In addition, the upper reference limit obtained 
in the present study was twice the value reported for patients 

Table I. Changes in S‑100B levels stratified by the Glasgow Outcome Scale score on discharge from the Department of 
Neurosurgery.

A, Unfavorable group

Time, h	 Mean, mg/l	 Standard deviation	 Min, mg/l	 Max, mg/l	 Number of subjects

24	 4.82	 4.45	 0.76	 19.8	 51
48	 3.84	 4.21	 0.47	 16.8	 48
72	 3.39	 4.04	 0.38	 17.83	 40
96	 2.66	 3.05	 0.136	 16.7	 37
Mean	 3.68	 3.94	 0.44	 17.78	 ‑

B, Favorable group

Time, h	 Mean, mg/l	 Standard deviation	 Min, mg/l	 Max, mg/l	 Number of subjects

24	 1.01	 0.29	 0.71	 1.6	 9
48	 0.84	 0.21	 0.62	 1.3	 9
72	 0.83	 0.35	 0.51	 1.5	 9
96	 0.61	 0.24	 0.39	 1.1	 9
Mean	 0.82	 0.27	 0.56	 1.38	 ‑

Table II. Changes in time‑averaged mean maximum cerebral blood flow velocity stratified by Glasgow Outcome Scale score on 
discharge from the Department of Neurosurgery.

A, Unfavorable group

Time, h	 Mean, mg/l	 Standard deviation	 Min, mg/l	 Max, mg/l	 Number of subjects

24	 32.06	 11.31	 5	   67	 51
48	 39.73	 16.53	 6	   75	 48
72	 38.78	 20.77	 5	 120	 40
96	 45.43	 25.1	 6	 145	 37
Mean	 39.00	 18.43	 5.50	      101.75	 ‑

B, Favorable group

Time, h	 Mean, mg/l	 Standard deviation	 Min, mg/l	 Max, mg/l	 Number of subjects

24	      41.78	 7.17	 32	 56	 9
48	      51.56	 15.53	 36	 87	 9
72	 52	 11.43	 39	 75	 9
96	      60.38	 14.99	 44	 91	 9
Mean	      51.43	 12.28	      37.75	      77.25	 ‑



BIOMEDICAL REPORTS  17:  58,  2022 5

with an isolated head injury for whom CT scans for mild TBI 
were negative (71,72). Furthermore, an apparent discrepancy 
was found between the pathological levels of S‑100B reported 
in this study (>0.235  µg/l) and those of a previous study 
(>0.5 µg/l) (73).

The present study is amongst only a few to report the 
association between time‑dependent changes in S‑100B 
levels and the outcome of TBI treatment (74‑76). A striking 
discrepancy was observed between the data in the present 
study and those reported by Gyorgy et al (74), where it was 
previously shown that there was no correlation between 
the severity of TBI and serum S‑100B levels. Additionally, 
the study by Gyorgy et al  (74) also showed an increase in 
the S‑100B levels between 7‑72 h after injury, whereas the 
current study showed a pronounced decrease in the S‑100B 
levels. However, a comparison of the results of this study 
with those reported by Shakeri et al (16), revealed a lack of 
statistical differences between S‑100B protein levels strati‑
fied into favorable and unfavorable groups in both studies. 
The observed difference between this and the latter study 
may be due to different analytic techniques, such as the use 
of monoclonal antibodies in the present study and ELISA 
in the ins the study by Gyorgy et al (74). Furthermore, the 
present study employed advanced techniques for the analysis 
of nonparametric data, such as one‑way aligned rank trans‑
formation for nonparametric factorial ANOVA and bootstrap 
analysis. Such an approach allowed for identification of the 
subtle differences between S‑100B levels and the mean cere‑
bral blood flow velocity between the favorable and unfavorable 
outcome groups.

The results of the present study agree with a report by 
Raabe and Seifert (73), which indicated that serum levels of 
S‑100B were significantly higher in patients with unfavorable 
outcomes than in those with favorable outcomes. In patients 
with favorable outcomes, high initial levels of S‑100B returned 
to normal levels within 96 h. Furthermore, both studies revealed 
a noticeable difference in serum S‑100B levels between the 

unfavorable and favorable groups, with an apparent decrease 
in S‑100B levels within 3‑4 days after hospitalization. The 
present study also revealed a decrease in S‑100B concentration 
velocity of 0.03 µg/l/h in the unfavorable group. This result 
shows that patients in the unfavorable group require 153 h 
(6.3 days) to reach the normal reference range.

Compared to Raabe and Seifert  (73), the present study 
showed that the increase in S‑100B protein levels observed 
in the favorable group did not return to normal, and was 
on average equal to 0.61 mg/l on day 4, remaining at levels 
around three times higher than the standard reference value 
(0.23 µg/l) and 12  times the value reported by Raabe and 
Seifert (73). Furthermore, the velocity of the decrease in serum 
S‑100B concentration in the favorable group was 0.006 µg/l/h, 
indicating that a favorable patient would need 130 h of hospi‑
talization before reaching the S‑100B standard reference 
range. This observation may indicate that the difference in 
30 h between the unfavorable and favorable groups in reaching 
the standard S‑100B reference range is crucial for patient 
recovery. The lack of changes can lead to irreversible neuronal 
dysfunction with a consequent increase in extracellular 
calcium levels and the activation of toxic nitric oxide (77,78). 
Thus, the extended time required to recover S‑100B levels 
may be a primary cause of increased mortality. Comparison 
of this study with a meta‑analysis of 39 studies on a total 
of 1,862 patients (56) confirmed the results presented in the 
present study. That is, S‑100B serum levels in the unfavorable 
group in the range of 2.16‑14.0 µg/l.

The results of the present study also corroborate with 
those of previous studies (79‑82), which showed that the initial 
concentration of S‑100B is of paramount importance for the 
prediction of the outcome of TBI. In addition, the present study 
also substantiated the previous findings relating to the clinical 
significance of S‑100B levels up to 3 days after hospital admis‑
sion (83‑89).

Cerebral flow dynamics determined by TCD examination 
has been one of the most popular neurosurgical diagnostic tools 
since the 1980s (90,91). This technique allows for analysis of 
abnormalities in cerebral circulation in patients with cranio‑
cerebral trauma  (91‑95). The impairment of cerebral flow 
reflected in Vmean is of paramount importance for determining 
the treatment outcomes of patients with severe craniocerebral 
trauma (96,97). In the present study, an abnormal Vmean level 
was defined by values <30.9 cm/s, which is in agreement with 
previous reports (39,98).

The present study showed that in the successful group, the 
majority of the patients exhibited a Vmean >30.9 cm/s (the threshold 
value defining the healthy subjects) during the first 24 h of 
hospitalization. However, in the unfavorable group, the number 
of patients with Vmean >30.9 cm/s was notably lower. This obser‑
vation indicates the direct applicability of Vmean for predicting 
treatment outcomes amongst patients with severe CBI. 

The velocity of the increase in Vmean in the unfavorable 
group was Vmean_U=0.26 cm/sec/h. This value was significantly 
lower than those previously reported  (99,100) showing an 
adverse outcome for the following cases: An increase in Vmean 
equivalent to 2.08 cm/sec/h during the first 24 h (99) and Vmean 
equivalent to 2.7 cm/sec/h after 3 days of hospitalization (100). 
This observation indicates that the velocity of changes in Vmean 
may have a prognostic value in the clinical setting. However, 

Figure 3. Changes in Vmean stratified by the GOS score evaluated on discharge 
from the Department of Neurosurgery. Errors bars represent the standard 
error of S‑100B concentration at each specific time point. The blue arrows 
show the differences in means between the unfavorable and favorable groups. 
The red arrow shows the statistically significant differences in S‑100B levels 
in the unfavorable group. The green arrow shows statistically significant 
differences in the favorable group. *P<0.01. GOS, Glasgow Outcome Scale; 
Vmean, time‑averaged mean maximum cerebral blood flow velocity.
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due to the discrepancy between the previous (99,100) and this 
report, further studies are required.

Analysis of the relationship between the parameters that 
define the unfavorable treatment outcomes led to the following 
observations. A significant time‑dependent decrease in 
S‑100B levels (a negative velocity equivalent to 0.03 µg/l/h) 
was associated with a statistically significant increase in 
Vmean levels (a positive velocity of 0.26 cm/sec/h). A favorable 
outcome was defined by the lack of changes in S‑100B levels 
and a time‑dependent increase in Vmean with a velocity of 
0.18 cm/sec/h.

In conclusion, the present study is the first to report on 
the associations between S‑100B protein levels and Vmean to 
predict patient treatment outcomes in those who have suffered 
a TBI or CBI, to the best of our knowledge. It was established 
that within the first 4 days of hospitalization, a constant level 
of S‑100B protein even slightly above the normal range, asso‑
ciated with an increase in Vmean, was a predictor of successful 
treatment outcomes. Moreover, following the conclusion of 
the study by Thelin et al (22), which suggested that S100B 
could be used as a versatile screening, monitoring and predic‑
tion tool in the management of TBI patients, the present study 
revealed that serum concentration of S100B itself was of 
limited use in predicting TBI outcomes. However, additional 
studies are required to validate this observation and to obtain 
the appropriate statistical power. Moreover, the limited clinical 
applicability of currently studied CBI markers indicates the 
need for the continuous search for other markers, which exhibit 
improved specificity and sensitivity in a clinical environment.
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