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Abstract
Low intensity repetitive Transcranial Magnetic Stimulation (LI-rTMS), a non-invasive form of

brain stimulation, has been shown to induce structural and functional brain plasticity, includ-

ing short distance axonal sprouting. However, the potential for LI-rTMS to promote axonal

regeneration following neurotrauma has not been investigated. This study examined the ef-

fect of LI-rTMS on retinal ganglion cell (RGC) survival, axon regeneration and levels of

BDNF in an optic nerve crush neurotrauma model. Adult C57Bl/6J mice received a unilater-

al intraorbital optic nerve crush. Mice received 10 minutes of sham (handling control without

stimulation) (n=6) or LI-rTMS (n = 8) daily stimulation for 14 days to the operated eye. Immu-

nohistochemistry was used to assess RGC survival (β-3 Tubulin) and axon regeneration

across the injury (GAP43). Additionally, BDNF expression was quantified in a separate co-

hort by ELISA in the retina and optic nerve of injured (optic nerve crush) (sham n = 5, LI-

rTMS n = 5) and non-injured mice (sham n = 5, LI-rTMS n = 5) that received daily stimulation

as above for 7 days. Following 14 days of LI-rTMS there was no significant difference in

mean RGC survival between sham and treated animals (p>0.05). Also, neither sham nor LI-

rTMS animals showed GAP43 positive labelling in the optic nerve, indicating that regenera-

tion did not occur. At 1 week, there was no significant difference in BDNF levels in the retina

or optic nerves between sham and LI-rTMS in injured or non-injured mice (p>0.05). Al-

though LI-rTMS has been shown to induce structural and molecular plasticity in the visual

system and cerebellum, our results suggest LI-rTMS does not induce neuroprotection or re-

generation following a complete optic nerve crush. These results help define the therapeutic

capacity and limitations of LI-rTMS in the treatment of neurotrauma.
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Introduction
Non-invasive brain stimulation can be used to modulate neural activity in the central (CNS)
and peripheral nervous systems (PNS) and has been applied in diagnosis and treatment of neu-
rological disorders. One form of non-invasive brain stimulation is repetitive transcranial mag-
netic stimulation (rTMS), in which time-varying magnetic pulses from a coil placed over the
skull induce electrical currents in the underlying brain by Faraday Induction. rTMS is used
clinically at high and low intensities in a wide range of neurological and psychiatric conditions,
with therapeutic effects that can persist for hours to days after stimulation [1–4].

The best-characterised effects of rTMS in human patients are alterations in cortical excit-
ability that persist beyond the time of stimulation [5, 6]. Mechanisms underpinning these ef-
fects have been explored in animal models and demonstrate altered synaptic plasticity in the
form of long-term potentiation [7, 8]. Furthermore, functional imaging of human patients sug-
gests that repeated rTMS delivery may trigger structural and functional reorganisation [9] and
our recent work in mice has confirmed structural and functional reorganisation of abnormal
brain circuits via removal or shifting of inappropriate connections, even using low intensity
magnetic stimulation (LI-rTMS) (12mT field strength) [10, 11].

Whilst the biological mechanisms of rTMS are poorly defined, a key molecule up-regulated
by both rTMS and LI-rTMS effects is brain derived neurotrophic factor (BDNF) [10–13], a
powerful and versatile signalling molecule that plays many roles not only in synaptic plasticity,
but also in promoting neuronal survival and axonal outgrowth. Furthermore, delivery of exoge-
nous BDNF either by viral overexpression or injection of recombinant protein showed neuro-
protective and neuroregenerative effects in a range of CNS injury models [14–16]. We thus
hypothesised that LI-rTMS may be useful in promoting cell survival and/or axonal regenera-
tion following brain injury, via up-regulation of BDNF. In agreement with this hypothesis,
there is some indication that rTMS may promote neuronal survival in the lesion site following
an ischaemic stroke [17], and studies in the PNS show that direct electrical stimulation can
promote regeneration following nerve damage [18, 19]. However, the use of rTMS as a neuro-
protective and/or neuroregenerative intervention following neurotrauma has not been well
characterised.

Here we investigate the effects of LI-rTMS on neuronal survival and axonal regeneration
using a complete optic nerve crush model. The optic nerve is a white matter tract, consisting of
axons from a single cell type in the retina, the retinal ganglion cell (RGC). The absence of any
surrounding gray matter allows for the investigation of cell survival and neuronal regeneration
as distinct events following injury [19]. In addition, optic nerve injury models have been used
extensively to investigate the potential of both neurotrophin [19–21] and electrical stimulation
treatments on cell survival and regeneration [22–25]. Therefore the optic nerve crush provides
an ideal model to investigate the efficacy of LI-rTMS in neuroprotection and regeneration. We
delivered LI-rTMS for 10 minutes daily for 14 days at a high frequency biomimetic pattern to
the left eye of C57Bl/6J mice starting from the day after optic nerve crush. We chose this proto-
col because we have previously shown that it induces plastic reorganisation and robust up-
regulation of BDNF expression in the mouse visual cortex, superior colliculus [10, 11] and
cerebellum [26]. Here, we found that LI-rTMS had no effect on RGC survival or axonal regen-
eration, and that BDNF expression was not up regulated in the retina or optic nerve of non-in-
jured and injured mice (optic nerve crush). Our findings suggest that different brain regions
may respond differently to LI-rTMS in terms of BDNF up-regulation, and that the therapeutic
applications of LI-rTMS will need to be tested in a range of models in order to establish the
scope and limitations of this technique.
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Methods

Animals
3 month old C57Bl /6J mice (Mus Musculus) (n = 34) (Animal Research Centre, Murdoch Uni-
versity, WA, Australia) were group housed on a 12-hour light/dark cycle with food and water
ad libitum. All animal work was conducted according to Australian and international guide-
lines. Mice were euthanased with an overdose of pentobabitone (>160mg/kg i.p.) and anaes-
thetised with ketamine and medetomidine (75 and 1 mg/kg respectively i.p.).

Procedures were approved by the Animal Ethics Committee of the University of Western
Australia (approval id: RA100/03/1214).

Optic nerve crush
Surgery was performed on the left eye to obtain a complete unilateral optic nerve crush. Mice
were anaesthetised with an intraperitoneal injection of ketamine and medetomidine (75 and
1 mg/kg respectively, Troy Ilium, NSW, Australia). An incision to the lateral conjunctiva al-
lowed for slight rotation of the globe. Muscle and connective tissue were gently separated to
expose the optic nerve. The exposed nerve was crushed using Dumont #5 forceps (World Pre-
cision Instruments, FL, USA) for 5 seconds, 2-3mm from the optic nerve head. Forceps were
gently removed, allowing the eye to rotate back into place. Anaesthesia was reversed with sub-
cutaneous injection of atipamezole (1 mg/kg, Troy Ilium, NSW, Australia). We confirmed no
surviving axons in the nerve distal to the lesion using CTB and beta tubulin in a small number
of animals (data not shown).

The contralateral (non-injured) retina was not used for control tissue, as unilateral optic
nerve crush can induce bilateral glial cell activation [27, 28] and RGC loss [29, 30].

LI-rTMS
LI-rTMS or sham (handling control without stimulation) was delivered daily to the operated
eye for 10 minutes. Mice were randomised into two cohorts (Fig 1). In cohort 1 (n = 14), mice
received an optic nerve crush and 14 days of stimulation (sham n = 6, LI-rTMS n = 8) to assess
RGC survival and axonal regeneration. In cohort 2 (n = 20), mice received 7 days of stimulation
to assess changes in BDNF concentrations with or without an optic nerve crush. Such that
there were 5 animals per group (LI-rTMS + optic nerve crush, sham + optic nerve crush, LI-
rTMS without optic nerve crush and sham without optic nerve crush). An electromagnetic
pulse generator (Global Energy Medicine, WA, Australia) delivered a high frequency complex
pattern of stimulation consisting of 59.9ms trains of 20 pulses with trains repeated at 6.67Hz
for the first minute, 10.01Hz for 8 minutes and then 6.25Hz for 1 minute. This protocol was se-
lected as it mimics endogenous patterns of electrical activity in the nervous system (patent
PCT/AU 2007/00045) and has been shown to up-regulate BDNF and facilitate circuit reorgani-
sation in the visual system[10, 11] and cerebellum [26].

A custom-made coil (8mm outer diameter, consisting of 300 windings of 0.25mm copper
wire, with a steel bolt core, 16O) was used to deliver LI-rTMS [10] to the operated eye. Magnet-
ic field strength was measured with a Hall Effect probe (Honeywell SS94A2D, USA). Magnetic
field strength decreased with distance from 12mT at the base of the coil to 1.8mT at a distance
of 8mm from the coil base. Therefore we estimate the magnetic field strength in the orbital area
ranged from 7.4 to 1.8mT. Conscious animals were stimulated under light manual restraint, to
avoid possible confounding effects of anaesthetic as opposing effects of rTMS have been ob-
served under anaesthesia (i.e. rTMS down-regulates BDNF in anaesthetised animals) [12]. Ani-
mals were placed head first into a small clear conical cylinder with a breathing hole at the end
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and were habituated to handling and restraint for a week prior to experimentation. Stimulation
was delivered through the plastic cylinder, such that the coil was placed directly on the cylinder,
immediately over the eye. We have previously shown the coils do not generate vibration [31]
and the plastic does not impede the magnetic field.

Tissue preparation
24 hours after the last stimulation, mice were terminally anaesthetised with 160mg/kg penta-
barbitone sodium and transcardially perfused with 0.9% saline followed by 100mL of 4% para-
formaldehyde in 0.1M phosphate buffer (pH 7.2). The left eye with optic nerve was dissected
and separated at the optic head. Left eyes were enucleated and whole retinas dissected from the
sclera. Retinas were post fixed for 12 hours in fixative solution and stored in PBS with 0.01%
sodium azide prior to immunohistochemical analysis. Optic nerves were post fixed in fixative
solution and transferred into 30% sucrose in PBS at 4°C for 48 hours. Optic nerves were em-
bedded in optimum cutting temperature medium (Sakura, OH, USA) at -20°C. A Leica
CM1900 cryostat was used to cut 14μm transverse sections that were thaw mounted onto gela-
tin coated glass slides for immunohistochemical analysis.

Immunohistochemistry
RGC survival and axonal growth was evaluated in the retina and optic nerve, respectively. Reti-
nas were processed free-floating and permeabilised with 0.2% Triton in 0.1M PBS followed by
blocking with 10% donkey serum in 0.2% bovine serum albumin (Sigma Aldrich, MO, USA) in
0.1M PBS. Retinas were incubated with for β-3 tubulin primary antibody (1:1000 monoclonal
mouse) (Merck Millipore, VIC, Australia) at 4°C for 24 hours. Following 3 rinses in PBS, reti-
nas were incubated with Alexafluor-488 donkey anti-mouse IgG (Life Technologies, VIC, Aus-
tralia) at room temperature for 4 hours. After three 10 minute washes in PBS, retinas were
flattened onto glass slides and cover-slipped with Fluoromount-G (Sigma Aldrich, MO, USA).

Axonal regrowth of RGC axons was assessed in the optic nerve using growth associated pro-
tein 43 (GAP43) immunohistochemistry[32, 33]. Optic nerve sections were permeablised and
blocked as described above and incubated with GAP43 primary antibody (1:1000 monoclonal

Fig 1. Diagrammatic representation of the study design.Mice received an optic nerve crush and were separated into two cohorts for (i) daily LI-rTMS or
sham stimulation and assessed for RGC survival and axonal regeneration (2 weeks survival) (ii) quantification of BDNF levels by ELISA (1 week survival).
With the second cohort, additional control groups of intact mice with no optic nerve crush were processed in parallel for BDNF analysis with the same LI-
rTMS or sham stimulation parameters.

doi:10.1371/journal.pone.0126949.g001

rTMS in CNS Regeneration

PLOS ONE | DOI:10.1371/journal.pone.0126949 May 20, 2015 4 / 13



mouse) (Merck Millipore, VIC, Australia) at 4°C for 24 hours. Following washes in PBS, optic
nerve sections were incubated with Alexafluor-488 donkey anti-mouse IgG at room tempera-
ture for 4 hours, washed with PBS and cover-slipped as described above. GAP43 immunofluo-
rescence was analysed with fluorescence microscopy (Nikon Eclipse 80i, 40x objective) (LMG
Scientific Services, WA, Australia).

Stereological analysis of retinal wholemounts. Retinal wholemounts were analysed with
the optical fractionator method to estimate the number of β-3 tubulin positive RGCs [34].
Wholemount outlines were digitised on a microscope (Olympus BX50, 10x objective),
equipped with a motorised stage, and analysed with Stereoinvestigator software (MicroBright-
Field, VT, USA) (20x objective). RGCs were counted in a 150x150μm frame. Counting frames
were placed systematically within a grid to achieve approximately 200 counting sites, covering
approximately 25% of the total area of each retina. Extrapolated RGC populations were divided
by retinal wholemount area and remaining RGCs (survival) expressed as RGC/mm2.

Enzyme- Linked Immunosorbent Assay (ELISA) and Protein Assay
24 hours after the last stimulation, retinas and optic nerves were dissected from freshly eutha-
nised mice (crush + sham, crush + LI-rTMS, non-injured + sham, non-injured + LI- rTMS)
and stored at -80°C. Samples were homogenised in 1mL of lysis buffer[35] (100 mM PIPES pH
7, 500 mMNaCl, 0.2% Triton X-100, 2mM EDTA) with mini protease inhibitor tablets (Roche
Biochemicals, IN, USA)(1 tablet added per 10ml buffer). Lysates were centrifuged (3320 x g at
4°C for 1 hour) to collect resulting supernatants. Supernatants were analysed by ELISA for
BDNF as per manufacturer’s instructions (ChemiKine BDNF Sandwich ELISA, Chemicon In-
ternational Inc., CA, USA). In addition, supernatants were analysed for total protein content
(Pierce BCA Protein Assay Kit, Thermo Fisher Scientific, IL, USA, as per manufacturer’s in-
structions). Supernatant BDNF concentrations were normalised to supernatant total protein
content for analyses and expressed as a percentage of the sham group for analyses.

Statistical Analysis
Statistical analyses were performed with SPSS (version 20, IBM, NY, USA). Normal distribu-
tion and homogeneity of variance were verified before running parametric analyses. All means
are presented with their respective standard error of the mean (i.e. mean ± SEM). Analyses
were conducted on RGC survival (unpaired t-test) and BDNF concentrations (two-way be-
tween subjects ANOVA with Sidak corrected post-hoc tests). Results were classified as signifi-
cant if p<0.05.

Results

LI-rTMS does not increase RGC survival
To investigate whether 14 days of LI-rTMS could induce neuroprotection and cell survival, we
characterised the number of surviving RGCs at 15 days post optic nerve crush injury (Table 1).
Normal intact C57Bl/6J mice have roughly 4000 RGCs per mm2 and cell counts suggest fewer
than 10% of RGCs survived the optic nerve crush, with no significant difference in remaining
RGCs between sham and LI-rTMS (t = (12) = 1.12, p = 0.284).

LI-rTMS does not induce RGC axon regeneration
To assess whether any regenerating RGC axons were present, transverse sections of the optic
nerves were labelled using GAP43 immunohistochemistry (Fig 2). No GAP43 labelling was
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present on either side of the crush site in sham or LI-rTMS groups, indicating no axon regener-
ation distal or proximal to the crush site.

LI-rTMS does not increase BDNF in the retina or optic nerve
To investigate whether LI-rTMS up-regulates BDNF in intact and injured mice, retinas and optic
nerves were collected for BDNF ELISA analysis (Table 1 and Fig 3). For retinal tissue, there was
no significant difference between stimulation condition (sham vs. LI-rTMS) (F[1,16] = 1.919
p = 0.185) or between injury groups (non-injured vs. injured) (F[1,16] = 2.680, p = 0.121).
Furthermore, there was no significant interaction between stimulation and injury conditions
(F[1,16] = 0.209, p = 0.653). As we hypothesised a priori that LI-rTMS would up-regulate BDNF
compared to sham, despite the non-significant main effect, we conducted Sidak-corrected post-
hocs, restricted to comparisons between LI-rTMS and sham, which confirmed mean retinal
BDNF concentrations were not significantly different between sham and LI-rTMS treated ani-
mals in either the non-injured (p = 0.771) and injured (p = 0.377) groups.

Similarly, in optic nerve tissue, there was no significant difference between stimulation con-
ditions (F[1,16] = 0.199, p = 0.661) or injury groups (F[1,16] = 1.056, p = 0.319). There was no
significant interaction between stimulation and injury conditions (F[1,16] = 1.626, p = 0.220).
Follow up Sidak-corrected post-hocs confirmed no significant difference in the mean optic
nerve BDNF concentrations between sham and LI-rTMS treated animals in the non-injured
(p = 0.424) and injured (p = 0.820) groups.

Discussion
Non-invasive brain stimulation techniques, and in particular rTMS, have become an increas-
ingly common experimental treatment for neurological and psychiatric disorders. However,
the extent to which rTMS can be used in the treatment of neurotrauma has not been well char-
acterised. Our results show that, unlike in other visual brain regions examined previously (visu-
al system:[10, 11]; cerebellum [26]), LI-rTMS did not up-regulate BDNF levels in either the
intact or injured retina or in the optic nerve, and this was associated with a lack of pro-survival
or pro-regenerative effects following injury. The implication is that different brain regions re-
spond differently to LI-rTMS and it will be important to characterise these specific cellular and
molecular responses in order to determine relevant and optimised use of electromagnetic stim-
ulation for neural repair.

Table 1. RGC survival and BDNF concentrations following stimulation.

Group + stimulation Tissue RGC/mm2 BDNF % of total protein (x10-5)*

non-injured + sham Retina �4000 [36] 1.26±0.05

Optic Nerve - 2.28±0.23

non-injured + LI-rTMS Retina - 1.34±0.008

Optic Nerve - 2.80±0.33

optic nerve crush + sham Retina 237.2±60.33 1.37±.088

Optic Nerve - 2.97±0.34

optic nerve crush + LI-rTMS Retina 335.4±60.74 1.53±0.12

Optic Nerve - 2.72±0.29

Mean (±SEM) RGC survival and BDNF concentrations following sham or LI-rTMS.

NOTE: RGC survival was quantified following 14 days of stimulation and BDNF was quantified following 7

days of stimulation (*).

doi:10.1371/journal.pone.0126949.t001
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Does intensity matter?
Typically, rTMS is delivered with commercial human sized coils using high intensity field
strengths (�1T) in both human and animal studies. However, in small animal studies, particu-
larly rodents, a large coil to brain size ratio results in stimulation of the entire brain, if not the
whole animal, reducing efficiency of the magnetic field [36]. This study delivered LI-rTMS
through a custom coil (8mm outer diameter) which allowed for greater focality [10] at the ex-
pense of intensity (12mT: approximately 3 orders of magnitude lower than clinical intensities).
Therefore, although our results suggest LI-rTMS does not promote cell survival or regenera-
tion, it is possible that high intensity stimulation may have more powerful effects.

The impact of stimulation intensity on neural repair can be directly observed in two studies
using rTMS or LI-rTMS in the same rat model of ischaemic stroke. One week of stimulation
using a human coil resulted in a significant decrease in the lesion size after ischaemic stroke
and improvement in motor behaviour [17]. By contrast, stimulation with LI-rTMS at the same
frequency, although for a shorter duration, did not result in similar benefits [37]. The impor-
tance of stimulation intensity was further highlighted in studies of direct electrical stimulation,
in which stimulation with 30 to 70μA, but not 20μA increased RGC survival following an optic

Fig 2. LI-rTMS does not affect RGC survival or axonal regeneration following optic nerve crush. A: photomicrograph showing RGCs immunolabelled
with β3 tubulin following an optic nerve crush and 2 weeks of daily LI-rTMS. Scale bar is 100 μm. B: Histogram showing counts of surviving RGCs in LI-rTMS
and sham stimulated retinas 2 weeks following an optic nerve crush. There was no significant difference between the stimulation groups (p = 0.256). Error
bars are standard error of the mean. C, D: GAP-43 immunohistochemistry in the proximal (C) and distal (D) optic nerve did not result in labelling of any axons.
The crush site is indicated by *. Scale bar 100 μm

doi:10.1371/journal.pone.0126949.g002
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nerve transection [24]. Consistent with the different outcomes, there is evidence that rTMS
and LI-rTMS activate different mechanisms: high intensity rTMS elicits activation of neural
circuits via synaptic plasticity [8, 38] whereas LI-rTMS is subthreshold and exerts its effects by
altering membrane potential and neuronal intracellular calcium concentrations without elicit-
ing action potentials [31]. Therefore it may be that lower intensities are sufficient to promote
circuit reorganisation in intact tissue but higher intensities are required for neuroprotection.

LI-rTMS effects may be brain region specific
The cellular mechanisms activated by rTMS and LI-rTMS are poorly understood, but one fac-
tor that is commonly detected is up-regulation of BDNF, regardless of the intensity of stimula-
tion[10–13, 39]. Our previous work showed that LI-rTMS using the protocol applied here
induces structural plasticity and up-regulates BDNF in multiple visual brain centres [10, 11]
and in the lesioned olivocerebellar pathway [26]. However, in the present study, the same LI-
rTMS protocol delivered directly to the eye did not significantly alter BDNF in the retina or

Fig 3. BDNF ELISA data. Daily LI-rTMS for 1 week does not increase BDNF levels in the retina or optic nerve of optic nerve crush or intact mice (p>0.05 for
all groups; see results section). Histograms show BDNF levels as % of sham stimulated group. Error bars are standard error of the mean.

doi:10.1371/journal.pone.0126949.g003
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optic nerve following 7 days of stimulation. We chose this time-point because of the dynamics
of RGC death in our model. Following optic nerve crush, approximately 50% of RGCs survive
at one week [22, 40], whereas less than 10% remained at 2 weeks. Measuring BDNF at 1 week
therefore maximises the chances of detecting changes because the low survival rate at 2 weeks
makes a delayed up-regulation unlikely. Nonetheless, we cannot exclude the possibility that
up-regulation might have occurred before or after this time.

A possible explanation for the lack of BDNF up-regulation is that the rapid death of RGCs
and/or complete discontinuity between the retina and brain targets in our model prevented the
effects of LI-rTMS. Supporting this possibility, transcranial alternating current stimulation
(tACS) induced EEG after-effects in intact rats but not in animals with severe optic nerve dam-
age [41] and the authors suggested that their finding of 9% RGC survival following optic nerve
damage was below the threshold needed for tACS to have an effect. A similar problem may
apply to our complete optic nerve crush model (<10% RGC survival), whereby LI-rTMS failed
to induce positive effects due to too few surviving RGCs and the lack of connections to central
targets. This hypothesis is in agreement with our previous studies showing that LI-rTMS pro-
motes beneficial reorganisation of existing connections [11, 26]. Therefore less severe neuro-
trauma models may respond more effectively to LI-rTMS. Furthermore, partial lesion models
[42, 43] may help to determine if a minimum proportion of surviving RGCs and central con-
nections are needed to provide a substrate for LI-rTMS to promote survival and beneficial reor-
ganisation of spared connections.

A further consideration is that the retinofugal pathway lacks the complex excitatory and in-
hibitory circuitry of the cerebral cortex upon which rTMS is thought to act [7, 8, 44] However,
we stimulated the retina, which possesses complex regulatory inhibitory and excitatory circuits
that have been compared to those in the cortex [45] and it may therefore provide an appropri-
ate substrate for rTMS if the relevant protocols and models are established. In addition to ex-
ploring the role of magnetic field intensity, it will be therefore be important to examine the
effect of stimulation frequencies and number of pulses on cell survival and regeneration due to
possible frequency and dose-dependent effects of rTMS on complex circuitry [46–48].

Non-invasive brain stimulation techniques for treating neurotrauma
Our result that chronic LI-rTMS does not increase cell survival at 2 weeks is similar to previous
reports of other types of non-invasive brain stimulation interventions following complete optic
nerve crush injury. For example, tACS stimulation failed to increase RGC survival in the acute
phase (1 week post injury) but RGC survival was improved compared to controls at 4 weeks
post crush [22]. The authors suggest tACS may act upon the delayed mechanisms of retrograde
cell death. By contrast, another study found that transcorneal electrical stimulation (TES) re-
sulted in increased RGC survival at 1 week post optic nerve crush but this was not sustained at
2 weeks [23]. These results suggest that different non-invasive brain stimulation methods may
have diverse mechanisms of action that are effective at different times in the cell death cascade
(early vs. late phase). In one study, rTMS was delivered in the acute post stroke phase (1 hour
post stroke) and found decreased apoptosis and improved function [49]. However, stimulation
within 24 hours of an injury may be inappropriate, due to abnormal excitability observed in
the acute stages post trauma [50, 51]. Yoon and colleagues examined the use of rTMS in the
sub-acute stage (4 days post stroke) and found an increase in anti-apoptotic proteins with im-
proved behavioural function [52]. Therefore, although our results suggest that LI-rTMS is not
neuroprotective in the acute phase post injury, the impact of LI-rTMS on later stages of retro-
grade cell death should be explored, perhaps in combination with other types of electrical stim-
ulation applied acutely following injury (e.g. TES).
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Conclusion
As the mechanisms of action of non-invasive brain stimulation techniques become increasingly
well understood through human and animal studies, it is important to continue to explore the
potential for previously unconsidered therapeutic effects. The disappointing outcomes for neu-
roprotection and regeneration following LI-rTMS relative to other non-invasive brain stimula-
tion protocols suggest that LI-rTMS is not adapted to this purpose. Rather LI-rTMS may better
be applied to aid neural rehabilitation by modulating the plasticity of spared tissue after injury
[53]. Furthermore, our current and previous work suggests that LI-rTMS may still have a role
in the protection and conservation of intact RGCs after trauma, as long as these neurons retain
the ability to retrogradely transport BDNF after injury. In addition to exploring the role of
magnetic field intensity, it will be important to examine the effect of stimulation frequencies
and number of pulses on cell survival and regeneration due to possible frequency and dose-de-
pendent effects of rTMS [46–48]. In summary, the results from this study help define the thera-
peutic utility and scope of LI-rTMS treatment and suggest that although LI-rTMS can induce
plasticity in intact tissue, it does not induce neuroprotection immediately after severe neuro-
trauma. Future studies should examine the application of LI-rTMS in more acute and sub-
acute stages following neurotrauma and in less severe injury models such as partial lesions.
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