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Abstract

The dicarboxylic acid hexadecanedioate is associated with increased blood pressure (BP)

and mortality in humans and feeding it to rats raises BP. Here we aim to characterise the

molecular pathways that influence levels of hexadecanedioate linked to BP regulation,

using genetic and transcriptomic studies. The top associations for hexadecanedioate in a

genome-wide association scan (GWAS) conducted on 6447 individuals from the TwinsUK

and KORA cohorts were tested for association with BP and hypertension in the International

Consortium for BP and in a GWAS of BP extremes. Transcriptomic analyses correlating

hexadecanedioate with gene expression levels in adipose tissue in 740 TwinsUK partici-

pants were further performed. GWAS showed 242 SNPs mapping to two independent loci

achieving genome-wide significance. In rs414056 in the SCLO1B1 gene (Beta(SE) = -0.088

(0.006)P = 1.65 x 10−51, P < 1 x 10−51), the allele previously associated with increased risk

of statin associated myopathy is associated with higher hexadecanedioate levels. However

this SNP did not show association with BP or hypertension. The top SNP in the second

locus rs6663731 mapped to the intronic region of CYP4Z2P on chromosome 1 (0.045

(0.007), P = 5.49x10-11). Hexadecanedioate levels also correlate with adipose tissue gene-

expression of the 3 out of 4 CYP4 probes (P<0.05) and of alcohol dehydrogenase probes

(Beta(SE) = 0.12(0.02); P = 6.04x10-11). High circulating levels of hexadecanedioate deter-

mine a significant effect of alcohol intake on BP (SBP: 1.12(0.34), P = 0.001; DBP: 0.70

(0.22), P = 0.002), while no effect is seen in the lower hexadecanedioate level group. In con-

clusion, levels in fat of ADH1A, ADH1B and CYP4 encoding enzymes in the omega oxida-

tion pathway, are correlated with hexadecanedioate levels. Hexadecanedioate appears to

regulate the effect of alcohol on BP.
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Introduction

Hypertension represents a major global disease burden, but discovering pathways for blood

pressure (BP) regulation has been challenging. A number of recent studies by our group and

others have found several metabolites to be correlated with BP [1–4]. Circulating levels of the

dicarboxylic fatty acid hexadecanedioate are associated with increased BP in three independent

cohorts and are linked to increased risk of mortality. Evidence for a causal role was obtained

by feeding this compound to rats resulting in significant increases in BP, indicating that it is

not a by-product, but a cause of high BP [2]. In addition, a recent study has shown a significant

effect of hexadecanedioate on incident heart failure which appeared to be causal [5]. Hexade-

canedioate is a by-product of omega oxidation of fatty acids, a minor pathway for fatty acid

oxidation used when beta oxidation is deficient. The second step is carried out by the enzyme

alcohol dehydrogenase. However, the underlying determinants of its variation are still

unknown.

We hypothesized that identifying the genetic contribution to circulating levels of hexadeca-

nedioate and genes whose expression is highly correlated to this compound should reveal some

of the pathways defining the regulation and pathology of how hexadecanedioate affects BP.

Methods

The study participants were twins enrolled in the TwinsUK Registry, a national register of

adult twins recruited via media campaigns without selecting for any particular disease and

phenotype [6].

Genome-wide association

Here we dissected the hexadecanedioate genome-wide association scan (GWAS) data that was

previously generated and published as part of our GWAS-metabolomics study[7]. Briefly, non

targeted mass spec metabolomic profiling and quantification was conducted on fasting serum

and plasma samples by the metabolomics provider Metabolon, Inc. (Durham, NC, USA) [8].

GWAS (in the HapMap 2–based imputed genotype data set) was conducted on 6056 individu-

als from TwinsUK and 1768 from KORA as previously described [7]. Association results were

combined in Metal[9] using inverse variance meta-analysis based on effect size estimates and

standard errors, adjusting for genomic control.

We tested the multiple single nucleotide polymorphisms (SNPs) associated with hexadeca-

nedioate for association with BP in the International Consortium for Blood Pressure (ICBP)

[10] and with hypertension in the BP-extreme GWAS [11] study. Briefly, the ICBP consortium

is an international effort to investigate BP genetics. The consortium was formed by two parent

consortia, the CHARGE-BP consortium (Cohorts for Heart and Aging Research in Genomic

Epidemiology—blood pressure) and the GBPGEN consortium (Global Blood Pressure Genet-

ics Consortium). The BP-extreme GWAS consists of 1621 hypertensive cases and 1699 con-

trols from respectively the top 2% and the lower 9.2% of the BP distribution of the Swedish

population [11].

Gene expression

The association of hexadecanedioate with gene-expression levels in fat and lymphoblastoid cell

line (LCL) was tested in 740 females from the TwinsUK cohort using random intercept linear

regression after adjusting for age, BMI, metabolite batch, expression batch and family related-

ness. Gene expression was analysed with the Illumina Human HT-12 V310 as previously

reported[12].
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Post-genomic functional analysis

Post-genomic functional analysis was undertaken using the Database for Annotation, Visuali-

zation and Integrated Discovery (DAVID) [13]. This is an online tool to which a list of genes

can be submitted and subsequently results are generated regarding the genes’ involvement in

biological processes [13]. The gene list was comprised of genes corresponding to all SNPs with

a P value of p<0.0001 in the GWAS analysis. The BioCarta and Kegg pathways maps were

used for functional annotation.

Pathway analysis

Pathway analysis was carried out on the microarray results using a list of genes corresponding

to probes with p values less than P<0.00002 (n = 52).

Association with alcohol intake

We assessed the association between alcohol intake (measured via Food Frequency Question-

naire) and BP stratifying by hexadecanedioate levels by using random linear regression adjust-

ing for age, age2, BMI and family relatedness.

The study was approved by St. Thomas’ Hospital Research Ethics Committee. All partici-

pants provided informed written consent.

TwinsUK metabolomics, and phenotypic data are publicly available upon request on the

department website (http://www.twinsuk.ac.uk/data-access/accessmanagement/).

Results

The flowchart of the study design is depicted in Fig 1.

Genetics

The results of the GWAS study from our previously published metabolomics GWAS [7]are

presented in Fig 2. 242 SNPs are associated with circulating levels of hexadecanedioate achiev-

ing genome-wide significance (P<5x10-8)[7]. All these SNPs map to two genes: the Solute Car-

rier Organic Anion Transporter Family, Member 1B1 (SLCO1B1) on chromosome 12 and a

cytochrome 4 cluster on chromosome 1 which contains the genes CYP4A11, CYP4B1 and
CYP4Z2P. The locus plots of SLCO1B1 and the CYP4 cluster are presented in Fig 3(i) and 3(ii)

respectively.

Among the top SNPs, rs4149056 is a non-synonymous polymorphism on the SLCO1B1
gene on chromosome 12 (Beta(SE) = -0.088(0.006)P = 1.65 x 10−51), encoding an Val174Ala

amino acid change. This SNP did not show association with BP[10] or hypertension (HTN)

[11]. The hexadecanedioate increasing allele of this SNP has previously been associated with

statin related myopathy [14], so we further tested whether concomitant use of statins was asso-

ciated with different levels of hexadecanedioate. We find that use of statins correlates with sig-

nificantly lower levels of hexadecanedioate (-0.157(0.07), P = 0.0347) which remains

essentially unchanged if adjusted for SBP (-0.156(0.07), P = 0.0319).

SNP rs11045656 on SLCO1B1 showed nominal association with HTN (Beta(SE) = 0.06

(0.03), P = 0.02) in the GWAS of BP extremes (Table 1)[11].

A SNP in SLCO1B1, monomorphic in Caucasians, has also been implicated in both levels of

hexadecanedioate and risk heart failure in African Americans [5].

The top SNP in the second locus rs6663731 mapped to the intronic region of CYP4Z2P on

chromosome 1 (0.045(0.007), P = 5.49x10-11). No association with HTN was detected for the

SNPs mapping to the cytochrome 4 cluster. However, circulating levels of hexadecanedioate
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correlate with adipose tissue gene-expression levels of probes mapping to CYP4B1 and

CYP4Z2P (S1 Table). No probes mapping to CYP4A11 passed quality control in our gene

expression data.

Gene expression

Gene expression in 740 abdominal fat and LCL samples from the TwinsUK cohort were tested

for association with hexadecanedioate levels. 23 gene transcripts showed significant association

with hexadecanedioate levels in fat after adjusting for multiple testing (Bonferroni P = 0.05/

[23644 probes x 2 tissues] = 1x10-6). The top association is with the Alcohol Dehydrogenase 1B

(Class I), Beta Polypeptide (ADH1B) gene on chromosome 4. SNPs on the gene are also associ-

ated with circulating hexadecanedioate levels in our metabolomics GWAS [7]. No significant

associations were observed in LCL tissue. The significant expression results from the analysis

of fat samples are presented in Table 2.

Association with alcohol intake

Because genetic variants at the ADH1B gene have been implicated in alcohol induced HTN

[15], we explored the association of alcohol and hexadecanedioate on BP in the TwinsUK data-

set. We first assessed whether alcohol intake influenced the effect of hexadecanedioate on BP.

After adjusting for alcohol consumption (in a log scale) age, age2, BMI, family relationship, we

Fig 1. Flowchart of the study design.

https://doi.org/10.1371/journal.pone.0175479.g001
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find that circulating levels of hexadecanedioate are significantly associated with both SBP (Beta

(SE) = 1.30(0.29),P = 1.1x 10−5) and DBP (0.74(0.19), P = 7.5x 10−5) supporting our previous

findings. Overall alcohol consumption is significantly associated with SBP and DBP after

adjusting for covariates (SBP:0.54(0.19), P = 6.2x10-3) and DBP (0.49(0.13, P = 2.6x10-4). How-

ever when stratifying for hexadecanededioate levels, the association between alcohol and BP is

present in the individuals in the top tertiles of hexadecanedioate circulating levels (SBP: 1.12

(0.34), P = 0.001; DBP: 0.70(0.22), P = 0.002). On the other hand the level of alcohol intake has

no influence on the association between hexadecanedioate levels and BP in those with low hex-

adecanedioate levels (Table 3). When we stratified the cohort into participants who drink 1

standard alcohol drink per day or less (14 g per day) and those who drink more we find that

the effect of hexadecanedioate on blood pressure is the same regardless of alcohol intake (low

alcohol: 1.30(0.32, P = 4.5x10-5; high alcohol: 1.30(0.36), P = 3.2x10-4).

This result suggests that high levels of hexadecanedioate may be indicating a dysfunction or

a saturation of enzymatic pathways within the liver related to alcohol metabolism.

Pathway analysis

The results of this analysis in the TwinsUK dataset(see S2 Table shows some functional cluster-

ing of genes, particularly relating to cytoskeleton organisation, cell motility, migration and

projection as well as regulation of apoptosis all of which have been involved in endothelial

Fig 2. Manhattan plot showing genome-wide P values from association analysis of hexadecanedioate in the TwinsUK-KORA

meta-analysis. The y axis shows the −log10 P values of SNPs, and the x axis shows their chromosomal positions.

https://doi.org/10.1371/journal.pone.0175479.g002
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dysfunction. However after applying a Benjamini correction, for multiple tests none of these P
values remained significant (see S2 Table).

Discussion

In this study we investigated some of the molecular pathways underlying the fatty acid hexade-

canedioate. Exploting our previously published metabolomics GWAS[7], we identified two

loci, mapping to SLCO1B1 and to the cluster encoding CYP4 genes strongly associated to cir-

culating levels of hexadecanedioate with 242 SNPs passing Bonferroni correction for multiple

testing.

Our gene-expression analyses show that circulating levels of hexadecanedioate are nomi-

nally correlated with adipose tissue levels of probes mapping to CYP4B1 and CYP4Z2P. The

fact that CYP cluster genes correlate with hexadecanedioate but do not reach significance for

over-expression may suggest that such over-expression may be occurring in other (not investi-

gated) tissues in which their functions regarding blood pressure are more important (e.g., ves-

sels or kidney). The alcohol dehydrogenase 1B (class I), beta polypeptide (ADH1B) is however

the strongest gene whose expression is associated with hexadecenedioate after adjusting for

multiple testing. Although the effect of hexadecanedioate on BP remains unvaried after

Fig 3. Association plot of the genomic region around (i) SLCO1B1, (ii) CYP4B1 and (iii)ADH1B showing both type and imputed

SNPs with location of genes and recombination rate. P values of SNPs are plotted (as −log10 P) against their physical position on the

chromosomes (NCBI Build 36). Estimated recombination rates from the HapMap CEU population show the local LD structure. The color of

each SNP indicates linkage disequilibrium with the index SNP (rs4149056 or rs6663731 or rs1693457 respectively) based on pairwise r2

values from HapMap CEU data.

https://doi.org/10.1371/journal.pone.0175479.g003
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adjustment for alcohol intake [2] these data suggest that there may be an important interaction

between alcohol intake and hexadecandenedioate levels with regards to their effect on BP.

SLCO1B1

The strongest genetic association seen with hexadecanedioate maps to SLCO1B1, an associa-

tion previously reported [16, 17] in a metabolome-wide genetic study in Caucasians[17] and

also in African Americans [5].

The SLCO1B1 gene encodes OATP1B1, (also named OATP2, OATP-C and LST-1) which is

mainly expressed on the sinusoidal membrane of human hepatocytes. Substrates of OATP1B1

include endogenous organic anions such bilirubin, estradiol, prostaglandin 2, leukotrienes C4

and thyroxine, and structurally diverse drugs, such as statins, antibiotics (Rifampicin) antivi-

rals (Saquinavir) and some anti-hypertensive drugs (valsartan)[18].

The functional variants that causes reduced function of OATP1B1 and identified as increas-

ing the risk of statin myopathy (rs414056 and rs4363657 and variants in linkage disequilibrium

with them) are the most strongly associated with higher levels of hexadecanedioate.

We find no convincing evidence of an association between variants in SLCO1B1 with HTN

or BP in the two GWAS that we tested [10, 11].This lack of association is not due to lack of

power: the ICBP GWAS is sufficiently powered to detect effects as those expected (0.4 mm Hg

per allele) yet we failed to see a significant association with the hexadecanedioate associated

SNPs in Caucasians. The effect of the variant allele at rs4149056 is -0.087, the effect of each SD

of hexadecanedioate is 1.3 mm Hg per SD of hexadecanedioate. Therefore we expect an effect

of 0.44 mmHg per allele difference in rs4149056 if hexadecanedioate is causative of blood

Table 1. Association between SNPs in the SLCO1B1 gene and CYP4 cluster and hexadecanedioate levels in the meta analysis carried out by Shin

et al (2014)[7], in the extremes of BP carried out by Padmanabhan et al (2010)[11], in the ICBP consortium GWAS(2011)[10] and with risk of statin

associated myopathy as reported (SEARCH collaborative group 2008)[14].

Gene SNP EA hexadecanedioate-TUK

KORA meta-analysis Nat Gen

HTN extreme GWAS ICBP Risk of statin associated

myopathy

BETA SE P BETA SE P BETA SE P BETA SE P

SLCO1B1 rs4149056 T -0.088 0.006 1.65x10-51 -0.006 0.031 0.86 -0.12 0.13 0.34* -1.51 0.258 4.0x10-9

rs2900478 A 0.087 0.006 2.02x10-50 0.022 0.029 0.50

rs7969341 A -0.086 0.006 2.67x10-49 -0.022 0.029 0.50

rs4363657 T -0.085 0.006 3.92x10-48 -0.022 0.029 0.49 -1.51 0.258 4.0x10-9

rs4149081 A 0.084 0.006 9.67x10-48 0.021 0.029 0.50

rs11045879 T -0.084 0.006 1.56x10-47 -0.022 0.029 0.49

rs2199680 A -0.084 0.006 4.52x10-47 -0.018 0.029 0.57

rs12366582 A -0.083 0.006 2.28x10-46 -0.019 0.029 0.55

rs12369881 A 0.083 0.006 2.28x10-46 0.019 0.029 0.54

rs12371604 T -0.069 0.005 2.85x10-42 -0.002 0.026 0.96

rs4149054 A 0.054 0.005 6.26x10-26 0.027 0.027 0.37

rs4149050 T -0.052 0.005 1.23x10-24 -0.027 0.027 0.37

rs4149058 A -0.052 0.005 2.06x10-24 -0.026 0.027 0.37

rs4149057 T 0.039 0.004 2.00x10-19 0.023 0.023 0.36

rs11045656 A 0.026 0.004 5.39x10-9 0.064 0.025 0.02

CYP4 rs6663731 A 0.045 0.007 5.49x10-11 0.067 0.035 0.08 -0.041 0.147 0.92

rs9332998 T 0.04 0.007 4.19x10-9 0.068 0.036 0.08 -0.002 0.148 0.99

* Beta(SE), P Value for SNP rs12317268 that is in complete LD (R2 = 1) with rs4149056

https://doi.org/10.1371/journal.pone.0175479.t001
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pressure increase. A sample size of 42,672 individuals is needed to find this as statistically sig-

nificant with p<0.05 with a MAF of 19% with 80% power, and 67161 for 94% power. The

ICBP GWAS used a samples size of 69395 individuals and hence had over 94% power to detect

the expected effect under the hypothesis that hexadecanedioate levels are causing an increase

in blood pressure. One possible explanation for this finding is that it is intracellular hexadeca-

nedioate levels that influence BP and not necessarily circulating levels The association with

SLCOB1 reflects circulating levels in large part determined by hepatic uptake of the compound

but this association may not be related to intracellular levels of hexadecanedioate.

Hexadecanedioate is a product of omega-oxidation, a secondary fatty acid oxidation path-

way. In the first step, an hydroxyl group is introduced onto the omega carbon. This reaction is

carried out by certain members of the CYP4 subfamilies or by two other CYP450 enzymes, and

the electron donor NADPH. The next step is the oxidation of the hydroxyl group to an alde-

hyde by NAD+ and is catalysed by alcohol dehydrogenase, whose subunits are encoded by

Table 2. Significant expression results for hexadecanedioate in adipocytes.

Gene Probe Beta SE P

ADH1B ilmn_1811598 0.12 0.02 6.04x10-11

GSDMB ilmn_1666206 0.12 0.02 5.55x10-10

CIDEA ilmn_1788184 0.14 0.02 8.01x10-10

CIDEA ilmn_2390318 0.13 0.02 1.03x10-9

MOCS1 ilmn_1798624 0.06 0.01 4.25x10-9

GSDMB ilmn_2347193 0.10 0.02 5.02x10-9

CEACAM1 ilmn_1716815 0.05 0.01 8.71x10-9

SFRP2 ilmn_1722898 -0.14 0.02 1.03x10-8

FAM184A ilmn_1696699 0.05 0.01 1.57x10-8

RGS17 ilmn_1725485 0.07 0.01 1.65x10-8

SLC19A3 ilmn_1716359 0.09 0.02 1.91x10-8

MAGED1 ilmn_1775522 -0.05 0.01 3.12x10-8

HDDC3 ilmn_1781638 0.05 0.01 3.27x10-8

KHDRBS3 ilmn_1691747 0.05 0.01 3.79x10-8

GLYCTK ilmn_1791222 0.09 0.02 7.24x10-8

PQLC1 ilmn_1798620 0.04 0.01 8.88x10-8

EHBP1 ilmn_1803348 -0.06 0.01 1.07x10-7

ANG ilmn_1760727 0.06 0.01 2.91x10-7

MT1M ilmn_1657435 0.06 0.01 5.23x10-7

SPSB1 ilmn_1714170 -0.07 0.01 5.66x10-7

NXNL1 ilmn_1742917 0.06 0.01 5.71x10-7

ECHDC2 ilmn_1671568 0.05 0.01 7.56x10-7

GART ilmn_1679476 0.03 0.01 8.80x10-7

https://doi.org/10.1371/journal.pone.0175479.t002

Table 3. Alcohol intake and BP stratified by hexadecanedioate levels adjusting for age, age2, BMI and family relatedness.

Hexadecanedioate SBP DBP

Beta(SE) P Beta(SE) P

Overall 0.54(0.19) 6.2x10-3 0.49(0.13) 2.6x10-4

Low tertile 0.06(0.35) 0.86 0.21(0.21) 0.84

Middle tertile 0.26(0.33) 0.44 0.45(0.23) 0.05

High tertile 1.12(0.34) 0.001 0.70(0.22) 0.002

https://doi.org/10.1371/journal.pone.0175479.t003
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genes ADH1A, ADH1B nad ADH1C[19]. The third step is the oxidation of the aldehyde group

to a carboxylic acid by NAD+. The product of this step is a fatty acid with a carboxyl group at

each end, i.e. a dicarboxylic fatty acid, such as hexadecanedioate[20].

CYP4A11 / CYP4B1/ CYP4Z2P

The second strongest genes to be statistically associated with hexadecanedioate are the Cyto-

chromes CYP4A11, CYP4B1 and CYP4Z2P on chromosome 1 as shown in Fig 2(ii).

CYP4B1 has been shown to be involved in prostaglandin metabolism[21] through the pro-

duction of 12-hydroxyeicosatrienoic acid (12-HETE), a potent inflammatory and angiogenic

eicosanoid.

In rodent models, decreased expression of CYP4A results in increased epithelial sodium

channel (ENaC) activity and salt-sensitive hypertension.

Increased CYP4Z2P- along with the functional CYP4Z1-3’UTR expression has been shown

to promote tumor angiogenesis in breast cancer partly via miRNA-dependent activation of

PI3K/Akt and ERK1/2[22]. This is relevant to BP regulation as apoptosis of endothelial cells is

involved in endothelial dysfunction and the resulting vascular disease. In addition, the mRNA

of the CYP4Z2P pseudogene has been shown to be expressed in tissues that play a role in car-

diovascular regulation such as brain, heart arteries, kidney and adrenals[23]. It is possible that

genetic variation at the CYPZ2P gene may be influencing apoptosis of endothelial cells or

other cells via MAP kinases and PI3K. Hence, there may be a link between endothelial dys-

function and hexadecanedioate levels and the regulation of the two may be linked via the

CYP4 encoded molecules or actions.

ADH1B

The gene whose expression is most strongly associated with regards to hexadecanedioate is

ADH1B(0.12(0.02), P = 6.04x10-11). In addition also gene expression levels of ADH1A are asso-

ciated with hexadecanedioate levels (0.09(0.02), P = 1.19x10-6). These genes encode the second

enzyme in the omega oxidation making this association logical. It further suggests that study

of the relationships between alcohol, hypertension and hexadecanedioate is needed. We also

find significant associations between circulating levels of hexadecanedioate and 3 SNPs on the

ADH1B gene (P<0.0005) as shown in Fig 3(iii). This suggests that ADH1B is implicated in

hexadecanedioate regulation. Though we find no association between SNPs on ADH1B in

hypertension and no association has been reported in Caucasians, a role for ADH1B in hyper-

tension has been found in Japanese men[15]. Here we report that hexadecanedioate appears to

influence the role of alcohol on BP, but the opposite is not true and the association of hexade-

canedioate is independent of alcohol intake.

Both cross-sectional and prospective epidemiological studies have established a relationship

between hypertension and alcohol consumption [24, 25]. Excessive alcohol use can increase

BP and cause antihypertensive drug resistance in a dose-dependent manner [26]. The mecha-

nism(s) by which ethanol consumption leads to elevations in blood pressure is uncertain.

However, the available data in humans are not sufficient to allow substantive conclusions [27].

Limitation of daily ethanol intake to no more than 1 ounce (30 mL) of 40% ethanol for most

men and 0.5 ounces for women and smaller men results in little blood pressure effect [27]. In

some cases, BP control is extremely difficult without total abstinence.

Our finding that alcohol intake has a much stronger effect in individuals with high hexade-

canedioate may have therapeutic implications for the treatment of alcohol-induced hyperten-

sion suggesting that the strategies for reducing blood pressure may be different depending on

the subject’s hexadecanedioate levels.
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In conclusion, all three genes identified in this study as strongly associated with levels of

hexadecanedioate have been previously linked to hypertension, but this association is not

strong, or not present in Caucasians. Some of the effects previously reported (in other ethnic

groups or in small studies) between ADH1B, SLCOB1 and CYPB4A11 and BP may be due to

their link to hexadecanedioate. SLCOB1 appears not to be associated with BP in spite of its

very strong association with hexadecanedioate levels. Our data lend support to the use of inter-

mediate phenotypes, in this case, a metabolite that contributes to BP regulation, to understand

some of the pathways involved in BP regulation and cardiovascular risk.
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