
Database update

The Virtual Xenbase: transitioning an online

bioinformatics resource to a private cloud

Kamran Karimi and Peter D. Vize*

Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, Alberta,

Canada, T2N 1N4

*Corresponding author: Tel: 403-220-8502; Fax: (403) 289-9311; Email: kkarimi@ucalgary.ca; pvize@ucalgary.ca

Citation details: Karimi,K. and Vize,P.D. The Virtual Xenbase: transitioning an online bioinformatics resource to a private

cloud. Database (2014) Vol. 2014: article ID bau108; doi:10.1093/database/bau108

Received 22 August 2014; Revised 22 September 2014; Accepted 8 October 2014

Abstract

As a model organism database, Xenbase has been providing informatics and genomic

data on Xenopus (Silurana) tropicalis and Xenopus laevis frogs for more than a decade.

The Xenbase database contains curated, as well as community-contributed and automat-

ically harvested literature, gene and genomic data. A GBrowse genome browser, a

BLASTþ server and stock center support are available on the site. When this resource

was first built, all software services and components in Xenbase ran on a single physical

server, with inherent reliability, scalability and inter-dependence issues. Recent advances

in networking and virtualization techniques allowed us to move Xenbase to a virtual

environment, and more specifically to a private cloud. To do so we decoupled the differ-

ent software services and components, such that each would run on a different virtual

machine. In the process, we also upgraded many of the components. The resulting

system is faster and more reliable. System maintenance is easier, as individual virtual

machines can now be updated, backed up and changed independently. We are also

experiencing more effective resource allocation and utilization.

Database URL: www.xenbase.org

Introduction

Xenbase (www.xenbase.org) is a model organism database

(MOD) dedicated to supporting research on the South

African clawed frog, Xenopus laevis, and its close relative

Xenopus (Silurana) tropicalis, both of which are important

systems for performing biomedical research (1, 2). Our

goal has been to create a comprehensive resource that

researchers can use to obtain the latest relevant data

necessary to interpret their experimental results and to

plan new experiments. Xenbase collects and makes avail-

able scientific literature, gene and genomic data from dif-

ferent sources, including, but not limited to, the National

Center for Biotechnology Information, Unigene and

Online Mendelian Inheritance in Man (OMIM) and the

Joint Genome Institute (1). Data are imported through

various pipelines, mined for content with automated

VC The Author(s) 2014. Published by Oxford University Press. Page 1 of 6
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

(page number not for citation purposes)

Database, 2014, 1–6

doi: 10.1093/database/bau108

Database update

www.xenbase.org
www.xenbase.org
,
 (NCBI)
including 
,
 (JGI)
via 
http://www.oxfordjournals.org/


systems and annotated by a team of professional data

curators. Approximately, 1000 individual users access

Xenbase services each day.

Community contributions are also supported, and

Xenbase enables Xenopus researchers to communicate and

collaborate using personal and laboratory profiles, as well

as job openings and news announcements. Xenbase offers

a GBrowse genome browser (3), as well as a BLASTþ (4)

server and the text-mining system Textpresso (5). A variety

of software enables these processes, including DB2 and

MySQL databases, WebSphere application server and Perl.

The application layer is written in Java and the HTTP ser-

ver is Apache. All of these components run on the RedHat

Enterprise Linux (RHEL) Operating System (OS).

Xenbase’s database has been increasing in size continu-

ously. Within the past 12 months, the compressed database

has grown from about 33 GB to about 50 GB, and we ex-

pect this trend to continue. Reasons include the addition of

more of the existing data types (publications, genome data,

etc.) as well as new data types (morpholinos, OMIM data,

etc.). We are also continuously adding new images, which

has a big effect of database size. As concrete examples, the

database currently contains more than 45 000 publica-

tions. It has more than 15 800 gene pages, of which 1835

have community submitted images, and 1972 have litera-

ture images. We have recently added tropicalis 8.0 and

laevis 7.1 genome support, while continuing to maintain

the older tropicalis 7.1 and 4.1, as well as laevis 6.0

genomes.

Originally all these components were running on a sin-

gle server. This had a number of inherent problems, with

the major issue being reliability and availability of service.

When one component failed for any reason, often the en-

tire system was rendered unusable and the server had to be

rebooted. Given the hardware speed and the number of

components to load, a reboot would typically take over

20 min, an unacceptable downtime for a heavily used

resource. As all the software components shared the avail-

able processors and memory, if a compute- or memory-

intensive process was active other processes could be

delayed or even fail. Another issue with this architecture

was security, as all components were as secure, or vulner-

able, as all others, and an intrusion into the system would

allow access to all components. Figure 1 below shows the

original setup, with one server responsible for running all

services except for BLAST. System monitoring was done

by running a number of scripts on a separate PC, notifying

Xenbase staff if the website was not responsive.

One advantage of running all these components on a

single server is the ease of integration. For example,

importing and exporting data between the database

and other components would only require a local copy.

Data exchange was thus very fast and reliable. However,

such a monolithic setup has many disadvantages. A failure

in one component would often bring down the whole sys-

tem. In addition, upgrading and updating the OS and the

user-level components was becoming more difficult with

time, as different components were evolving at different

speeds. For example, the OS was changing at a much faster

rate than some informatics resources. Certain components

were relying on older libraries, whereas others needed

newer versions. Even without the software dependency

problems, maintenance work on the old setup needed

careful planning. Bringing down one component to add

features or fix bugs would impact the whole system’s

availability.

It was clear that Xenbase’s monolithic design was

approaching its limits. We needed to be able to decouple

the services in order to maintain them separately in isolated

environments. In this article, we describe how a new vir-

tualized software architecture (6) helped us alleviate many

of our problems.

The Case for Virtualization

As outlined in the Introduction, we chose to decouple

Xenbase’s many services and run them in independent

environments. Having multiple physical servers to run the

services involves a high cost in terms of space, mainten-

ance, as well as budget. With the maturing of virtualization

technologies, the best solution was to move the services to

a number of independent virtual machines (VMs). Having

services run on separate VMs removes space concerns and

eases maintenance and resource allocation, because each

VM can have its own virtual hardware, OS, monitoring

and software libraries, without taking any physical space.

Another advantage of a virtual environment is ease of

backing up whole systems and restoring them as needed.

A VM can be exported to a file and saved in multiple

locations, enabling us to restore our setup in case of cata-

strophic hardware and software failures. Restoring from

such an exported VM backup is much faster than going

through the setup and tuning process for software

packages installed on a computer. The ability to take a

‘snapshot’ of a VM is another useful feature. Before an op-

eration with uncertain outcome, one can take a snapshot

of a VM. After the VM has changed, if need be, it can be

restored to that snapshot, effectively undoing all the

changes since the snapshot was taken.

Flexible resource allocation in a virtual environment

makes it straightforward to dynamically assign the appro-

priate computational resources to tasks. If a VM needs

more or less memory, or processors, for example, this

is achieved through the virtual environment’s control

Page 2 of 6 Database, Vol. 2014, Article ID bau108

,
,
,
,
and 
,
,
,
utes
Since 
il
paper
Section 1
,
'
'
via 


interface without any physical changes. In a real-hardware

setup, hardware under-equipping or over-equipping

occurs frequently, resulting in either insufficient perform-

ance or wasted resources. Both situations are expensive to

remedy.

A move to a virtual environment requires appropriate

hardware and software resources. In a public cloud (7)

hardware belongs to a third party, who creates VMs and

makes them available to users. Such an environment not

only removes resource management considerations from

the VM owner’s work load but also allows less control and

flexibility. The public cloud provider determines how

much actual hardware resources each VM is allocated.

As multiple VMs run on the same hardware, there is a

potential for competition for resources among the VMs,

and performance on a particular VM may vary depending

on what other VMs are doing (8).

In order to have total control over hardware resources,

one solution is using a private cloud, where all available

hardware is dedicated to a single user’s VMs. In this

case the user has access to all the computing resources, but

instead has to manage the hardware and virtualization

software. Other downsides of a private cloud include being

limited to the physical resources provided by local ma-

chines, and the cost of upgrading the hardware at the end

of its useful life. In other words, in a private cloud a single

user has to bear the costs of hardware purchase, mainten-

ance and upgrade, where as in a public cloud the

costs, as well as the resources, are shared between multiple

users.

Regardless of how a virtual environment is imple-

mented, its promise of cost savings and increase in per-

formance and availability made virtualization the best

choice for evolving Xenbase.

The Virtual Xenbase

We decided to implement a private cloud by utilizing two

IBM x3650 M4 servers, each with 96 GB of memory, and

two 2.0 GHZ 8-core hyper-threaded Intel Xeon E5-2650

Figure 1. Xenbase’s original hardware setup and data transfer connections. All services except for BLAST were running on a single server.

Database, Vol. 2014, Article ID bau108 Page 3 of 6

,
Since 
,


CPUs, for a total of 32 hyper-threaded cores. The servers

share about 10 TB of RAID 10 and RAID 5 disk storage.

VMware vSphere 5.1 was chosen as the virtualization

engine. The servers were installed in state-of-the-art server

rooms at the University of Calgary Information

Technologies (IT) department and professionally managed.

VMware was set up to provide transparent VM monitoring

and load sharing. The VMware installation was also man-

aged by the staff at the University of Calgary IT depart-

ment. The initial purchase costs were thus the only

hardware costs incurred by Xenbase.

We divided the major software components into a start-

ing suite of VMs, each of which had RHEL installed as

their OS. As shown in Figure 2, WebSphere Application

Server, DB2 database, FTP, Wiki and GBrowse were then

each installed in separate VMs. Additional software sys-

tems were then added to this base group of VMs as needed.

The two BLAST machines in the old setup (Figure 1) were

replaced by a single VM with 16 virtual cores and 18 GB

of memory allocated to running BLASTþ. At close to

1 TB, the DB2 VM is currently our biggest instance. Our

smaller VM instances are around 120 GB.

Virtualization can affect performance in a negative

way, but there are ways to counter that. For example,

using VMware tools, we have modified all VMs’ kernels to

make them aware of running in a virtual environment.

This allows operations such as disk access, which are more

prone to slow down in a virtual environment, to be

optimized.

Figure 2 also shows Xenbase’s new physical hardware

layout. The backup server uses internal disks to store data,

and is located in a different building for additional protec-

tion of data. The monitoring PC is also in a different loca-

tion to ensure reliable monitoring of the servers and the

network. All VMs run on the two main servers. VMs can

move between these servers automatically to balance load

Figure 2. (a) Production VMs and data transfer paths between them. The test environment contains a dedicated application server and a GBrowse VM

(not shown). (b) The new hardware setup and data transfer connections. VM are automatically assigned to servers and migrate between them.

Page 4 of 6 Database, Vol. 2014, Article ID bau108

,
,


and resource usage, and also to provide fault tolerance if

one of the servers malfunctions. Sharing the same external

disk storage between the two main servers is required for

VM migration and load balancing to be possible. Data

transfer between the main servers is done through a dedi-

cated connection to ensure maximum transfer speed inde-

pendent of network load.

Apache, WebSphere and Textpresso run on the

‘Xenbase Application’ VM, which is the point of entry into

the site. WebSphere and Apache are on the same VM be-

cause they both receive and respond to different visitor

requests for information. Textpresso is independent of

the backend database, and placing it on the same VM as

WebSphere increases response time. The VMs communi-

cate with each other through different means, including

JDBC, SSH, NFS remote mounts and SFTP. In general,

data transfer over the network can be slower than copying

data in a single system, but this is not necessarily the situ-

ation here. If two communicating VMs are running on the

same physical server, data transfer is actually done through

shared memory, which is very fast compared to a real com-

puter network. vSphere may move VMs from one physical

server to another for load balancing or failure recovery, so

one cannot make any assumptions about a VM’s location

at any given time. If the VMs are running on separate phys-

ical systems, data transfer will be done over a dedicated

connection between the servers, not the internet, so it will

still be acceptably fast. As a result, system performance

has not been negatively affected by the move to the new

architecture. For security reasons, all VMs run their own

firewalls and allow access only from trusted addresses and

ports.

Upgrading BLAST to BLASTþ and using a VM

with many more virtual cores and memory resulted in a

very noticeable increase in BLAST performance, due to the

parallel nature of the BLAST algorithm. This is the main

reason we are currently operating a single BLASTþ VM.

In a virtual environment adding more BLAST VMs is rela-

tively simple, as we can clone a VM, change the necessary

settings and add it to the system.

Monitoring the system is done by a number of scripts

that run periodically on a separate computer, located in a

different building than the main servers. Scripts typically

perform a query that requires the VMs to be functioning

properly to generate a correct return value. If the return

does not happen within a certain time limit, the scripts

inform Xenbase staff through text messages and emails.

If the problem is detected outside working hours, scripts

trigger a reboot of the problematic VM. This is to reduce

system down time as much as possible. If a problem is

detected during working hours, the affected VMs are not

rebooted, allowing the staff to diagnose and solve the

problem. Unlike the �20 min required to reboot the mono-

lithic Xenbase system, restarting VMs typically takes

<2 min.

A physical server, located in a separate building, is used

to store backups of the database, as well as copies of the

VMs. The production database is backed up every week,

whereas entire VMs are backed up every few months to en-

able recovery from a catastrophic failure that may destroy

the VM images. Xenbase is thus able to survive most

potential problems, with a maximum loss of content equal

to 7 days, and much of this can be recovered from transac-

tion logs.

We also have a separate development and test environ-

ment, available only to Xenbase personnel. This environ-

ment contains a dedicated VM that is a copy of the

production Apache/WebSphere VM, a copy of the produc-

tion GBrowse VM, and a VM dedicated for biological

data processing, used when generating custom datasets

and reports. The DB2 VM has been allocated 64 GB of

memory, and duplicating it for the test environment

would reduce the memory available for other VMs. For

this reason, two copies of the production instance of the

database, hosted in the same DB2 VM, are used for devel-

opment and testing purposes. These copies are regularly

replaced with the most current version of the production

database. This separate development and testing environ-

ment allows us to develop and test bug fixes and new

features in an environment very similar to production,

with no disruption for researchers using the Xenbase pro-

duction VMs.

Conclusions and Future Work

Concerns for scalability, reliability, performance and

maintenance caused us to move Xenbase to a virtual envir-

onment. All Xenbase resources and services are running

on VMs, making it one of the first MODs to do so. The

purchase of VMware vSphere was the only additional

software cost when moving to a virtual environment. The

main cost of the move was the time and effort spent in the

redesign of the system and establishing connections be-

tween the decoupled services. This has increased the com-

plexity of the system, but the benefits of virtualization,

including more flexibility and robustness, have outweighed

the costs. We intend to continue exploiting this and other

related technologies to improve system performance and

user experience.

Our hardware is handling all current loads well, but we

are processing and storing more data every day. Both the

volume and the complexity of our data are increasing, and

Database, Vol. 2014, Article ID bau108 Page 5 of 6

via 
,
``
''
,
,
,
via 
approximately
utes
less than
utes
virtual machine
il
virtual machine
,
virtual machine
is 


at some point our hardware resources will be insufficient

for handling Xenbase’s processing and storage demands.

Once this point is reached we need to determine whether

to move to a public cloud, as Wormbase has recently done

by moving many of its components to a cloud (9), or to up-

grade our hardware. The benefits of moving to a public

cloud, such as no initial hardware cost, and no hardware

management and maintenance expenses, must be weighed

against the advantages of a private cloud, such as dedicated

hardware with predictable performance, as well as imme-

diate access to the hardware and the infrastructure in case

of problems.

Acknowledgements
We thank Jeff B. Bowes, Jacqueline M. Lee, John B. Karpinka

and Yu Liu for their contributions to this work. We also thank the

staff at All Blue Solutions, and the staff at the University of

Calgary’s IT department for helping us with implementing our new

architecture.

Funding

National Institute of Child Health and Human Development (P41

HD064556). Funding open access charge: National Institute of

Child Health and Human Development (P41 HD064556).

References

1. Bowes,J.B., Snyder,K.A., Segerdell,E. et al. (2008) Xenbase: a

Xenopus biology and genomics resource. Nucleic Acids Res., 36,

D761–D767.

2. James-Zorn,C., Ponferrada,V.G., Jarabek,C.J. et al. (2013)

Xenbase: expansion and updates of the Xenopus model organism

database. Nucleic Acids Res., 41, D865–D870.

3. Stein,L.D., Mungall,C., Shu,S. et al. (2002) The generic genome

browser: a building block for a model organism system database.

Genome Res. 12, 1599–1610.

4. Camacho,C., Coulouris,G., Avagyan,V. et al. (2009) BLASTþ:

architecture and applications. BMC Bioinformatics, 10, 421.

5. Muller,H.M., Kenny,E.E. and Sternberg,P.W. (2004) Textpresso:

an ontology-based information retrieval and extraction system

for biological literature. PLoS Biol., 2, e309.

6. Portnoy,M. (2009) Virtualization Essentials. Sybex,

Indianapolis, IN.

7. Erl,T., Puttini,R. and Mahmood,Z. (2013) Cloud Computing:

Concepts, Technology & Architecture. Prentice Hall, Upper

Saddle River, NJ.

8. Paul,I., Yalamanchili,S. and John,L.K. (2012) The 31st

International Performance Computing and Communications

Conference (IPCCC), Dec. 2012, Austin, TX, IEEE, pp. 424–431.

9. Harris,T.W., Baran,J., Bieri,T. et al. (2014) WormBase 2014:

new views of curated biology. Nucleic Acids Res., 42,

D789–D793.

Page 6 of 6 Database, Vol. 2014, Article ID bau108

This work was supported by the 
[
]
[

