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Rate coding and phase coding are the two major coding modes seen in the brain. For

these two modes, network dynamics must either have a wide distribution of frequencies

for rate coding, or a narrow one to achieve stability in phase dynamics for phase

coding. Acetylcholine (ACh) is a potent regulator of neural excitability. Acting through

the muscarinic receptor, ACh reduces the magnitude of the potassium M-current,

a hyperpolarizing current that builds up as neurons fire. The M-current contributes

to several excitability features of neurons, becoming a major player in facilitating the

transition between Type 1 (integrator) and Type 2 (resonator) excitability. In this paper

we argue that this transition enables a dynamic switch between rate coding and phase

coding as levels of ACh release change. When a network is in a high ACh state variations

in synaptic inputs will lead to a wider distribution of firing rates across the network and this

distribution will reflect the network structure or pattern of external input to the network.

When ACh is low, network frequencies become narrowly distributed and the structure of

a network or pattern of external inputs will be represented through phase relationships

between firing neurons. This work provides insights into how modulation of neuronal

features influences network dynamics and information processing across brain states.

Keywords: acetylcholine, neuronal excitability, information coding, neuromodulation, networks

INTRODUCTION

Acetylcholine (ACh) is an important regulator of neural excitability that is essential for brain
processes ranging from sleep to cue detection (Marrosu et al., 1995; Parikh and Sarter, 2008). Of its
various effects, ACh modulates the excitability of neurons by its interaction with the muscarinic
receptor system, which activates a G-protein signaling cascade (Marrion, 1997). An important
downstream target of these signals are slow non-inactivating potassium channels. These channels,
and their corresponding ionic current (IM), are blocked when ACh is high and are responsible for
a switch between integrator and resonator excitability types (Prescott et al., 2008).
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ACh modulation of IM exerts continuous control of neuronal
excitability properties. On the extremes of this range are two
predominant excitability types: Type 1 or Type 2. These two
excitability types differ in the dynamical mechanism of spike
generation. A detailed mathematical analysis can be found
(Izhikevich, 2007), but in short Type 2 neurons have increased
competition between depolarizing and hyperpolarizing currents
which must be overcome to initiate a spike, while Type 1
neurons do not. This leads to several differences in excitability
characteristics between the two types, most notably Type 1
neurons initiate firing through a saddle-node on the limit cycle
bifurcation while Type 2 neurons initiate firing through a Hopf
bifurcation (Gutkin and Ermentrout, 1998; Gutkin et al., 2003).

The two characteristics that undergo most dramatic change
with the excitability type are the frequency response to an
injected constant current and the phase response curve (PRC)
(Stiefel et al., 2008a). In terms of spike frequency response
to an injected current curve (or a gain function) (Tsuno
et al., 2013), both types have a critical current, Ic, below
which no spiking occurs, but are quite different in terms of
spiking response around this point. Type 1 neurons will fire
at arbitrarily small frequencies as the critical value of Ic is
reached leading to a continuous curve, whereas Type 2 neurons
have a discontinuous frequency increase from quiescence and
initiate firing at a higher frequency (Figure 1A). Another critical
feature difference between Type 1 and Type 2 neurons is that
Type 2 neurons vary their firing rate much less in response
to changes in injected current, or have reduced gain (Tsuno
et al., 2013). The difference in gain between these neuron
types leads to larger differences in firing rates between cells
receiving different inputs in Type 1 networks compared to Type
2 networks.

A concurrent change in excitability that occurs with activating
the ion channels associated with the M-current is differential
response to brief and weak stimuli in terms of spike timing
perturbation (i.e., advance or delay). This cellular property is
quantified by the PRC (Stiefel et al., 2008a). The PRC ismeasured,
both experimentally and numerically, by driving a neuron to
fire at a stable periodic frequency and delivering small, brief,
and depolarizing perturbations between its spikes, at different
timings (phases) within the spiking cycle. In response to these
perturbations the timing of the following spike will be earlier,
later, or the same as an unperturbed period (Figures 1D,E).
Type 1 and Type 2 neurons display significant differences in
PRC shape. A Type 1 PRC is uniformly positive, meaning
that perturbations will always advance the timing of the next
spike. Type 2 neurons have a biphasic PRC, meaning that
depending on the timing of the perturbation it will either advance
or delay the next spike. The biphasic character of the Type
2 PRC allows these neurons to synchronize spike firing due
to the ability to either shorten or elongate the period, with
zero value of phase response becoming a stable fixed point of
the dynamics.

In addition to controlling membrane excitability type of
a neuron, the changes in IM also regulate spike-frequency
adaptation (SFA) (Tang et al., 1997). SFA effectively represents
a negative feedback on neuronal firing and is frequently due

to a hyperpolarizing current that builds up as a neuron fires
action potentials. Here, IM acts as an adaptation current and its
blockade causes a significant reduction in SFA (Figures 1B,C).
The effects of SFA and gain modulation are related by the fact
that neuronal gain shows the firing rate of a neuron when the
M-current has saturated. Here, we refer to SFA as the short-
time scale effect of reducing the frequency of a neuron as it fires,
possibly terminating a burst of firing.

In this article, we argue that this modulation of excitability
properties by ACh facilitates a transition in the mode for
coding external inputs or network structural features from
rate coding when ACh is high to phase coding when ACh
is low. Namely, both the PRC and frequency gain describe
how neurons change their dynamics of spiking in response to
synaptic input. Our previous work extensively studied how these
cellular changes affected network wide spatio-temporal pattern
formation (Bogaard et al., 2009; Fink et al., 2011, 2013; Roach
et al., 2015, 2016; Knudstrup et al., 2016; Mofakham et al.,
2016). Now, we are further proposing that these changes in
spiking patterns may underlie even more profound changes in
the network. We argue that the biophysical features controlled
by IM activation are responsible for how network firing patterns
interact with external input and characteristics of the physical
structure of the network. This, in turn, leads to a dramatic switch
in the coding strategy within the same network.

The two predominant coding strategies identified in the
brain are rate coding and phase coding. Rate coding represents
information in the firing rates between neurons and phase coding
represents information in the time differences between neuron
firings (Gray and Singer, 1989; Theunissen and Miller, 1995;
Von der Malsburg, 1999; Nadasdy, 2010; Ainsworth et al., 2012).
While there are examples of rate coding and phase coding
existing in the same neural circuits (Jeewajee et al., 2013; Luczak
et al., 2015), the ability of networks to switch coding regimes by
modulation of the biophysical properties of neurons has yet to
be investigated.

We believe that this switch may primarily take place during
transition in sleep-wake behavioral phases, as during wake
and REM sleep ACh levels remain high, but during NREM
sleep they are significantly reduced (Jones, 2005). Recent
results suggest that phase coding may play a significant role
during network activity and information processing in NREM
sleep. For example, studies have shown that abolition of
oscillatory activity during NREM sleep, which could be crucial
for stabilizing the phase relationships between the neurons,
leads to lack of memory consolidation after contextual fear
conditioning (CFC) exposure in mice (Ognjanovski et al., 2017).
Furthermore, neural frequency changes observed after NREM
sleep among heterogeneous populations of neurons (Clawson
et al., 2018) could be most naturally explained by spike timing
dependent plasticity (STDP) taking place on firing patterns
established through phase representation of information during
NREM sleep.

Below we demonstrate the possible transition from rate
coding to phase coding as ACh changes and provide mechanistic
underpinnings for matching representation of information in
both regimes.
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FIGURE 1 | Modulation of neuronal properties in a model of cholinergic modulation. (A) The f/I curve increases its slope as ACh increases (gKs decreases). Blue colors

represent the high ACh case. The onset of spike frequency adaptation in the Ks model occurs at a high gKs. SFA is quantified here by the SFA index, which compares

the inter-spike interval between the first two and the last two spikes in an induced burst. (B, top) When gKs is low SFA is minimal and ISIs are equivalent throughout the

burst. (B, bottom) When gKs is high ISIs gradually increase though out the burst. (C) Measured SFA indices for various gKs and injected current values show that SFA

is only significantly reducing frequency during the burst above gKs = 0.25 mS/cm2, below this the effects are negligible. Stars indicate the parameters of the voltage

traces shown in (B). Dark blue squares indicate parameters that do not elicit spikes and bright yellow squares parameters that yield <3 spikes. (D) The PRC is

measured by comparing perturbed vs. unperturbed periods when neurons fire at a fixed frequency. When the next spike is earlier the phase response is positive (blue),

when it is delayed it is negative (red). (E) Type 1 neurons have a strictly positive PRC (blue) while Type 2 neurons have a biphasic PRC. (F) Transitions in biophysical

properties in the Ks model occur over different ranges of gKs. Modulation of the f/I slope occurs continuously over the range of gKs. The slope is steep for low gKs and

gradual for high gKs. The transition between a Type 1 and a Type 2 PRC occurs for high gKs, though the PRC shape does change in a continuous manner as gKs
changes. SFA has little effect for low gKs and only significantly effects the frequency of neurons for high gKs.

RESULTS

In a network, the IM mediated switch between Type 1 to Type 2
excitability together with effects of SFA have a profound influence

on resulting network dynamics. Using numerical modeling we’ve

investigated how transitioning neurons from Type 1 to Type 2
excitability impact the patterns of neural activity in networks.

Much of our modeling work has used a conductance based

neuron model of cholinergic modulation (Stiefel et al., 2008b).
The details of this model are included in the Methods section.
This biophysical model reproduces the effects of ACh blocking
the IM through activation of the M1 acetylcholine receptor.
Throughout this paper it will be referred to as the Ks model,
named for the slow potassium conductance, gKs, responsible
for the transition from Type 1 to Type 2. Specifically, low gKs
corresponds to the high ACh, Type 1 excitability condition.
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When ACh is high, neurons in the network are Type 1, and
the f/I curve increases continuously from 0Hz with a steep slope
as a function of input currents between neurons (Figure 1A).
This will result in a wide distribution of firing frequencies across
the network when cells are driven by heterogeneous synaptic
input or external drive. The resulting frequency distribution
will be stable through time, due to reduced SFA during high
ACh conditions (low gKs, Figures 1B,C). On the other hand,
during low ACh conditions (high gKs), when Type 2 excitability
dominates, variations in input across the network create less
variance in neuronal firing rates due to the shallow slope of the
f/I curve. As the firing rates are more uniform, oscillatory firing
paired with the increased synchronizability demonstrated by the
shape of the PRC (Figures 1D,E) leads to synchronized bursting.
The variations in inputs are now reflected by relative phases of
firings among interacting neurons, rather than by their frequency
variations. Through the changes in neural excitability controlled
by the M-current, the circuit is thus shifted between these two,
distinct functional regimes: rate coding when ACh is high (low
gKs, Type 1) and phase coding when ACh is low (high gKs, Type
2; these changes are summarized in Figure 1F).

Much of our previous work on the different dynamics
displayed by Type 1 vs. Type 2 networks indicates that Type 1
networks are more sensitive to variations in network structure
(Bogaard et al., 2009). Specifically, Type 1 networks have higher
variability in neuronal frequency and our results suggest that the
particular frequency distribution of these networks will be highly
dependent on a particular physical network realization (Roach
et al., 2015). Type 2 networks, on the other hand, have more
uniform firing rate distributions leading to more synchronous
dynamics, suggesting that the effect of the specific network
structure will be seen in the phase relationships between neurons.
To provide an initial test of this prediction we generated a set
of unique networks based on the Watts-Strogatz network model
(Watts and Strogatz, 1998). The networks were composed of two
interconnected ring lattices, one excitatory and one inhibitory.
Since the Watts-Strogatz model of network generation is based
on random processes, specific network structures (i.e., sets of
inputs and outputs for each neuron) can be reproduced by
changing the seed in a random number generator. We generated
20 network realizations; each network structure was simulated 50
times for a given gKs, randomizing voltage and gating variable
initial values each time. This allowed us to compare firing
patterns between the 50 runs on the same network realization
with the 950 runs on the other network realizations. Additionally,
to examine the effects of changing patterns of inputs, a parallel
line of simulations were run on a unchanging network structure
but with randomized patterns of external applied current (DC)
inputs applied across the cells in the network. We generated 20
DC patterns and simulated each 50 times for a given gKs value
and random initial conditions.

We first investigated how the firing patterns changed when
network connectivity structure is varied. In the absence of
variations in external input between neurons, patterns in network
activity should reflect the specific structure of the network. The
aim of these simulations is to show that, for each network
topology, for high ACh (low gKs) a neuron’s firing rate will be

more correlated on the 50 runs with the same network realization
than on the 950 runs with the other network realizations, but that
this effect will be reduced as ACh falls. In terms of relative phases
of firing between neurons, the opposite will occur. Namely, when
ACh is low (high gKs), the pairwise phase relationships between
neurons will be more correlated on the same network realization
compared to the other realizations and that this specificity is
reduced as ACh increases.

This effect is apparent when examining raster plots of network
activity. Spiking dynamics for low gKs lack temporal organization
(Figure 2A) and neurons have variable firing rates (revealed by
density of points on the raster plot). The raster plots show that
the firing rate pattern is dependent on the network structure
for low gKs, with cells exhibiting different rates in different
networks. For high gKs firing rates are more uniform as networks
enter a bursting regime. Here the frequencies of cells across
the network are highly similar, but the organization of neurons
within bursts is more consistent across runs on the same network
realization and changes for different network realizations. This
result is summarized on Figure 2B; for low gKs networks the
frequency correlation of neurons is high on the same network
structure and very low across structures (Figure 2B, left). When
comparing burst structure in high gKs networks, quantified by
neuron order within a burst, is compared runs on the same
network realization have more similar burst structure than those
on different realizations (Figure 2B, right).

We next proceeded to quantify more carefully the underlying
mechanisms of this coding switch. We first investigated the
modulation of frequency variance and phase locking (as
measured by mean phase coherence, MPC) with varying ACh as
it provides a basis for the different coding schemes (Figure 3).We
observed that high ACh networks have high frequency variance
and low phase locking. As ACh is reduced (gKs is increased),
frequencies become more uniform, and phase locking increases.
Figure 3 (top, black curve) shows that when ACh is high (gKs is
low) the firing rate distribution is wide as measured by coefficient
of variation. As ACh is reduced firing rate variance rapidly
decreases and all neuron firing rates collapse to the mean, which
can be seen by comparing empirical cumulative distribution
functions of firing rate on the same network for varying gKs
(Figure 3, bottom). At the same time, the transition to phase
locked firing happens for networks with low ACh (high gKs)
(Figure 3, top, red curve). This transition supports a transition
between rate and phase coding regimes. These two effects on
the character of network dynamics provide a substrate for each
coding scheme at each pole of cholinergic modulation. High ACh
networks are primed for rate coding and low ACh networks are
primed for phase coding.

We then investigated the effects of differential input on
the network dynamics. Specifically, we measured the effect
on network dynamics, in both regimes (high and low ACh),
when randomly chosen neurons receive additional input current.
We compared dynamics of networks with constant structure,
where 20 excitatory neurons received an additional offset current
Ioffset (up to 1.95 µA/cm2) above the remaining neurons. In
these simulations, when gKs = 0.0 mS/cm2, increasing Ioffset
reliably increased the firing rate of the subset of neurons as
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FIGURE 2 | Example dynamics show rate specificity during high ACh dynamics and high phase specificity during low ACh dynamics. (A) Raster plots show that high

ACh networks have high similarity in firing rates, but low temporal organization. Changes in network structure (Net 1 vs. Net 2) alter which neurons are high frequency

vs. low frequency, but this is stable between simulations on the same network. Low ACh networks have a more uniform firing rate but more temporal organization and

synchrony. The phase relationships between neurons is stable across stimulations, but not across networks. Black rasters indicate the spike time of excitatory

neurons and red rasters indicate inhibitory spikes. (B) During High ACh conditions the firing rate of neurons is highly correlated during simulations run on the same

networks and uncorrelated between runs on different networks (left). The order of neuron firing during bursts is higher between runs on the same network compared

with runs on different networks during low ACh conditions (right). Error bars indicate s.e.m.

expected (Figure 4A). When gKs = 1.5 mS/cm2, the subset
of neurons fired at an increasingly earlier phase as Ioffset
increased (Figures 4B,C). The increase in firing during high ACh
conditions and the phase advancement in the lowACh conditions
are correlated (Figure 4D) providing a link between the two
representations. The effect of differential input on frequency and
phase form the basis for frequency coding when ACh is high and
phase coding when ACh is low.

To further pursue our hypothesis and measure the extent
that networks either rate code or phase code information about
their structure, we investigated if the correlation in frequency
(for Type 1, high ACh, low gKs conditions) or the phase locking
(for Type 2, low ACh, high gKs conditions) between pairs of
neurons would be more similar on repeated simulations of
the same structural realization of randomly generated networks
vs. different structural realizations. Similarly, for the dynamical
response to external stimulation patterns in networks with fixed
connectivity, we investigated if the correlation in frequency
(under Type 1, high ACh, low gKs conditions) or the phase
locking (for Type 2, low ACh, high gKs conditions) between pairs

of neurons would be more similar on repeated simulations with
the same DC input pattern to the network vs. different random
realizations of DC input.

To measure these functional relationships between neurons,
we constructed a similarity score based on three measures:
pairwise mean phase, pairwise MPC, and frequency. As indicated
before, MPC is a measure of phase locking between pairs
of neurons and ranges between 0 for random firing and
1 for perfect phase locking. To compare two simulations,
we define the phase similarity (SPhase) as the correlation in
pairwise mean phase calculated across all neurons that fired
30 or more spikes in both simulations. Similarly, to compare
neuron frequencies across simulations, the frequency similarity
(SFreq) is defined as the correlation of their frequencies across
both simulations. To maximize the variance within the data,
principal component analysis was performed on the data for
each level of gKs, and the data was projected onto the 1st
principal component for only correlation analysis. Calculation
of MPC and coefficient of variation were performed on
raw data.
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FIGURE 3 | The transition from high frequency variance to high phase locking

shows how cholinergic modulation can change coding principles. (A) High

ACh networks have highly varied firing rates as measured by the coefficient of

variation. Firing rates quickly become more uniform as gKs increases.

Conversely, MPC (phase locking) is high for low ACh networks. (B) Frequency

CDFs for single simulations, each on the same network structure, show that

the same network display large differences in the variance of firing rates across

the network. High ACh networks have high variance, which deceases

dramatically as ACh is reduced. Error bars indicate s.e.m.

Finally, the dependence of network firing pattern on network
structure, or the pattern of DC inputs, was quantified by a
network similarity score based on either frequency or phase,
NSFreq or NSPhase. This score was defined by:

NSFreq,i =
< SFreq,i > − < SFreq,∼i >

2
,

or:

NSPhase,i =
< SPhase,i > − < SPhase,∼i >

2
,

where Sx,i (x = Freq or Phase) is the similarity between all runs
on the same realization of network structure i (or of DC input
pattern i); Sx,∼i is the similarity between the runs on network i
and all other network realizations (or with DC input pattern i and
all other DC input patterns). NSx will be 1 if all runs on the same
network (or input pattern) realization have identical network
similarity while all other network (or input pattern) realizations
are orthogonal, and it will be 0 if all runs are equally similar
regardless of network structure (or DC input pattern). NSx will
be −1 if all runs on the same network (or DC input pattern)
realization have orthogonal network similarity but it is identical
on runs with different realizations.

To account for the effect of an increased bandwidth which
results from a wider distribution of frequencies (i.e., a frequency

pattern with a wider range will be easier to detect than a narrow
pattern) NSFreq was scaled by the coefficient of variation as such:

ÑSFreq,i =
< COVFreq,i > (< SFreq,i > − < SFreq,∼i > )

2
.

Similarly, to account for low MPC reflecting random firing
between neurons NSPhase was scaled by the average MPC of each
network across all simulations:

ÑSPhase,i =
〈MPCi〉 (< SPhase,i > − < SPhase,∼i >)

2

For simplicity, pairwise phase relationships between all excitatory
neurons and an arbitrary inhibitory neuron were analyzed.

We measured mean frequency similarity score, NSFreq,
for both cases, networks with changing DC input patterns
(Figures 5A–C) and changing connectivity structure
(Figures 5D–F), and we measured phase similarity score
NSphase, for the two cases (Figures 6A–C and Figures 6D–F,
respectively). The results in both figures are compared to
scrambled spike trains (blue line).

Rate coding of DC input pattern (Figures 5A–C) and network
structure (Figures 5D–F) was prevalent for high ACh (low
gKs) dynamics and reduced for low ACh (high gKs) dynamics.
As gKs increased (lower ACh), network frequency similarity
scores decreased (first and middle columns), but not because of
reduced frequency correlations within the same input pattern
(last column). Instead neuronal frequencies across other network
realizations became more correlated. This is evident in the
frequency correlations for runs on the same realization of an
input pattern or network structure compared to runs with other
patterns or structures (diagonal vs. off-diagonal elements in
Figures 5C,F, respectively). This is expected as all frequencies
across all network realizations converge due to reduced gain of
the f/I curve for Type 2 cells.

In low ACh (high gKs) conditions, networks have highly phase
locked dynamics and phase coding prevails (Figure 6). Networks
presented with the same pattern of inputs (Figures 6A–C) or
having the same network structure (Figures 6D–F) showed
higher network phase similarity scores as gKs increased (first and
middle columns), and displayed higher phase correlations than
between different patterns or structures when gKs is high (low
ACh) (color plots in Figures 6C,F). As ACh is reduced (and gKs is
correspondingly increased) correlations in firing phase decrease.
This effect is apparent in NSPhase (Figures 6A,D) and becomes
evenmore pronounced when phase-locking is taken into account
(Figures 6B,E). As opposed to frequency correlations, phase
correlations are uniformly low for simulations where different
patterns were presented (Figure 6C). This effect is due to the low
phase locking in high ACh conditions.

Finally, we checked robustness of the obtained results by
introducing and varying the level of external noise to the
networks and also, separately, by changing the strength of
excitatory coupling, which effectively changes internal excitatory-
inhibitory balance within the network. Rate coding during
high ACh conditions and phase coding for low ACh was
robust to changes in noise and variations in excitatory
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FIGURE 4 | Variations in current input between neuron subsets leads to changes in average frequency and phase. (A) The difference in average frequency of the two

neuron populations shows a positive relationship with the difference in current input, labeled as Ioffset, when gKs is 0.0. (B) Raster plot shows phase leading in spike

times of neuron subset. The raster plot shows spike times for neuron population where 20 neurons receive an additional current input of 1.95 µA/cm2. Blue rasters

indicate subpopulation with additional current while black rasters indicate sub population with baseline current input. Red trace shows convolution of spike times with

Gaussian function which is used to define the phase reference. The above simulation is conducted with a gKs value of 1.5. (C) Phase difference between

subpopulation with additional current input and subpopulation with baseline current input shows a negative relationship with the current input. (D) Comparison of the

phase difference and frequency difference for a given current input. Plot shows comparison of phase difference for gKs = 1.5 and frequency difference for gKs = 0.0

for a given current offset.

coupling. Figures S1, S2 show the effect of increasing noise on
frequency coding (Figure S1) and phase coding (Figure S2).
When information is presented as the pattern of DC input, in
high ACh networks frequency coding is robust to increasing
noise and was uniformly low for lowACh networks. Phase coding
of inputs is more sensitive to noise at high gKs, and uniformly low
for low gKs (Figure S2).

As excitatory coupling was scanned from zero to 0.04mS/cm2,
frequency coding of inputs initially decreased as coupling was
increased for all gKs, but for low gKs networks frequency coding
recovered (Figure S3). Low gKs networks maintained a higher
NSFreq as coupling increased compared to high gKs networks.
When representing network structure, coupling needed to reach
a sufficient level for frequency coding to occur. Phase coding, on
the other hand, required aminimum coupling strength to emerge
(Figure S4), but only emerged for high gKs. For the highest gKs
phase coding of both network structure and input pattern began
to decrease.

DISCUSSION

Using the Ks model we have shown that neuromodulation of
the M-current can switch networks from a rate coding regime
when ACh is high (gKs is low) to an oscillatory phase coding state

when ACh is low (gKs is high). This neuronal model recreates
biophysical changes displayed in neurons when the muscarinic
system is activated, including gain modulation, PRCmodulation,
and SFA modulation (Figure 1). As ACh levels are continuously
changed, these three properties are inflected over different ranges
of the maximal conductance of the IM, gKs.

We note that here we focus only on the biophysical effects
of a single target of ACh modulation, inactivation of slow (M-
type) potassium channels. However, ACh has numerous effects
both at the cellular and network level. Through the nicotinic
receptors ACh directly depolarizes neurons and the nicotinic
signal is faster than the cascade required to inactivate M-type
potassium channels. Activation of muscarinic channels also
inhibits presynaptic release at both excitatory and inhibitory axon
terminals reducing the effects of recurrent connectivity (Hsieh
et al., 2000; Hasselmo, 2006). During high ACh release direct
depolarization of neurons through nicotinic receptors, reduction
in local network inputs, increased gain, and reduced SFA could
all work together to prime a network to represent an external
input in the firing rate distribution. Removal of these effects
would the lead to phasic dynamics shaped the structure of the
local network.

It is important to note that all three of IM modulated
properties, gain modulation, PRC modulation, and SFA
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FIGURE 5 | High ACh networks show increased rate coding which is diminished in low ACh networks. Rate coding, measured by the specificity of neuronal firing

rates across simulations with the same pattern of inputs across the network vs. different patterns of input, occurs for high ACh networks. This effect is decreased in

low ACh networks, largely because firing rates become more similar between different networks. (A) NSFreq is the network score based on comparing frequency

correlations on simulations with the same input pattern against simulations with different patterns. (B) ÑSFreq scales NSFreq by the coefficient of variation for frequency.

(C) Color plots show the correlation of firing rates between simulations for gKs = 0.0 and gKs = 1.4 mS/cm2 (top and bottom, respectively). Each simulation is sorted

along the x and y axis by network structure. A similar effect occurs when information is represented through network structure. (D–F) NSFreq, ÑSFreq, and correlation

plots for simulations with varying network structure. Gray points show the NSFreq for each input pattern or network structure. Gray crosses show NSFreq for scrambled

data. Error bars indicate s.e.m.

modulation, are important for switching from a rate to a phase
coding regime. For rate coding in high ACh conditions, high
gain is beneficial in widening the firing rate distribution for
a given range of synaptic inputs. Low SFA allows neurons
to persist in firing to maintain a representation in frequency
space and low synchrony facilitated by Type 1 PRC, prevents a
reduction in frequency variation. For phase coding under low
ACh conditions, low gain reduces frequency variation in the
network, while a Type 2 PRC and high SFA induce increased
periodicity and synchronizability for phase differences to persist.

Thus, reductions in ACh level provide two dynamical
substrates for phase coding: (1) near uniformity in firing rates
across the network, and (2) the ability of neurons to collectively
organize into network-wide oscillatory behavior.

By directly quantifying the dependence of a network
firing pattern on a particular network realization for
networks of the same connection structure and external
input pattern we’ve provided strong evidence that Type 1

networks represent information about internal structure and
external inputs through rate coding (Figure 5) while Type
2 networks’ firing patterns provide oscillatory phase coding
dynamics (Figure 6).

The fact that the transition from rate coding to phase coding
firing patterns occurs over the gKs range when the gain of
the neuron (f/I curve) is significantly modulated, points to
the importance of this property for switching coding regimes.
When a network of high gain neurons is formed, slight
variations in synaptic input will result in higher firing rate
differences between neurons. This wide, input dependent, firing
rate distribution will drive the network firing rate distribution
and be reproducible for a given set of inputs or a given
network structure. As gain is reduced, frequency differences
between neurons will be reduced allowing neuronal properties
such as SFA and PRC effects to impact network dynamics in
a significant way. For example, it is well-known that networks
of periodic oscillators synchronize easier when the frequency
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FIGURE 6 | Low ACh networks show increased phase coding. Phase coding, measured by the network specificity of mean phase coherence across simulations with

the same input pattern vs. different patterns, occurs for low ACh networks on all topologies. This effect is decreased in high ACh networks, due to the increased

frequency variation and decreased phase locking. (A) NSPhase is the network score based on phase correlations. (B) ÑSPhase scales NSPhase by the mean MPC of the

simulations. Scaling average MPC accounts for low MPC reflecting essentially random firing. (C) Color plots show the correlation of phase values between simulations

for gKs = 0.0 and gKs = 1.4 mS/cm2 (top and bottom, respectively). Each simulation is sorted along the x and y axis by network structure. (D–F) NSPhase, ÑSPhase,

correlation plots for simulations with varying network structure. Gray points show the NSPhase for each input pattern or network structure. Gray crosses show NSPhase

for scrambled data. Error bars indicate s.e.m.

range is reduced and that large variance in frequencies promotes
the formation of discrete clusters of synchronization (Osipov
and Suchchik, 1998; Acebrón et al., 2005; Favaretto et al.,
2017).

Spike initiation dynamics and the adaptation mechanics of
neurons have been suggested as being substrates for coding
through integration or coincidence detection (Prescott and
Sejnowski, 2008; Ratté et al., 2013). While both integrative
and coincidence coding can exist with wide firing rate
distributions, phase coding relies on neurons being close in
frequency while high neuronal gain facilitates rate coding
(Gjorgjieva et al., 2014). The importance of co-modulation of
neuronal gain and excitability type in transitioning a network
from rate to phase coding is an essential result of the
present work.

Gain modulation improves signal recognition in a variety
of brain regions (Atiani et al., 2009; Schäfer et al., 2009;
Williamson et al., 2016; Angeloni and Geffen, 2018). In many
cases gain modulation is attributed to fluctuations in synaptic

inputs and synaptic plasticity due to gain modulation being
stimulus dependent (Chance et al., 2002; Cardin et al., 2008;
Carvalho and Buonomano, 2009). But changes in ACh tone also
change the gain response of neurons (Barkai and Hasselmo,
1994; Soma et al., 2012, 2013). ACh release is increased when
an animal is performing an attentional task and its release is
correlated with task performance (Himmelheber et al., 2000;
Kozak et al., 2007; Parikh et al., 2007). These results point to
cholinergic modulation priming neuronal networks to respond
with an appropriate rate code to a given cue by increasing the
gain of the neurons. This also indicates that rate coding may be
better at facilitating representations of sensory information than
phase coding.

The Type 2 dynamics of the low ACh state support robust
synchronized bursting required for oscillations in population
activity (Bogaard et al., 2009; Fink et al., 2011; Knudstrup
et al., 2016). ACh release is important for the generation of
the theta rhythm in the hippocampus (Vertes and Kocsis, 1997;
Hasselmo, 2006; Alger et al., 2014). But a temporal analysis of
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both ACh release and theta band power shows that peaks in
ACh release lag behind increases in theta power (Zhang et al.,
2010). This suggests that ACh release is actually working to
disrupt synchrony within the theta oscillation. Further evidence
for the role ACh release could play in reducing synchronous
firing is seen in its suppression of sharp wave ripples (Hasselmo,
2006).

Changes in coding modality, in addition to affecting
information transfer to downstream targets, would have a
profound effect on learning through activity dependent synaptic
plasticity. STDP has a strong frequency dependence, even with
random spike trains (Sjöström et al., 2001;Wittenberg andWang,
2006). When spike pairs are presented at a high frequency
synapses have net potentiation, but have net depression for
low frequency. When networks are in the high ACh rate
coding regime, this would lead to highly activated neurons
forming a strongly connected cluster within the networks,
which would reinforce the specific frequency pattern imposed
by an external stimulus. During the low ACh phase coding
regime the stable phase relationships would shape synaptic
plasticity. The reduction in mean frequency would lead to a net
reduction in synaptic weight (Sjöström et al., 2001), and the
synchronization and resonance properties of neurons in the low
ACh state preferentially strengthen connections from neurons
with high input to neurons with low input (Fink et al., 2013;
Roach et al., 2018). A complicating factor in interpreting the
effects of ACh on network coding is that ACh significantly
modulates STDP itself, acting as a gate on the LTD component,
thus reducing the plasticity effects during low ACh conditions
(Seol et al., 2007).

ACh release is very closely related to the sleep-wake cycle.
ACh release is highest during wakefulness and rapid eye
movement (REM) sleep and lower during non-REM (NREM)
sleep (Marrosu et al., 1995). When the Ks model simulates
these levels of ACh it recreates similar changes in spiking
dynamics that are seen across these states (Roach et al.,
2015). Within the context of the effects of ACh on network
dynamics, we hypothesize that the high ACh waking state
highlights the variance in magnitudes of external inputs to the
given circuit in terms of neuronal frequency responses and
primes networks to encode these inputs as stable patterns in
frequency space subsequently storing this representation within
synaptic weights. Elevated firing frequency and representations
in frequency space may be important for the rapid encoding
of the memory backbone and for transfer of information to
other brain regions. In NREM sleep, when no external input
is present and firing frequency distributions across neurons
homogenize (Miyawaki et al., 2019), oscillatory dynamics
pairs with phase coding to represent stored information as
spike time differences between neurons which could facilitate
consolidation of stored memories from a small group of
neurons with strong synaptic inputs to the network as a
whole (Puentes-Mestril et al., 2019). Additionally, ACh effects
on synaptic plasticity, namely high ACh leads to increases
in average synaptic weights and low ACh decreases them,
support the synaptic homeostasis hypothesis (Tononi and Cirelli,
2003; Fink et al., 2013), but at the same time the proposed

shift in the coding schemes paints a more complex picture
of specific roles of sleep cycles. The widening of neuronal
firing rate distributions across sleep-wake states also indicates
that gain modulation by ACh is shaping network activity
(Mizuseki and Buzsáki, 2013).

The role of ACh level in sleep dependent memory
consolidation and synaptic homeostasis suggests that changes in
coding modality may be optimized for storage of information
in various encoding/behavioral states. Namely, during waking,
high ACh conditions lead to enhancing the connections between
neurons which receive the most input, forming a tightly
connected cluster which forms the kernel of a new memory. In
the sleep that follows, cycles of phase coding NREM distributing
this kernel throughout the network are paired with cycles of
REM reinforcing the distributed memory by re-enhancing
connections to the neurons most active during REM bouts. Thus,
ACh modulating the coding regime across behavioral states may
facilitate an iterative process by the sleep cycle to tune memory
consolidation (Puentes-Mestril et al., 2019).

Thus, we propose that ACh is a neuromodulator that is
critical for memory consolidation throughout the brain. The
biophysical changes in neural excitability that the IM governs lead
to significant changes in the spiking and oscillatory processes
in the brain. The effects of gain modulation in switching
between circuit activity that has high or low dependence on
network structure or external input pattern may be central
to ACh’s role in information processing at the network level.
Additionally, the dynamic nature of ACh release could allow for
a stable network to coordinate information processing functions
across various brain states. While ACh has other pathways of
neuromodulation, notably through the nicotinic receptor which
directly depolarizes neurons (Sarter et al., 2014), we show that the
muscarinic effects of changing ACh levels are sufficient to change
coding modes.

METHODS

Networks were composed 300 excitatory and 75 inhibitory
neurons arrayed on two interconnected ring lattices. Excitatory
neurons were randomly connected to 3% of the neurons on
each lattice, while inhibitory neurons were connected to 6%.
The random process used in the generation of a network
structure was seeded such that one of 20 network structures could
be reproduced.

Connections between neurons were defined by a synaptic
conductance pulse:

gsyn,ij (t) = max



(
e
−(t̃max−τD)

τS − e
−(t̃max−τD)

τF

)−1

(
e
−(t̃j−τD)

τS − e
−(t̃j−τD)

τF

)
, 0

)

t̃max =
(τDτS − τDτF − τSτF ln (

τF
τS
))

(τS − τF)
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where t̃j is the time of the last spike fired by the presynaptic
neuron j, t̃max is the time where the synaptic pulse reaches its
maximum, τD is a synaptic delay constant set to 0.08ms, τS is
the slow synaptic decay constant set to 3ms, and τF is the fast
synaptic decay constant set to 0.3ms. Thus, the synaptic pulse
ranges between 0 and 1. The total synaptic input to a neuron i is
defined by:

Isyn,i(t) = we

NE∑

j=1

Aijgsyn,ij(t)(EE − Vi)

+ wi

NI∑

j=1

Aijgsyn,ij(t)(EI − Vi)

where Vi is the membrane potential of neuron i, EE/I is the
reversal potential of either excitatory or inhibitory synapses, Aij

is 1 if neuron j synapses onto neuron i or 0 otherwise, and NE/I

is the number of excitatory or inhibitory neurons. The synaptic
weight, we/i, was set to 0.02 mS/cm2 for all simulations, unless
otherwise stated.

In the Ks neuron model, the membrane potential evolved
according to:

cm
dVi

dt
= Isyn,i + Iext,i −m3

∞hgNa (Vi − ENa) − n4gKdir (Vi − EK)

− sgKs (Vi − EK) − gL (Vi − EL),

where gx is the maximal conductance associated with an ionic
current, Ex is the reversal potential for an ion, and Iext,i is a
random direct current which is unique to each neuron and
constant during a simulation. The range of Iext,i was set to 2.0
µA/cm2 and the mean was set so that neurons would fire at
10Hz in the absence of any other inputs. The uniform random
process which generated patterns of Iext,i was seed so that one of
20 unique patterns could be reproduced.

The gating variables h, n, and s were of the form

dx

dt
=

(x∞ (V) − x)

τx(V)
,

where x∞ (V) is the steady state value of the variable and τx(V) is
the time constant. τs(V) = 75ms for allV. WhenVi crossed 0mV
a spike was recorded and synaptic outputs were triggered. gKs is
the parameter responsible for the transitions in excitability seen
in this model and is used as a proxy for the level of acetylcholine
(which is inversely proportional to gKs).

Noise was introduced by randomly inducing spiking in all
neurons at a low rate. Unless otherwise noted the frequency of
noise was set to 1Hz. All simulations were integrated for 7 s at a
0.05ms time step using a 4th order Runge-Kutta algorithm. This
neuronal dynamic was taken from Stiefel et al. (2008b), for more
details see Fink et al. (2011).

Spiking dynamics from 20 patterns of external current
input or 20 network structures were analyzed. Each pattern
or network was simulated 50 times. The network activity
was quantified in two ways. The first was to calculate an
average firing rate for neurons in a network. To maximize

the variance in the data principal component analysis
was performed on the frequencies for all simulations
run at a given gKs and the frequencies were projected
onto the 1st principal component for further analysis.
The correlation of firing rates (in PCA space) between
simulations was calculated as the dot product of a vector
containing frequencies sorted by cell id for each simulation,
yielding the value SF . All analysis considered only spikes
which fired during the last 5 s of the simulation. Phase
correlations were calculated in a similar manner. As a control,
the frequencies/phases were scrambled and assigned to
random neurons.

Whether, a network was in a phase coding regime was based
on a measure of how stable the phase relationships are between
neurons in the network. For a pair of neurons i and j the
phase relationship for a given (the kth) spike fired by neuron

i is φk
ij = 2π

(ti
k
−t

j
−)

(t
j
+−t

j
−)
, where ti

k
is the time of the kth spike

fired by cell i, t
j
− is the time of the last spike fired by neuron j

before ti
k
, and t

j
+ is the time of the first spike fired by neuron

j after ti
k
. Between neurons i and j the phase coherence, or

how reliable the phase difference between the neurons is across
cycles, is:

rij =
1

T

∑T

k= 0
e
iφk

ij ,

where T is the number of spikes fired by neuron i that
are between a pair of spikes fired by neuron j. Note that
this measure is not reciprocal (i.e., rij = rji is not
always true). The pairwise rij values are averaged for all
neurons which fire more than 30 spikes in the simulation
and for presentation the average value of each network
was computed.

Network bursts were identified by binning spike times
into 0.05ms time bins and convolving with a Gaussian

kernel k (t) = e
−t2

σ2 evaluated between −10 and 10ms and
with σ 2 of 1ms. When the convoluted signal was above
a threshold of 10% of the neurons in the network the
network was considered to be in a burst. Each burst was
padded with 10ms before and after the threshold crossing
to any capture the spikes initiating the burst. To evaluate
the similarity of two bursts the order of neuron’s firing in
a burst window was correlated. Example bursts were selected
by identifying those bursts with the highest correlation on
two different runs on the same network realization. Average
pairwise burst correlations were compared between two runs
on the same network realization and one run on two
different realizations.
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