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Abstract
Visual salience is a key component of attentional selection, the process that guards the scarce resources needed for conscious 
recognition and perception. In previous works, we proposed a measure of visual salience based on a formal theory of visual 
selection. However, the strength of visual salience depends on the time course as well as local physical contrasts. Evidence 
from multiple experimental designs in the literature suggests that the strength of salience rises initially and declines after 
approximately 150 ms. The present article amends the theory-based salience measure beyond local physical contrasts to 
the time course of salience. It does so through a first experiment which reveals that—contrary to expectations—salience is 
not reduced during the first 150 ms after onset. Instead, the overall visual processing capacity is severely reduced, which 
corresponds to a reduced processing speed of all stimuli in the visual field. A second experiment confirms this conclusion 
by replicating the result. We argue that the slower stimulus processing may have been overlooked previously because the 
attentional selection mechanism had not yet been modeled in studies on the time course of salience.

Keywords  Attention · Visual perception

Introduction

“You never get a second chance to make a first impression.” 
This colloquial phrase aptly describes what happens to local 
contrasts—like color, orientation, or luminance contrasts—
in the visual system. Physical contrasts like these that stand 
out from their surroundings are referred to as salience (e.g., 
Treue, 2003). Salience affects attention and hence how lim-
ited cognitive resources are distributed. The strength of this 
influence is contingent on the timing: Once the window of 
opportunity has closed, even strong contrasts cease to affect 
attention.

Characteristics of salience

Evidence for a fast time course of attention has been pro-
vided several decades ago by studies using a broad variety 
of designs. Early evidence for such a time course of attention 
stems from studies using peripheral cues that were present 
in some conditions and absent in others. In these studies, the 

peripheral cue’s effect on attention was strong after 50 ms to 
150 ms and declined afterward (Shepherd & Müller, 1989; 
Nakayama & Mackeben, 1989; Müller & Rabbitt, 1989). 
This corresponds with the more general idea that timing is 
crucial for attention. Temporal dynamics of attention can 
severely affect the processing of visual stimuli (for reviews 
see; Kinchla, 1992; Egeth & Yantis, 1997; Olivers, 2007). 
Thus, understanding visual attention involves understand-
ing its temporal dynamics including its quick and transient 
component driven by stimuli.

The time course of salience in the first second after 
onset was studied by using a variety of experimental para-
digms and different operationalizations (Donk & Soesman, 
(2010; Dombrowe, Olivers & Donk, 2010; Couffe, Mizzi & 
Michael, 2016; Donk & Soesman, 2011; Donk & van Zoest, 
2008; van Zoest, Donk & Van der Stigchel, 2012) Silvis & 
Donk, 2014; van Zoest & Kerzel, 2015). Dombrowe et al. 
(2010) cued speeded responses with salience displays. They 
reported that the response time advantage for the salient 
stimulus is low after a presentation duration of 30 ms–60 ms, 
rises to a peak at 240 ms and 480 ms, and is gone after 
960 ms. Another cueing study by Donk & Soesman (2010) 
found a response time advantage for the salient stimu-
lus after just 42 ms. This advantage reached its peak after 
158 ms and was weakened after 483 ms. Donk and Soesman 
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(2011) used temporal order judgments (TOJs). They tested 
two presentation durations of the salience display affect-
ing the subsequent TOJ: After 58 ms, the effect of salience 
on attention was stronger than after 800 ms. However, the 
effects of salience did not vanish. Instead, a strongly salient 
and weakly salient stimulus induced the same attentional 
advantage after 800 ms. Apparently, the uniqueness of the 
element in the display maintained an attentional advantage, 
but the attentional advantage from the strength of contrast 
disappeared over the first second after presentation. Using 
a visual search task, Couffe et al. (2016) found an increase 
in attentional advantage over the first 100 ms. The saccadic 
latency study by Donk and van Zoest (2008) reports an 
advantage for salient stimuli for short latencies in the 175 ms 
and 200 ms bins that declines afterward. Van Zoest et al. 
(2012) report that the curvature of saccadic trajectories is 
strongly affected by the salience of a distractor after 180 ms 
but that this effect vanishes after 300 ms. To sum up the dif-
ferent findings, the general expectation is that the attentional 
advantage caused by salience rises quickly. Afterward, the 
influence of salience declines. A unique contrast can retain 
a weakened attentional advantage even after 800 ms.

In general, salience directs attention based on local phys-
ical contrast. This way of orienting of attention has been 
widely recognized as a central component of visual attention 
although its independence of other influences is still a mat-
ter of debate (e.g., Wolfe, Cave & Franzel, 1989; Müller & 
Krummenacher, 2006; Wolfe & Horowitz, 2017; Theeuwes, 
2019). There are many types of physical contrast that attract 
attention (Wolfe & Horowitz, 2004). The effect of visual 
salience on attention is not merely present or absent. The 
higher a contrast between stimulus and its surroundings, the 
stronger its attentional advantage (Duncan & Humphreys, 
1989).

How much salience is caused by a particular local con-
trast has been studied theoretically and empirically. Compu-
tational models (e.g., Itti & Koch, 2001; Li, 2002) provide 
an explanation of how a salience value may arise from a 
cognitive process. However, these models do not render 
empirical measures of salience irrelevant because their 
predictive power varies with different operationalizations 
(Koehler, Guo, Zhang, & Eckstein, 2014) and they are some-
times even conflicting with empirical findings (Einhäuser & 
König, 2003; Onat, Açık, Schumann & König, 2014).

The need for model evaluation motivates the develop-
ment of empirical salience measures. Different empirical 
measures of salience have been proposed (Huang & Pash-
ler, 2005; Nothdurft, 2000; Koene & Zhaoping, 2007). In 
the case of several local contrasts at the same location, it is 
not obvious how these contrasts interact to produce over-
all salience. Whereas these empirical studies largely agree 
on qualitative aspects of salience (e.g. that the more types 
of contrast, the stronger the salience), they differ in their 

quantitative estimation of the strength of salience (e.g., on 
the strength of interactions of contrasts; Koene & Zhaop-
ing, 2007; Nothdurft, 2000). A possible cause for diverging 
results is that each operationalization for testing quantitative 
hypotheses about the strength of salience is justified in a ver-
bal argument. A formal model linking the salience measure 
and the operationalization may provide a better explanation 
as to why a physical contrast is associated with a numerical 
salience value (Krüger, Tünnermann, Rohlfing, & Scharlau, 
2018).

Why should researchers interested in attention care 
about—possibly minute—quantitative differences in sali-
ence caused by physical contrast and when it is presented? 
The reason why even small salience differences matter is 
that attention is a selective process (Carrasco, 2011). In 
this selective process, attended stimuli have an advantage 
in competing for limited resources (Desimone & Duncan, 
1995; Beck & Kastner, 2009; Reynolds & Chelazzi 2004). 
Therefore, even small differences can determine whether a 
stimulus is processed further to be represented consciously 
or whether it passes unbeknownst to the observer (Luck & 
Vogel, 1997; Walker, Stafford & Davis, 2008).

Modeling salience‑based selection

Understanding visual attention as a selective process that 
is—among other factors—driven by local contrasts and 
their timing results in a complex process. Formal models 
are particularly apt for dealing with complex cognitive phe-
nomena (Marewski & Olsson, 2009; Rodgers, 2010). They 
provide good quantitative explanations (Krüger et al., 2018), 
have been successful in accumulating progress in attentional 
research in the past (Logan, 2004), and, importantly, force 
high specificity and quantitative precision (Luce, 1999; Taa-
gepera, 2008).

The merits of modeling in psychology have been 
described by different authors (e.g., Taagepera, 2008; Rodg-
ers, 2010; Marewski & Olsson, 2009). Models are particu-
larly valuable in combination with Bayesian inference for 
understanding nonlinear cognition processes (e.g., Rouder & 
Lu, 2005; Lee, 2011; Van de Schoot, Winter, Ryan, Zonder-
van-Zwijnenburg & Depaoli, 2017). Also, models enable 
parameter estimation, which has arguably been underval-
ued in classical hypothesis tests (Cumming, 2014). Because 
models are more explicit in what is expected to happen than 
a prediction of a directed effect, they provide a more severe 
test of hypotheses (Rouder, Morey, Verhagen, Province & 
Wagenmakers, 2016) which is well in line with the hypo-
thetico-deductive method applied in psychology (Gelman 
& Shalizi, 2013). Providing such a more severe test means 
that it is easier to potentially falsify a claim.

For attention research, cumulative progress in formal 
models of attention has been reviewed by Logan (2004). 
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One of the frameworks reviewed by Logan is Bundesen’s 
theory of visual attention (TVA; Bundesen, 1990). TVA for-
mally models visual selection and recognition as a parallel 
biased competition. The mechanism can be imagined as a 
race: Each stimulus in the visual field is associated with a 
processing speed. Only the stimuli finishing the race first are 
represented in visual short-term memory until its capacity 
is exhausted. Stimuli arriving thereafter cannot be repre-
sented for later recall. The sum of the stimuli’s processing 
speed is the overall visual processing capacity that repre-
sents the available processing resources for the current task. 
Each stimulus’ individual processing speed is affected by the 
relative attentional advantage of the stimulus, its attentional 
weights. These weights, in turn, are affected by the task rel-
evance and the sensory evidence of the stimulus’ features 
(for a more detailed explanation, see Bundesen, Vangkilde & 
Petersen, 2015). The overall visual processing capacity and 
attentional weights are most important for the present paper. 
As will be detailed below, the TVA functions and parameters 
describe observed data, but also have very precise theoreti-
cal meanings.

Although salience was originally not explicitly modeled 
in TVA, a link between TVA’s attentional weights and visual 
salience had been suspected when TVA was interpreted in 
terms of neuronal processes (Bundesen, Habekost & Kyl-
lingsbæk, 2005, Bundesen, Habekost & Kyllingsbæk, 2011). 
More recently, a salience measure, formally denoted as � , 
has been added to TVA to include the influence of salience 
on the attentional weights and hence the quantitative contri-
bution of salience to selection (Nordfang, Dyrholm, & Bun-
desen, 2013). This value functions as a common measure for 
salience. Such a single measure of salience has been sought 
before in experimental studies (e.g., Nothdurft, 2000, 1993; 
Huang & Pashler, 2005). Although pursuing the same goal, 
these studies used very different stimulus material (espe-
cially large sets of homogeneous background items) that 
cannot be interpreted in terms of TVA so that there is yet 
no direct connection between these two research strands. 
In a previous work, we made this connection between the 
stimulus material and a TVA-based formal salience meas-
ure (Krüger, Tünnermann, & Scharlau, 2016, 2017; Tün-
nermann, Krüger & Scharlau, 2017).

We combined TVA’s cognitive model of visual attention 
with a simple task that allows for uncomplicated salience-
related stimulus manipulation. During the task, the temporal 
order of two visual events has to be judged in a so-called 
temporal-order judgment (TOJ). Both events are separated 
by a brief interval, the stimulus onset asynchrony (SOA). 
This accuracy-based task requires a binary decision (“A 
before B” or “B before A”). The task is related to atten-
tion because of the phenomenon that an attended stimulus 
is perceived earlier than an otherwise similar but unattended 
stimulus. Attention thus leads to a systematic deviation of 

the reported from the objectively correct order (for a review, 
see Spence & Parise, 2010). The TOJ allows us to inves-
tigate the time course of visual salience by manipulating 
the interval between the onset of a salience display and the 
subsequent two visual events that have to be judged. The 
resulting judgment can be modeled as the outcome of the 
general attentional cognitive processes assumed by TVA 
(Tünnermann, Petersen & Scharlau, 2015). Thus, while in 
line with previous empirical and modeling works, the TVA-
based model additionally provides a formal link to a gen-
eral theory of attention and its notion of salience (Nordfang 
et al., 2013) so that TOJ data can be explained in terms of 
the overall visual processing capacity and a theoretically 
meaningful salience measure (Krüger et al., 2016, 2017).

Originally, we merely aimed to show that the previous 
modeling and empirical work (Krüger et al., 2016, 2017) can 
be extended to measure the time course of salience in TVA’s 
salience measure � . We planned Experiment 1 with five time 
intervals between salience onset and salience measurement 
with full randomization. Contrary to our expectations, only 
the overall visual processing capacity—the other free model 
parameter—was severely reduced before 150 ms. Because 
the result was an unexpected discovery, we conducted a rep-
lication. The only change from the original experiment was 
the use of a blocked design instead of a fully randomized 
design because this blocked design had been used in a previ-
ous TOJ time-course of salience article (Donk& Soesman 
2011) and thus helps to make results comparable. Experi-
ment 2 confirmed the discovery from Experiment 1, and 
both experiments suggest that the time course observed in 
the TOJ is affected by a difficulty to solve the task and by a 
change in the effect of salience on attention.

General method

Two TVA parameters are crucial for the following experi-
ments. These parameters are the overall processing speed or 
capacity, C, and the stimulus-driven component of attention, 
� , which measures salience. This section explains why and 
how data from TOJs can be mathematically linked to these 
two parameters. The section can be skipped without loss of 
continuity, if the reader is either familiar with the modeling 
or prefers to take both parameters at face value.

In a TOJ, two stimuli are task-relevant. To distinguish 
them, we call them probe, p, and reference, r. These names 
originate from the fact that the probe, the experimental 
stimulus, is salient while the reference, always non-salient, 
serves as the control stimulus. The TOJ can be understood as 
the outcome of a race between these two stimuli. Whichever 
finishes its race first is perceived to be the first stimulus. For 
winning the race, processing speed matters. According to 
TVA, each stimulus has an associated processing rate, vp 



237Psychological Research (2022) 86:234–251	

1 3

and vr , that determines the speed of processing. These rates 
are given in stimuli per second (Hz). Their sum yields the 
overall processing speed, C, also given as a rate.

According to the extended weight equation shown in 
Eq. 1 (Nordfang et al., 2013), salience and goal-directed 
influences interact multiplicatively to produce attentional 
weights. The variable wx determines the attentional weight 
for a specific stimulus x. The factor �x describes the effect of 
salience of object x, R is the set of all relevant semantic cat-
egories, �j determines the pertinence of the category j, and 
�(x, j) the sensory evidence that the stimulus in question x 
belongs to the semantic category j. Details about these atten-
tional parameters are described by Bundesen (1990, 1998). 
In the current experimental context, the goal-directed influ-
ences on the attentional weight, � and � , are kept constant by 
designing a task where both stimuli are equally task-relevant 
and provide the same sensory evidence for the event to be 
judged. If both stimuli are equally relevant, only � makes a 
difference for their attentional weight. Nordfang et al. (2013) 
defined �r to be 1 for a stimulus without any specific bottom-
up salience. The two stimuli’s attentional weights can be 
normalized by dividing by the sum of weights to distribute 
the overall processing speed, C, to either one as shown in 
Eqs. 2 and 3. So, it is possible to express the processing 
speeds of two stimuli as a function of the overall processing 
speed, C, and the salience value of the salience stimulus, �p.

The two processing speeds, vp and vr , are connected to the 
data stochastically in such a way that the variables vp and vr 
are used as parameters for a psychometric function. Together 
with the stimulus onset asynchrony (SOA), i.e. the temporal 
delay between the two temporal events of which the order 
has to be judged, the TOJ can be described formally by a 

(1)wx = �x

∑

j∈R

�(x, j)�j

psychometric function. This is explained in detail by Tün-
nermann et al. (2015) and Krüger et al. (2016). For the pre-
sent article, it is important that this psychometric function 
describes the observed TOJ data.

In terms of the parameters, vp , vr and SOA denoted as Δt , 
the probability of encoding the probe stimulus p first, Pp , 
can be expressed as two equations. The Eqs. 4 and 5 define a 
sigmoid-looking psychometric function (for a more detailed 
derivation of this function from the basic TVA, see Tün-
nermann et al., 2015). These functions together describe the 
order judgment over relevant SOA delays in terms of two 
processing speeds. As introduced in Eqs. 2 and 3, the pro-
cessing speeds can be expressed as overall processing speed, 
C, and salience, �p . These two parameters will be estimated 
in the empirical part of the present article.

for negative SOAs and

From the formalism of TVA, it is difficult to imagine how 
the data patterns in the TOJ depend on the salience param-
eter, � , and the overall processing capacity, C. In Fig. 1 we 
provide a visualization of different � and C values within 
previously observed ranges. The visualized function is the 

(2)vp =
�p

1 + �p

⋅ C

(3)vr =
1

1 + �p

⋅ C

(4)

Pp(vp, vr,Δt) = 1 − evp|Δt| + evp|Δt|
(

vp

vp + vr

)
for Δt < 0

(5)Pp(vp, vr,Δt) = evr|Δt|
(

vp

vp + vr

)
for Δt ≥ 0

Fig. 1   Visualization of the TOJ curve as dependent on the salience 
parameter, � , and the overall processing capacity, C. Negative SOAs 
correspond to probe being shown before reference. Because a suc-

cessful attentional manipulation is assumed for the present study, only 
functions with 𝜅 > 1 are shown ( � = 1 would mean no attentional 
bias and result in a function symmetrical to point (0, 0.5))
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psychometric function defined by Eqs. 4 and 5. The parame-
ters C and � are converted to processing rates vp and vr by the 
Eqs. 2 and 3, respectively. Specifically, Eq. 4 describing how 
Pp , the probability of reporting probe first, depends on the 
processing rates of both stimuli and SOAs smaller than 0, 
whereas Eq. 5 shows this for the positive SOAs. So, roughly 
speaking, Eq. 4 defines the left half of the psychometric 
function and Eq. 5 the right half. These illustrations show 
that a change in salience and hence attention brings about a 
distinctly different change in the TOJ data when compared 
to the second parameter, overall processing capacity. If the 
overall processing capacity is low, more mistakes are made 
in the temporal discrimination leading to a shallow slope of 
the function. If salience and thus attention is changed, the 
same amount of processing resources is distributed differ-
ently. This distribution leads to a characteristic increase in 
correct discrimination of the attended stimulus, if it is indeed 
first, but increases the number of mistakes, if the attended 
stimulus is second. Independently of TVA, these patterns are 
in line with the basic mechanisms of visual attention. TVA, 
however, provides a quantitative model of the relationship 
between overall performance in temporal discrimination and 
attentional advantage.

We chose a hierarchical Bayesian model for the param-
eter estimation. Although there are different pros and cons 
to consider when using Bayesian methods (Dienes, 2011), 
Bayesian hierarchical models provide a range of advantages 
for cognitive modeling in general (Lee, 2011) and are par-
ticularly suitable for parameter estimation under a given 
model (Little, 2006). The relevant details of the Bayesian 
analysis as well as the original data and posterior predictive 
for model checking are given in the Appendix. Also, the 
analysis script is published online together with additional 
results and graphics (Krüger, 2020).

When evaluating the results of the following experi-
ments, the skeptical reader may ask whether the TVA-TOJ 
model aptly describes the observed data. Therefore, we 
compare the results of the introduced model to a model 
using a logistic psychometric function that is commonly 
used in the analysis of TOJ data. Like the TVA-TOJ model, 
the logistic function has two parameters to describe the 
TOJ data through two relevant properties: the point of sub-
jective simultaneity (PSS) and the just noticeable differ-
ence (JND) (Spence & Parise, 2010). The PSS describes 
the intersection with the .5 level (judging A before B as 
often as B before A), the latter describes a threshold indi-
cating the precision with which the events can be judged. 
This function may be known to the reader as logit response 
function from generalized linear models, but can also be 
implemented in Bayesian statistical analysis (Kuss, Jäkel 
& Wichmann, 2005). For example, in Fig. 1, the PSS 
parameter can be read off at the intersection of the dot-
ted horizontal line and the graph. Note however that—in 

contrast to the TVA-TOJ model—these parameters are 
not derived from a general theory of attention but merely 
descriptive.

Experiment 1

Experiment 1 tests empirically whether salience parameter 
� depends on the display duration of a salient contrast. To 
this end, a salience display was presented for five durations 
ranging from 50 to 800 ms.

TVA’s � parameter is estimated from a model of the TOJ 
data that comprises the overall visual processing capacity C 
as a second free parameter. Whereas � describes the relative 
processing advantage of the salient stimulus, C describes the 
overall available processing resources for processing both 
of the stimuli.

The expectation we formulated in the introduction was 
that the attentional advantage caused by salience should 
rise quickly. Afterward, the influence of salience on atten-
tion should decline, although a unique contrast may retain a 
weakened attentional advantage independent of its quantita-
tive salience value.

Building on previous studies using TVA or a TVA-
based analysis of TOJ, we can formulate expectations for 
the parameters precisely: For healthy adults, a processing 
capacity of around 60 Hz is normal (Finke et al., 2005). An 
overall processing capacity around 60 Hz is also reported in 
the TVA-based analysis of TOJ (Krüger et al., 2016; Tünner-
mann et al., 2017). For the salience parameter, the same ori-
entation contrast as in the present study has been measured 
in multiple experiments to be 2 to 2.5 (Krüger et al., 2017).

The previous results taken together lead to our hypothesis 
for Experiment 1: The salience parameter � should initially 
rise to around 2.5 and decrease for longer presentation dura-
tions. The overall processing capacity C is expected to be 
60 Hz and is not expected to vary across the experimental 
conditions.

Method

Participants

Thirty persons (15 male and 15 female; Mage = 23.27 , range 
19–35) participated in Experiment 1. The size of the sam-
ple was fixed in advance and was based on earlier studies 
(Krüger et al., 2017). The participants were students or 
members of Paderborn University. Each participant gave 
informed written consent and reported normal or corrected-
to-normal visual acuity. Participants received course credit 
or a payment of 8 euros per hour.
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Apparatus

Experiment 1 was conducted using two Microsoft Win-
dows 7 PCs and two Iiyama Vision Master Pro512 22 in. 
( 40.4 cm × 30.3 cm ) CRT monitors (resolution 1024 × 768 
pixels, 32-bit colors, refresh rate 100 Hz). The experimen-
tal procedure was implemented with OpenSesame (Mathôt, 
Schreij & Theeuwes, 2012) and PsychoPy (Peirce, 2007). 
The monitors were luminance calibrated by an x-rite color-
munki display colorimeter. The viewing distance was 50 cm. 
Responses were given using the left ctrl key and the right 
enter key (number pad). Left and right responses were 
given with the left and right hand, respectively. The experi-
ment was conducted in an experimental booth that was dimly 
lit.

Stimuli

In the beginning of each trial, a fixation cross appeared for 
900 ms in the center of the screen. Afterward, a bar array of 
17 × 16 items was shown. The size of the array comprised 
34.99◦ × 32.93◦ of visual angle. Bar length was 1.07◦ and bar 
width 0.18◦ . The fixation cross replaced a bar at the hori-
zontal center with 8 rows of bars above and 7 below. The 
array was drawn on a gray background, RGB (96, 96, 96) 
and luminance 6.98 cd

m2
 whereas bars and fixation cross were 

drawn in white, RGB (224, 224, 224) corresponding to 
65.2

cd

m2
.

Probe and reference stimulus were placed at two fixed 
positions on the left and on the right of the fixation cross 
(eccentricity 8.24◦ of visual angle). The reference stimu-
lus had the same orientation as the background elements, 
whereas the probe stimulus was rotated by 90◦ in comparison 
to the background elements and hence had the maximum 
orientation contrast of Δo = 90◦ . Whether probe or reference 
occurred on the right was balanced and randomized. The ori-
entation of the background elements was chosen randomly.

After a fixation period of 600 ms, the salience display was 
presented for a display onset asynchrony (DOA) of 50, 100, 
200, 400, or 800 ms before the probe and reference stimuli 
flickered. The display persisted until the end of the trial—
only the length of the visibility prior to the TOJ was varied. 
The only change to the display was the brief flicker of the 
probe and reference stimulus. The flicker was implemented 
by an offset and subsequent onset, that is, the stimulus disap-
peared for 80 ms. The order in which the two stimuli flick-
ered depended on an SOA of −80 ms, −40 ms, 0 ms, 40 ms, 
or 80 ms, negative values meaning that the probe flickered 
before the reference. As an exception, in the DOA 50 con-
dition, the 80 ms SOA could not be sampled (the reference 
stimulus would have to be presented before the salience dis-
play) and was therefore left out. Each SOA was presented in 

34 trials except for the 0 ms SOA which was presented 68 
times. The sketch in Fig. 2 shows the procedure.

Procedure

Instructions were presented on the screen and questions were 
answered by the experimenter verbally.

The participants were instructed to look at the fixation 
cross as soon as it became visible at the beginning of each 
trial. Participants then had to judge which of two flicker 
events was the first and respond by indicating the respective 
side: left or right. The response was given by pressing the 
left ctrl or the right enter key with the respective hand. 
A new trial started automatically, but breaks were offered 
after 50 trials. The experiment began with a training session 
of 40 trials. During this training, feedback about the cor-
rectness of the participant’s judgments was given. The loca-
tions of the relevant events were learned as well as the task 
in general. The whole session lasted approximately 45 min.

Results and discussion

Applying the model derived from TVA, two parameters are 
estimated from the TOJ data for each of the five experimen-
tal conditions. A Bayesian hierarchical model is used to rep-
resent different sources of uncertainty (different repetitions, 

Fig. 2   Schematic procedure of a trial. After an initial fixation period 
of 600 ms, the salience display is shown for a duration depending on 
the experimental DOA condition. Afterward, both stimuli flicker sep-
arated by a brief interval depending on the SOA. Positive SOAs cor-
respond to probe-before-reference conditions whereas negative SOAs 
correspond to probe-after-reference conditions. The white corona 
symbolizes a rapid off- and onset that was perceived as a flicker
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different participants, and population) according to the logic 
of the experimental design. The parameter estimations for 
the population are shown in Figs. 3 and 4—in Fig. 3 for the 
salience parameter � and in Fig. 4 for the overall processing 
capacity C.

The similarity of two groups can be assessed by compar-
ing their parameter distributions: The smaller their overlap, 
the larger the effect. To provide an objective assessment of 
the difference of two conditions, we compute the standard-
ized effect size (Cohen’s d, 1988) for each consecutive con-
dition and compare it to a region of practical equivalence 
(ROPE; Kruschke, 2014) between −0.3 and 0.3 which is 
equivalent to a small effect. This constitutes a parameter-
based Bayesian test (Kruschke, 2011), which checks, if at 
least 95% of the effect sizes that are probable after observing 
the data fall outside this interval so that a medium (or larger) 
effect is likely. If the interval of the 95% highest probabil-
ity density falls completely within the ROPE, then no or 
a small effect is highly likely. Conversely, if this interval 
is completely outside the ROPE, than a medium or large 
effect is highly likely. This interval is reported in the square 

brackets. If the interval somewhat overlaps with the rope, no 
clear decision can be. Still, the result may be interpreted as a 
tendency because the maximum a posteriori estimator of the 
effect size (most likely effect size estimate), the number in 
front of the square brackets. So, roughly speaking, this pro-
cedure tests whether increasing the DOA leads to at least a 
medium effect between two consecutive levels. Because the 
effect sizes are standardized, they can be compared between 
different parameters, although they vary in different ranges.

The figures for salience � and overall processing capac-
ity C depict different patterns. The salience parameter � is 
in the expected range, but does not exhibit a clear trend: 
The posterior distributions are largely overlapping. For 
the consecutive conditions, this is further substantiated by 
effect sizes that always overlap with the ROPE. The esti-
mated effect sizes are 0.03[−0.09, 0.15] for Condition DOA 
100 ms and DOA 50 ms, −0.065[−0.18, 0.05] for Condition 
DOA 200 ms and DOA 100 ms, 0.28 [0.15, 0.41] for Condi-
tion DOA 400 ms and DOA 200 ms, −0.16[−0.33, 0.03] for 
Condition DOA 800 ms and DOA 400 ms. Thus, if there is 
a difference, it is rather small.

Although hypothesized to be constant, the processing 
capacity C rises steeply during the first 200 ms. The non-
overlapping posterior distributions suggest that the 50 ms 
and 100 ms conditions are profoundly different from each 
other. This is again substantiated by the first two effect sizes 
that fall completely outside the ROPE. The estimated effect 
sizes are 0.86 [0.65, 1.1] for Condition DOA 100 ms and 
DOA 50 ms, 1 [0.83, 1.2] for Condition DOA 200 ms and 
DOA 100 ms, 0.14[−0.07, 0.35] for Condition DOA 400 ms 
and DOA 200 ms, −0.01[−0.23, 0.2] for Condition DOA 
800 ms and DOA 400 ms. Hence, a medium or larger effect 
is highly likely to occur between the first three levels of 
DOA. The value of the processing capacity parameter C 
reaches the expected value only after 200 ms but appears to 
be constant from there on.

According to the hypothesis, the � value should explain 
a difference between conditions. To check this, we formu-
late and test alternative models. First, we check whether 
there is a time course in salience parameter � . We compare 
the model that yielded the parameter estimates to a model 
that assumes the same � value for all conditions i.e. that � 
does not change with the progression of time. This model 
is called the fixed-� model. Also, we test whether or not 
overall processing capacity stays constant (although given 
the parameter estimates, it seems extremely likely that this is 
false). The respective model is called the fixed-C model. We 
use the leave-one-out Information Criterion (looIC; Vehtari, 
Gelman & Gabry, 2017) that accounts for model complex-
ity and for which small numbers indicate a better model. 
This comparison yields an looIC of 3896.31 for the original 
model, an looIC of 4019.54 for the fixed-� model, and an 
looIC of 4781.0 for the fixed-C model. For the hypothesis, 

Fig. 3   Salience estimate, � , for the five DOA conditions of Experi-
ment 1

Fig. 4   Overall processing speed estimate, C, for the five DOA condi-
tions of Experiment 1
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this ranking means that � does vary over time because fixing 
� results in a worse model. Also, C exhibits a time course. 
Fixing the C parameter however results in a worse model 
than fixing k. Thus, we can conclude that a time course of 
salience exists, although the time course of C is more impor-
tant for the observed data pattern.

Next, we compare the present model to an alternative 
that replaces the TVA-based psychometric function with 
the logistic function while retaining the same hierarchical 
structure. Again, we use looIC for comparison. This proce-
dure yields an looIC of 3896.31 for the original model and 
an looIC of 3924.89 for the logistic function model. Priors 
for the logistic function model are taken from a study by 
Krüger et al. (2016) who provided a logistic-function-based 
analysis along with the TVA-based TOJ analysis. For the 
sake of transparency, note that the comparison of models 
with different parameters can depend heavily on the priors 
used. Therefore, we tested the robustness against different 
priors. It was, for example, possible to revert the order by 
extending the � prior of the TOJ-TVA model to implausible 
values of smaller than 1. So, a more elaborate comparison 
would be needed to argue for a general superiority of the fit 
of the TVA-TOJ model. However, we can reject the hypoth-
esis that the analysis merely reflects an inability of the TVA-
TOJ model to adequately describe the data because it is the 
better model for the current analysis.

Although the analysis shows that assuming no change in 
the salience parameter � is inappropriate, its change over 
the first second after presentation is small. Non-salient 
elements have a � value of 1 (Nordfang et al., 2013) and 
the estimated differences vary between 0.08 and 0.8, see 
Fig. 3. In comparison to the salience difference of many 
orientation contrasts, these differences are rather small 
(Krüger et al., 2017). How does such a small difference 
fit with previous research? The study by Donk& Soesman 
(2011) is closely related to the present research because 
they use the same experimental paradigm, the TOJ. Unfor-
tunately, they do not report the typical descriptions of a 
TOJ curve which is the PSS and the JND. However, when 
looking at the data of Donk & Soesman (2011), the slope 
corresponding to JND is visually twice as shallow for the 
58 ms condition in comparison to their 800 ms condi-
tion. These patterns are also visible in the present TOJ 
data. Donk and Soesman interpret all variance in terms of 
attention which is justified by their experimental design. 
Although mathematically not equivalent, in the present 
model, C determines how steep the TOJ curve is, whereas 
� is similar to PSS in the regard that both describe shifts of 
the function (although the shifts themselves are different 
from each other). We found a similarly striking difference 
between our 50 ms and 800 ms conditions as Donk and 
Soesman found between their 58 ms and 800 ms condi-
tions. Although the data patterns are similar, interpretation 

is different: If these data are linked to the TVA model of 
visual selection, then it is rather overall visual process-
ing capacity than attention that changes. Nevertheless, 
the aforementioned cueing studies and studies based on 
saccades suggest much more variability due to salience, 
which does not fit with the present TVA-based analysis.

Previous studies on the time course of salience used 
a blocked design (e.g. , Dombrowe et al., 2010; Donk & 
Soesman 2011). An explanation for the small variance in 
the salience parameter may be the fully randomized design 
because it may cause an equal temporal expectation for 
each trial, independent of its actual display duration. In 
the design of Experiment 1, the expectancy value for the 
display duration was 310 ms. Temporal expectations can 
severely affect processing speed (Vangkilde, Coull & Bun-
desen, 2012), and thus may have distorted the parameter 
estimation.

To sum up, we applied a model derived from a theory of 
visual selection, the TVA, to an experimental design, the 
TOJ, that is used to investigate the time course of visual sali-
ence. However, the overall ability to perform the TOJ, meas-
ured by the visual processing capacity, exhibits a stronger 
time course than the salience parameter. This result contra-
dicts the hypothesis that only the distribution of attention 
caused by salience is affected by a time course. This finding 
does not originate from applying an inappropriate model to 
the data. This cause has been ruled out by a model compari-
son between the TVA-based model and a model that uses 
the common logistic function instead of the function derived 
from TVA. Thus, from the TVA perspective, there is rather 
a time course in the accuracy of the TOJ than in the rela-
tive advantage of the salient over the non-salient stimulus. 
To preclude the possibility of a chance finding or a biased 
parameter estimation because of temporal expectancy, we 
conducted a blocked replication study in Experiment 2.

Experiment 2

Experiment 2 was conducted to replicate the findings on pro-
cessing capacity C in Experiment 2 with blocked conditions. 
A blocked design makes the experiment more comparable 
to previous studies on the time course of salience that used 
blocked designs (e.g. Dombrowe et al., 2010; Donk & Soes-
man, 2011) and prevents temporal expectations correspond-
ing to the mean of the DOAs that can severely influence pro-
cessing speed (Vangkilde et al., 2012). The blocked design 
should lead to a clearer trend in the salience parameter � . 
Based on this change of design and the previous parameter 
estimation, the hypothesis is that � declines over time and 
processing capacity rises up to 200 ms and stays constant 
afterward.
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Method

Participants

Thirty persons (9 male and 21 female; Mage = 23 , range 
18–29) participated in Experiment 2. The conditions were as 
in Experiment 1. Participant 17 was excluded from the final 
analysis because they answered “probe first” independently 
of the SOA for last three blocks. During the first and part of 
the second block, the task was carried out correctly (judging 
temporal order). The data of Particpant 17 is available in the 
published data (Krüger 2020).

Apparatus

The same apparatus as in Experiment 1 was used.

Stimuli

Stimuli were the same as in Experiment 1.

Procedure

The procedure was the same as in Experiment 1 except that 
the DOA conditions appeared blocked. The order of blocks 
was randomized.

Results and discussion

The estimated salience value, � , is shown in Fig. 5, and the 
estimated overall processing capacity is shown in Fig. 6. 
Again, the parameter difference distributions were tested 
against a ROPE, see the distributions on the right. The esti-
mations show a pattern comparable the one in Experiment 
1 for both variables: Over the course of 800 ms, salience 
varies. However, a more pronounced time course is exhibited 
in the overall processing capacity. In contrast to Experiment 

1, these patterns were expected and support our hypothesis 
by replicating the original finding.

The testing for medium or larger effects for two con-
secutive levels of DOA shows the same result: There is a 
medium or larger effect for C between the first three lev-
els of DOA. The exact estimates for the capacity effect 
sizes are 1.1 [0.81, 1.4] for Condition DOA 100 ms and 
DOA 50 ms, 0.95 [0.78, 1.1] for Condition DOA 200 ms 
and DOA 100 ms, −0.05[−0.22, 0.13] for Condition DOA 
400 ms and DOA 200 ms, 0.06[−0.12, 0.24] for Condition 
DOA 800 ms and DOA 400 ms. The effect sizes for � are 
0.01[−0.12, 0.13] for Condition DOA 100  ms and DOA 
50 ms, −0.22[−0.33, 0.1] for Condition DOA 200 ms and 
DOA 100 ms, 0.15 [0.02, 0.28] for Condition DOA 400 ms 
and DOA 200 ms, −0.35[−0.46,−0.23] for Condition DOA 
800 ms and DOA 400 ms.

Comparing the looIC of the original model, 3831.49, 
against the fixed-� model, 4160.20, and fixed-C model, 
4781.35, shows the same order as in Experiment 1: The 
parameter � is best assumed to vary between conditions. 
However, the parameter C varies more distinctly between 
conditions. Also, the TVA-based model was, as in Experi-
ment 1, compared to a model using the logistic function as 
psychometric function while preserving the same structure. 
The two models were compared by looIC. This comparison 
yielded 3831.49 for the original and 3848.23 for the logis-
tic function model. As in Experiment 1, this comparison 
stresses the point that the TVA-based model provides a good 
description of the data.

The parameter � shows more variance than in Experi-
ment 1, which is likely due to the blocked design. A trend 
in the parameter value becomes more clear: The value is 
declining or constant with the exception of the 400 ms 
condition in which the estimate is higher than a strict 
decline would allow. This is, however, neither unprec-
edented nor implausible. Previous studies found an ini-
tial rise (Couffe et al., 2016) and a later peak in the time 

Fig. 5   Salience estimate, � , for the five DOA conditions of Experi-
ment 2

Fig. 6   Overall processing speed estimate, C, for the five DOA condi-
tions of Experiment 2
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course of salience (e.g.; Dombrowe et al., 2010; van Zoest 
et al., 2012). This is not implausible because salience is 
initially processed in a feed-forward way (Li, 2002). How-
ever, receptive fields linked to salience can increase their 
firing rate by a delayed response enhancement based on a 
recurrent network. This response enhancement has been 
reported to take more than 200 ms (Lamme & Roelfsema, 
2000; Fecteau & Munoz, 2006).

Nevertheless, the clearest evidence for a time course 
was again found in the overall processing capacity C. After 
the successful replication of Experiment 1, it is appropri-
ate to interpret this distinct pattern, which corresponds 
to reduced resources for the task in general, when the 
DOA is smaller than 200 ms. One explanation of a chang-
ing processing capacity may be alertness. TVA research 
shows that an alerting stimulus preceding the task-relevant 
stimuli may indeed affect processing capacity. However, 
processing capacity has been reported to increase under 
these circumstances (Matthias et al., 2010). Besides alert-
ness, temporal expectancy, too, is known to affect overall 
processing capacity (Vangkilde et al., 2012). However, the 
blocked or fully randomized design does not change the 
observed pattern.

Beyond the TVA literature, Yeshurun & Levy (2003) 
report that spatial attention can reduce temporal resolu-
tion. This effect has also been found to affect the temporal 
discrimination performance in TOJ adversely (Hein, Rolke 
& Ulrich, 2006). The adverse effects of a salience display 
could, however, not have been foreseen because Yeshurun 
& Levy (2003) showed that a peripheral cue limited to a 
specific location reduced the temporal resolution at this 
location. If the cue expanded in size to span the whole 
screen, temporal resolution would be significantly better. 
Also, Hein et al. (2006) used a peripheral cue limited to 
the location of the TOJ. Both studies concluded that spa-
tial attention in general diminishes temporal resolution. 
Thus, this may explain the decrease in processing capacity 
C because a decrease in processing capacity C corresponds 
to a decreased performance in the temporal judgment.

However, Experiment 1 and Experiment 2 were not 
designed to test how TVA parameters relate to specific or 
even conflicting neurophysiological or behavioral findings 
beyond the recurrent patterns in the time course of sali-
ence. Thus, the main contribution of Experiment 2 is that 
the original findings have been successfully replicated. 
That is, a model derived from TVA to provide a quantita-
tive measure of visual salience can also capture the time 
course of salience in theoretically interpretable variables. 
This model revealed a time course in the general perfor-
mance of judging temporal order as well as in the relative 
advantage of the salient stimulus.

General discussion

Previous studies show that the effect of visual salience 
on attention depends on a time course as well as physical 
contrast. We formally quantified the strength of salience 
by modeling the relationship between salience, attention 
and visual selection based on a theory of visual selection: 
Bundesen’s TVA (for the measurement of physical con-
trasts see Krüger et al., 2017). The TVA modeling implies 
two free parameters: visual salience, � , and overall visual 
processing capacity, C. The resulting two-parameter model 
links data and theory mathematically: The numerical val-
ues of salience and overall processing capacity are, on the 
one hand, statistically inferred from the observed data. On 
the other hand, these two parameters have a specific theo-
retical meaning in a formal theory of visual attention. The 
present modeling and empirical approach yields a common 
salience measure that quantifies the effect of time course 
on visual salience.

In the empirical part of this article, the two-parameter 
model-based analysis revealed that salience is highest 
after 50 ms and changes over time, which was checked 
by a model comparison to a model assuming a fixed � 
value for all conditions. Although salience declines, the 
salient stimulus still receives nearly twice as much atten-
tion after 800 ms as the non-salient reference stimulus. 
Additionally, our findings revealed a distinct pattern in the 
overall processing capacity that corresponds to the general 
performance in the TOJ: Overall processing capacity is 
lowest after 50 ms and rises up until 200 ms. After that, 
it stays constant and is in line with the usually reported 
processing capacity of healthy participants (Finke et al. 
2005). This finding is supported by testing for medium or 
larger effect sizes: Only the processing capacity C shows 
medium or large effects for consecutive DOA levels in 
the range up to 200 ms. This pattern means that temporal 
discrimination performance is strongly reduced for short 
display durations. Because such a pattern was not part of 
the hypothesis in Experiment 1, we conducted a replica-
tion in Experiment 2 which confirmed the finding.

Before the results of these parameter estimations are 
compared to previous research on the time course of visual 
salience, it is useful to take one step back and discuss 
the model. Formal modeling has often been advocated as 
important particularly for linking theory and data (e.g., 
Rouder, Morey & Wagenmakers, 2016; Marewski & Ols-
son, 2009; Taagepera, 2008; Krüger et al., 2018). Fol-
lowing this approach, formal models help to accumulate 
progress on visual attention (Logan, 2004) and provide 
testable predictions (Taagepera, 2008; Luce, 1999). On the 
other hand, as the statistician Box (1976) put it, “all mod-
els are wrong” in the sense that each model is a particular 
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simplification of a set of phenomena guided by the princi-
ple of parsimony. Therefore, it is more appropriate to ask 
whether a model is useful than to ask whether it is correct. 
A model is only useful on a particular level of abstrac-
tion (Marr, 1982). Thus, the crucial question regarding 
the present model is whether it describes the phenomena 
adequately for its level of abstraction and whether it is 
useful for theorizing and accumulating results beyond 
individual experiments.

TVA models visual selection and attention based on the 
simple yet evocative concept of biased competition (Desi-
mone & Duncan, 1995). More precisely, TVA assumes a 
fixed-capacity independent-race model (e.g., Shibuya & 
Bundesen, 1988). For the TOJ, assuming a fixed-capacity 
independent-race model formally implies a specific psycho-
metric function with two parameters (Tünnermann et al., 
2015). This function is defined formally by the Eqs. 4 and 5. 
For both experiments, we showed that using the common 
logistic function (Wichmann & Hill, 2001; Kuss et al., 2005) 
to describe TOJs results in a worse model when compared 
to the TVA-based psychometric function. A caveat, how-
ever, is that we cannot provide a systematic comparison that 
would involve all commonly used psychometric functions, 
data from more than two experiments, and more elaborate 
choice of priors. Thus, we do not claim a general superi-
ority of the TVA-based psychometric function but merely 
that the model provides a fit comparable to commonly used 
models. This assessment is in line with the visually similar 
posterior predictives of the TVA-based and the logistic func-
tions (Krüger et al., 2016; Krüger, 2020). Overall, a specific 
theoretic meaning of parameters is gained while an adequate 
description of the data is maintained.

The specific meaning of TVA’s salience parameter allows 
theorizing about stimulus-driven attention beyond the TOJ 
design. The salience parameter was developed from a par-
tial-report design (Nordfang et al., 2013) and research on 
it continues within this experimental design (Nordfang, 
Staugaard, & Bundesen, 2017). This line of research spells 
out the previously supposed connection between TVA and 
salience research (Bundesen et al., 2005, 2015). Whereas 
salience models (e.g. Koch & Ullman, 1985; Li, 2002) and 
particularly their implementation as computational models 
(for a survey see Frintrop, Rome & Christensen, 2010) pro-
vide a quantitative prediction of a particular stimulus’ sali-
ence, TVA has a clear prediction of how this value should 
affect visual selection. This prediction is used to infer sali-
ence from the process of visual selection occurring in TOJ 
(Krüger et al. 2017) as well as report-based designs (Nord-
fang et al., 2013, 2017).

To sum up our model evaluation, the model provides a 
good fit to the TOJ data and contributes to the integration 
of salience and TVA research. We hope that the reader 
is inclined to entertain the presented model as a useful 

way of looking at attentional influences of salience in TOJ 
as modeled by TVA so that the parameter values can be 
understood as representative of the properties of cognitive 
processes.

The salience parameter estimation provides an estimation 
of the time course of salience. Whereas the literature agrees 
that a time course of salience exists, there is discord about 
its shape. The different shapes of the time course have been 
reviewed in the introduction to form the original hypoth-
esis. The reviewed time courses can be summarized in two 
points: First, does the effect of salience on attention increase 
during the presentation duration up until 200 ms (e.g., Dom-
browe et al., 2010; van Zoest et al., 2012) or is its maxi-
mum reached after a short duration of approximately 50 ms 
(the latter finding is not as often reported as the first one; 
Donk& Soesman 2011; Donk & van Zoest, 2008)? Second, 
do effects from salience vanish after a few hundred millisec-
onds (e.g., Dombrowe et al., 2010; van Zoest et al., 2012) 
or is the attentional advantage of a salient stimulus longer-
lasting (Donk & Soesman, 2011)? Interestingly, the TOJ 
study by Donk and Soesman, whose data strongly resembles 
our TOJ data, deviates from the speeded response studies. 
The deviation may be explained by the fact that the TOJs 
are accuracy-based whereas other studies involve speeded 
motor responses (e.g., no early advantage of salient stimuli 
was shown by van Zoest & Kerzel, 2015). If a quantitative 
estimate of the salience effect on attention and thus visual 
selection is desired, a measure not affected by motor com-
ponents seems apt.

It is important to note that our evaluation of the strength 
of salience works exclusively through the surrogate of atten-
tion. An operationalization using perception (e.g., Nothdurft, 
2000) may arrive at different results and we do not make any 
statements about a potential change of the perceptual prop-
erties of the salient stimulus (e.g., Kerzel, Schönhammer, 
Burra, Born & Souto, 2011).

It is not optimal that one SOA is missing in the 50 ms 
DOA condition. However, in comparison to our earlier 
works, we already reduced the SOA from a maximum of 
100 ms to 80 ms to be able to use all SOAs in the 100 ms 
DOA condition. Balanced SOAs for the 50 ms DOA condi-
tion were not possible. Yet, we wanted to include this condi-
tion because DOAs in this region have been used in the lit-
erature before. Note that the Bayesian analysis accounts for 
the reduced amount of data in the 100 ms DOA condition. 
This results in wider posterior distributions, if everything 
else is kept constant. Therefore, the narrow parameter dis-
tribution for this condition must originate from less variance 
in the available data. Yet, we cannot exclude the possibility 
of a bias in this condition caused by the unbalanced design. 
However, if the 50 ms DOA condition were removed alto-
gether, the conclusion would still hold because of the 100 ms 
DOA condition’s difference to the longer DOA conditions.
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Another limiting factor of the study is that some of TVA’s 
attentional parameters cannot be estimated: As of yet, it is 
not possible to derive the minimum effective exposure dura-
tion, t0 , with a TOJ-based design because the two parameters 
are assumed to cancel each other out (for a detailed explana-
tion, see Tünnermann et al., 2015). This prohibits a com-
parison within condition (probe against reference) but also 
a comparison of possible changes in t0 across conditions. 
While it may be unsettling that there are potential causes 
that cannot be detected by the present model, this may be 
addressed by developing a model specifically designed to 
discern such influences in future research.

Despite its limitations, our theory-based approach made 
a specific prediction of how salience should affect the data, 
which we illustrated for the salience parameter and for the 
overall processing capacity in Fig. 1. Based on the literature, 
we assumed that only salience, i.e. the attentional advantage, 
would change for different DOAs. This prediction has been 
disproved by Experiment 1: In addition to the change in 
the salience parameter, we found a distinct increase in the 
overall processing capacity. An overall processing capacity 
change corresponds to a change in temporal discrimination 
performance. Poor temporal discrimination performance 
results in a flat TOJ curve. This pattern is found in the curves 
belonging to the actual parameter estimates (maximum a 
posteriori probabilities) of Experiment 2. Figure 7 shows the 
curves belonging to the estimates for Condition 1 (50 ms), 
2 (100 ms), and 5 (800 ms) of Experiment 2. Such a flat 
pattern for short delays between display onset and SOA was 
also present in the data of Donk and Soesman (2011). With-
out considering this change in the overall performance, i.e. 
slope of the curve, the salience estimate may be confounded 
by the performance in the TOJ.

Within the scope of this article, we cannot investigate 
whether or not only temporal discrimination performance is 
reduced until 200 ms after the onset of the salience display. 
Peripheral cues have been reported to diminish temporal 
discrimination performance (Yeshurun & Levy, 2003; Hein 
et al., 2006). Attempts have been made to explain tempo-
ral dynamics with TVA theoretically (Schneider 2013) for 
sequences of saccades and by means of experimentation 
and modeling of attentional dwell time (Petersen, Kyllings-
bæk & Bundesen, 2012). Attentional dwell time may seem 
like a possible explanation of a reduced processing capac-
ity: After the appearance of a visual stimulus, resources are 
bound to this stimulus and are not available for the pro-
cessing of other stimuli that appear afterward. However, it 
has been shown that task-irrelevant stimuli (much like the 
task-irrelevant salience display) do not bind resources simi-
larly. Only if a target precedes another target, resources are 
reduced (Olivers, 2007). Thus, it is not obvious whether or 
not the task-irrelevant onset of the salience display binds 
processing resources in the same way as described by this 
research. (Tünnermann & Scharlau, 2016) examined irrel-
evant peripheral cues in TOJs using a TVA-based analy-
sis. This approach revealed that peripheral cues affect the 
overall processing capacity by being erroneously encoded 
as the target. This result hints at the possibility that the onset 
of the TOJ-relevant bar in the salience display can be con-
fused with the relevant temporal event. If so, this should not 
only depend on the flicker (off- and onset) used in the pre-
sent study: Donk and Soesman (2011) used a color change 
instead of the flicker, and they also reported a flatter pattern 
for short display durations. Whether the onset of the sali-
ence display can be confused with the task-relevant events, 
however, remains to be tested empirically.

Low C values for the short DOA conditions might be an 
artifact caused by the flicker. At least presentation duration 
and perceived offset are negatively proportional in the range 
used (Coltheart, 1980). However, even in these conditions 
participants’ accuracies were far from guessing probability 
(which would be a constant function of SOA). Neverthe-
less, there may have been a chance of not seeing the offset. 
Whether or not this also impairs the detection of the re-onset 
80 ms later is not certain. Also, Bloch’s law might indicate 
the flicker as a potential confound. However, Donk and Soes-
man (2011) already reported a reduced slope for the short 
DOA condition in both experiments (see Figs. 2 and 3 from 
their publication). Because there was no offset involved, it 
cannot explain this pattern that would be visible in a reduced 
difference limen when fitting psychometric functions (Kuss 
et al., 2005; Wichmann & Hill, 2001) or a reduced C in the 
TVA based model, see Fig. 1. Thus, the data pattern is not 
new, but merely unexplained as of yet.

A model-based salience measure does not come without 
its caveats: Because TVA-designs are accuracy-based, it is 

Fig. 7   Visualization of the TOJ curve as dependent on the salience 
parameter, � , and overall processing capacity, C, in Condition 1 
(50 ms), 2 (100 ms), and 5 (800 ms) of Experiment 2
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difficult to relate the estimated salience value to salience 
research using speeded responses. One way of reconcil-
ing these lines of research is by referring to TVA models 
that also model response times (Kyllingsbæk, Markussen 
& Bundesen, 2012; Blurton, Nielsen, Kyllingsbæk & Bun-
desen, 2016). These models are, however, more complex, 
and it remains to be seen, if they can be used to estimate 
the salience parameter � . Also, the salience value is only 
meaningful, if the modeling of TOJ as an capacity-limited 
independent-race model and more broadly biased competi-
tion (Desimone & Duncan, 1995) is accepted. If this view is 
rejected, the salience value must be rejected as well.

To sum up, we measured the time course of salience suc-
cessfully with a model derived from a theory of visual selec-
tion, TVA. We further showed that the model adequately 
describes the observed data by a comparison to a common 
psychometric model. This analysis revealed that salience 
decreases over time but remains an influence on attention 
even after 800 ms. However, the performance in the TOJ was 
much worse for short display durations of 50 ms and 100 ms. 
This effect is captured by overall processing capacity. Thus, 

the salience measure requires accepting basic TVA modeling 
but enables researchers to sharpen the concept of visual sali-
ence by differentiating actual influences on salience from 
possible confounds.

Appendix A

Details of Bayesian models and analysis

The data from the TOJ were analyzed by a hierarchical 
Bayesian model so that individual parameters were esti-
mated and their means were used as a group estimate. The 
corresponding model is depicted in Fig. 8 and Tables 1, 2. 
The resources for modeling and analysis were provided by 
Kruschke (2014) and Lee and Wagenmakers (2014). The 
model has been implemented with pymc3. The used script 
is published online (Krüger, 2020) together with detailed 
graphics and results for all used models.

For the data analysis, the NUTS sampler has been used 
with 5000 samples in each of four chains excluding 500 
samples for burning. We checked the convergence of the 
sampling process by the diagnostics provided by pymc3.  

Appendix B

Posterior predictive

In this section we show the posterior predictive of the model 
as well as a summary of the original data per participant 
(Figs. 9, 10). 

Fig. 8   Hierarchical Bayesian graphical model connecting TOJ data 
given by y and n with TVA parameters C and � (salience). Each 
condition is treated as independent. The index i indicates the SOAs 
within a condition, j indicates the participant, and c indicates the con-
dition of the experiment

Table 1   Variables of the the model

Variable Explanation

�cpj
= wcpj

∕(1 − wcpj
) Salience of the probe

C�

c
= mean(Ccpj

) Mean C per condition
vcpj ← Csj

⋅ wcpj
Participant processing rate (probe)

vcrj ← Csj
⋅ (1 − wcpj

) Participant processing rate (reference)
�sj,i

← PA(vsp, vsr, SOA) Probability of “Probe first”
ycj,i ← binomial(�sj,i , nsj,i ) Count “Probe first”

Table 2   Prior distributions of the model

wcpj
∼ dunif(0.5, 1)

Ccpj
∼ dunif(0, 0.25) (in kHz)
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Fig. 9   Posterior predictive of success chance (cyan) and observed success chance (purple) for Experiment 1 and the TVA-TOJ-model Partici-
pants 1–8 are shown exemplarily (for all plots, see the published data) (color figure online)
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Fig. 10   Posterior predictive of success chance (cyan) and observed success chance (purple) for Experiment 2 and the TVA-TOJ-model Partici-
pants 1–8 are shown exemplarily (for all plots, see the published data) (color figure online)
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