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The integrinβ3 (ITGβ3) gene has been associated with both autism and the serotonin sys-
tem. The purpose of this study was to examine the volumetric differences in the brain of
an ITGβ3 homozygous knockout mouse model compared with a corresponding wild-type
mouse using high resolution magnetic resonance imaging and detailed statistical analyses.
The most striking difference found was an 11% reduction in total brain volume. Moreover,
32 different regions were found to have significantly different relative volumes (percentage
total brain volume) in the ITGβ3 mouse. A number of interesting differences relevant to
autism were discovered including a smaller corpus callosum volume and bilateral decreases
in the hippocampus, striatum, and cerebellum. Relative volume increases were also found
in the frontal and parieto-temporal lobes as well as in the amygdala. Particularly intriguing
were the changes in the lateral wings of the dorsal raphe nuclei since that nucleus is so
integral to the development of many different brain regions and the serotonin system in
general.

Keywords: magnetic resonance imaging, autism, serotonin, ITGB3, voxel based morphometry, volume measure-

ments, brain

INTRODUCTION
Autism Spectrum Disorder (ASD) is a developmental disor-
der that is characterized by three behavioral symptoms: repet-
itive/restrictive behaviors, communication deficits, and social
deficits. The prevalence of ASD in school children from kinder-
garten to grade 11 has been reported to be 0.79%, with classic
autism accounting for 0.25% (Lazoff et al., 2010). There has also
been a significant linear increase in the prevalence of autism over
the time period examined in that study (Lazoff et al., 2010),
although the cause of that increase is still unclear. ASD is a genetic
disorder, with a 90% concordance rate with identical twins, and
a 15–20% risk of autism in siblings (Steffenburg et al., 1989; Bai-
ley et al., 1995; Lamb, 2011). Currently, the Simon’s foundation
autism gene database lists 250+ genes that have been associated
with autism (Basu et al., 2009). Thus, both the genetics and behav-
ioral aspects of the disorder are quite heterogeneous, and no single
gene accounts for more than 2% of ASD cases (Abrahams and
Geschwind, 2010). Autism is a highly heterogeneous disorder in
humans. Autistic symptoms range from mild to severe in the three
diagnostic criteria, and two autistic children might display vastly
different phenotypes (Munson et al., 2008; Richler et al., 2010).
There is also a lack of consistency in the human neuroanatomical
findings. Looking at a specific gene, which has been shown to be
associated with autism, allows one to investigate specific changes
for a certain subset of autism.

The integrinβ3 (ITGβ3) gene is a subunit of the platelet- and
megakaryocyte-specific heterodimeric fibrogen receptor and the
widely expressed heterodynamic vitrogen receptor (Weiss et al.,
2006a) located on chromosome 17. The role of the ITGβ3 gene

in the brain is to control platelet function, cell-adhesion, and cell
signaling (Weiss et al., 2006a). The ITGβ3 gene has been shown to
be associated with both autism susceptibility (Weiss et al., 2006a;
Napolioni et al., 2011) and whole brain serotonin levels (Weiss
et al., 2004, 2006a). Further, ITGβ3 is also linked with an addi-
tional autism susceptibility gene, namely SLC6A4, the serotonin
transporter (SERT) gene (Weiss et al., 2006b; Coutinho et al.,
2007; Mei et al., 2007; Ma et al., 2010). Serotonin is a monoamine
neurotransmitter that is involved in behaviors such as mood,
aggression, sleep, pain sensitivity, cognition, learning, and mem-
ory (Sodhi and Sanders-Bush,2004). Hyperserontonia is one of the
oldest and most well replicated findings in autism patients, orig-
inally found in ∼30% of autism patients (Schain and Freedman,
1961). Additionally, whole blood serotonin has been identified
as a marker in a number of other brain disorders such as bipolar
disorder (Hughes et al., 1996), attention deficit hyperactivity disor-
der (ADHD; Hughes et al., 1996), mental retardation (Partington
et al., 1973), and obsessive compulsive disorder (OCD; Hanna
et al., 1991). While there is certainly evidence supporting ITGβ3
involvement in other disorders, particularly due to its effect on
the serotonin system, it clearly has a strong relationship to autism
(Weiss et al., 2006a; Coutinho et al., 2007; Ma et al., 2010; Napolioni
et al., 2011).

Serotonin has also been shown to play a role in brain develop-
ment prior to the time it assumes a role as a neurotransmitter in
the mature brain (Lauder, 1990; Chubakov et al., 1993; Whitaker-
Azmitia et al., 1996). Serotonin neurons in the brain are one of the
most widely distributed neuronal systems (Sodhi and Sanders-
Bush, 2004); serotonin neurons stem from four nuclei within the
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brain stem, the main two being the dorsal and median raphe nuclei.
The dorsal raphe nuclei project axons widely to most areas of
the cortex, while the medial raphe nuclei preferentially project to
specific areas, such as the dentate gyrus, posterior cingulate, and
entorhinal areas, as well as the parietal cortex (Kosofsky and Mol-
liver, 1987). A number of the genes that have been associated with
ASD have been linked to the serotonin system (Chugani, 2011).

Magnetic resonance imaging (MRI) in human subjects and ani-
mal models has been used quite extensively for examining volume
changes in the brain. In human autism research a number of meta-
analyses on human brain images have highlighted several areas of
interest (Stanfield et al., 2008; Frazier and Hardan, 2009; Radua
et al., 2011; Via et al., 2011). Stanfield et al. reported that the total
brain, cerebral hemispheres, cerebellum, and caudate nucleus were
increased in volume, whereas the corpus callosum was reduced in
volume (Stanfield et al., 2008). Other more recent meta-analyses
have highlighted regional differences in areas that are important
for social cognition: namely the hippocampus, amygdala, and cor-
responding white matter tracts involved in language (Radua et al.,
2011; Via et al., 2011). There are many inconsistencies in the results
from multiple areas in the brain, however, and the meta-analyses
describe many confounding factors, such as the genetic variability
in the sample, environmental factors, IQ, and the use of high- vs.
low-functioning autistic subjects. The finding of decreased volume
or thinning in the corpus callosum is the most consistent finding in
human autism (Stanfield et al., 2008; Frazier and Hardan, 2009).
Using an animal model, such as the mouse, eliminates some of
these confounding factors, as the background genetics and living
environment can be controlled more easily. The link to autism in
the mouse, however, is often based on the genetics and not the
behavior as it is defined in the human population. Autistic behav-
iors in the mouse are hard to define and are as heterogeneous as
they are in humans (Moy et al., 2006, 2007). Using MRI one can
detect specific and highly reproducible measurements of relatively
subtle volumetric differences, which are shown to be consistent
with stereological findings (Lerch et al., 2008a; Spring et al., 2010).
These studies have provided maps of the left/right asymmetries in
the brain (Spring et al., 2010), sexual dimorphisms (Spring et al.,
2007), and learning and memory changes (Lerch et al., 2011b).
This same technique has also been applied to human disease mod-
els in the mouse, such as Huntington’s disease (Lerch et al., 2008a)
and Alzheimer’s disease (Lerch et al., 2005, 2008b). Recently mul-
tiple studies have looked at autism related mouse models in order
to probe some of the volumetric changes found in human autism
in specific genetic backgrounds (Ellegood et al., 2010, 2011; Horev
et al., 2011).

An ITGβ3 knockout (KO) mouse was created originally to
assess the human bleeding disorder Glanzmann thrombasthe-
nia (Hodivala-Dilke et al., 1999). Due to ITGβ3 being related to
platelet function, the KO mice have deficits in platelet aggrega-
tion and clot retraction, prolonged bleeding times, and cutaneous
and gastrointestinal bleeding. There is also an increase in fetal
mortality for the homozygotic mice (Hodivala-Dilke et al., 1999).
Recently, the ITGβ3 KO mouse model has been used to assess the
behavioral deficits of the model (Carter et al., 2011). The ITGβ3
mouse showed no deficits in activity level during the open field
test, or anxiety behavior during the elevated plus maze. However,

they did show increased grooming behavior (a repetitive behav-
ior) and in the three chamber social apparatus (Nadler et al.,
2004; Yang et al., 2011) the ITGβ3 mice did not show a pref-
erence for social novelty (indicative of a social deficit). These
behaviors define two of the three core deficits in autism. Note,
however, that there is considerable overlap between the repeti-
tive behaviors seen in OCD and autism in humans, and therefore,
this increased grooming may be attributable to both an OCD and
autistic phenotype.

The purpose of this study was to examine the volumetric dif-
ferences in the brain of an ITGβ3 homozygous KO mouse model
when compared to its corresponding wild-type (WT) mouse using
high resolution MRI and detailed statistical analyses to determine
the effect of ITGB3 on brain morphometry.

MATERIALS AND METHODS
SPECIMEN PREPARATION
Twenty-four male mice were purchased from Jackson Labs (Bar
Harbor, Maine, USA), 12 ITGβ3 homozygous KO mice (JAX
#004669), and 12 WT mice (JAX #101045). All mice were on
a mixed C57BL/6 and 129 background. These mice were sac-
rificed at postnatal day 60. Initially the mice were anesthetized
with ketamine/xylazine and intracardially perfused with 30 mL of
0.1 M PBS containing 10 U/mL heparin (Sigma) and 2 mM Pro-
Hance (a Gadolinium contrast agent) followed by 30 mL of 4%
paraformaldehyde (PFA) containing 2 mM ProHance. Perfusions
were performed with a Pharmacia minipump at a rate of approx-
imately 100mL/h. After perfusion, mice were decapitated and the
skin, lower jaw, ears, and the cartilaginous nose tip were removed.
The brain within the skull was incubated in 4% PFA +2 mM Pro-
Hance overnight at 4˚C then transferred to 0.1 M PBS containing
2 mM ProHance and 0.02% sodium azide for at least 7 days but not
more than 2 months prior to MRI scanning (Spring et al., 2007).

Two of these 24 mice were excluded from the study. One WT
mouse was found dead the morning of the perfusion and one
ITGβ3 KO was discovered on the MRI scan to have a large hemor-
rhage. Therefore, the total number of mice used for this study was
eleven per group.

MAGNETIC RESONANCE IMAGING
A 7.0 Tesla MRI scanner (Varian Inc., Palo Alto, CA) with a 40 cm
inner bore diameter was used to acquire the anatomical images.
A custom-built 16-coil solenoid array was used to image 16 sam-
ples in parallel (Lerch et al., 2011a). Parameters used in the scans
were optimized for high efficiency and gray/white matter con-
trast. A T2 weighted 3D fast spin echo (FSE) sequence was used
with TR = 2000 ms, echo train length = 6, TEeff = 42 ms, field-
of-view (FOV) of 25 mm × 28 mm × 14 mm, and matrix size of
450 × 504 × 250, which yielded an isotropic (3D) resolution of
56 μm. In the first phase-encode dimension, consecutive k-space
lines were assigned to alternating echoes to move discontinuity-
related ghosting artifacts to the edges of the FOV (Thomas et al.,
2004). This sequence involves oversampling in the phase-encode
direction by a factor of 2 to avoid interference of the ghosts
with the main image giving a FOV of 28 mm that was subse-
quently cropped to 14 mm after reconstruction. Total imaging time
was 11.7 h.
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REGISTRATION AND ANALYSIS
To examine the neuroanatomical changes in the brains of the
ITGβ3 KO mice compared to their corresponding WT, all 22 brains
were linearly and subsequently non-linearly registered together
such that a deformation field was created for each mouse which
takes it from native space to the common registered space. All
the scans are then resampled following this transform and aver-
aged to create a population average, which represents the average
neuroanatomy of the study sample. All registrations were per-
formed using a combination of the mni_autoreg tools (Collins
et al., 1994) and ANTS (Avants et al., 2010). The result of this reg-
istration process is to have all the MRI scans deformed into exact
alignment with one another in an unbiased fashion. This allows
for the analysis of the deformations, the goal of which is to model
how the deformation fields relate to genotype (Nieman et al., 2006;
Lerch et al., 2008a). The Jacobian determinants of the deformation
fields are then calculated as measures of volume difference at each
voxel (3D pixel). Significant volume changes can then be calcu-
lated in two ways. First, regional measurements can be calculated
by warping a pre-existing classified MRI atlas onto the population
average (Dorr et al., 2008). This allows the volume of 62 differ-
ent structures, which include the cortical lobes, large white matter
structures, ventricles, cerebellar structures, brain stem regions, and
the olfactory bulbs (Dorr et al., 2008); volumes can be expressed in
two different ways, absolute volume (in mm3) and relative volume
(percentage of total brain volume). Relative volume measurements
are useful in cases where the two groups have overall brain vol-
ume differences. Second, individual voxel measurements can be
calculated from comparisons of the Jacobian determinants in a
specific voxel between the ITGβ3 and WT. Again, this can also be
calculated as an absolute and relative measure of volume. Mul-
tiple comparisons in this study were controlled for using either
the False Discovery Rate (FDR; Genovese et al., 2002) for the
regional comparisons, and Threshold Free Cluster Enhancement
(TFCE; Smith and Nichols, 2009) for the voxel-wise whole brain
comparisons.

RESULTS
An 11% reduction in total brain volume was found, reflected in
53 of 62 brain regions being significantly smaller (Figure 1). The
volume comparisons reported here, therefore, were measured as a
relative volume (i.e., a percentage of total brain volume). Thirty-
two regions were significantly different at an FDR of <0.05 when
the relative volumes were compared. Selected regions are found in
Table 1.

A series of coronal images highlighting the relative voxel-wise
differences between the brains of the ITGβ3 KO mouse and the cor-
responding WT can be seen in Figure 2. These maps were created
by thresholding the effect size measurement by the TFCE corrected
p-value of 0.05; thus only effect sizes of significance are displayed.
Numerous changes can be seen throughout the brains where the
relative volume is larger (red) or smaller (blue). In the hippocam-
pus, for example, there are drastic bilateral changes around the
midline (Figures 2B–D). Further, a bilateral decrease can be seen
in the dorsal raphe nuclei (Figure 2F). It should be noted that the
dorsal raphe nuclei are included within the periaqueductal gray
matter region in our atlas (Table 1).

FIGURE 1 | Highlights the difference in overall brain volume between

the ITGβ3 KO mouse model and the corresponding WT. The points
represent the individual brain volumes, and the error bars represent the
95% confidence interval.

Two specific structures are highlighted in Figure 3: the cor-
pus callosum (Figure 3A) and the periaqueductal gray matter
(Figure 3B). The corpus callosum in the ITGβ3 KO mouse had
an absolute volume difference of ∼3 mm3 or −17%, and a rel-
ative volume decrease of ∼7%. Volume changes of the corpus
callosum along the midline seem to be localized in the posterior
or splenium (Figure 3A). The periaqueductal gray matter had a
−10% absolute volume difference which was consistent with the
overall change in total brain volume, and thus showed no signif-
icant relative volume differences. However in two regions within
the periaqueductal gray matter there are competing differences
(Figure 3B). In the central section of this region there is a relative
volume decrease of a size comparable to the decrease located in
the dorsal raphe nuclei, which was also seen in Figure 2F. These
competing volume differences account for the lack of relative vol-
ume difference and highlight the importance of the additional
voxel-wise measurements.

A large bilateral decrease in the lateral wings of the dorsal
raphe nuclei are visualized in Figure 4, indicating the connection
between the ITGβ3 gene and the development of the serotonin
system. The bar graph in Figure 4 displays the difference within
the indicated voxel.

The hippocampal changes seem to be localized in specific
regions (Figure 5), for example there is a large bilateral decrease
in the CA1 region of the hippocampus. The differences also seem
to follow the dentate gyrus and stratum granulosum more than
the hippocampus, which is also evident in the relative volume
differences for the three structures (Table 1).

The strongest differences in the cerebellum can be seen in
Figure 6, which was thresholded to show only the voxels with the
largest differences. Interestingly, differences are localized to two of
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Table 1 | Relative volume measurements (mean ± SD) of selected regions in the ITGβ3 KO compared to the corresponding WT

Region Relative volume (% total

brain volume) mean ± SD

% Diff FDR

WT ITGB3 KO

CORTICAL REGIONS

Entorhinal cortex 2.32 ± 0.10 2.50 ± 0.05 7.8 <0.001

Frontal lobe 8.78 ± 0.41 9.26 ± 0.20 5.5 <0.01

Parieto-temporal lobe 17.69 ± 0.36 18.65 ± 0.52 5.4 <0.001

Occipital lobe 1.60 ± 0.11 1.60 ± 0.06 NS NS

SUBCORTICAL GRAY MATTER REGIONS

Amygdala 2.85 ± 0.10 3.05 ± 0.07 7.0 <0.001

Globus pallidus 0.63 ± 0.04 0.59 ± 0.02 −6.3 0.01

Hippocampus 4.62 ± 0.17 4.42 ± 0.07 −4.3 0.01

Dentate gyrus of the hippo. 0.87 ± 0.04 0.81 ± 0.02 −7.8 <0.001

Stratum granulosum of hippo. 0.22 ± 0.01 0.19 ± 0.01 −11.8 <0.001

Hypothalamus 2.17 ± 0.07 2.24 ± 0.07 3.5 0.04

Medulla 5.55 ± 0.19 5.33 ± 0.19 −4.1 0.03

Midbrain 2.82 ± 0.10 2.80 ± 0.06 NS NS

Periaqueductal gray matter
†

0.85 ± 0.04 0.86 ± 0.03 NS NS

Striatum 4.74 ± 0.13 4.56 ± 0.08 −3.7 0.01

Thalamus 3.66 ± 0.14 3.67 ± 0.06 NS NS

CEREBELLAR REGIONS

Arbor vita of the cerebellum
††

2.25 ± 0.07 1.96 ± 0.03 −12.8 <0.001

Cerebellar cortex 11.05 ± 0.54 10.05 ± 0.34 −9.0 <0.001

WHITE MATTER REGIONS

Anterior commisure – anterior 0.29 ± 0.02 0.29 ± 0.01 NS NS

Anterior commisure – posterior 0.10 ± 0.01 0.10 ± 0.00 NS NS

Corpus callosum 3.50 ± 0.08 3.25 ± 0.09 −7.1 <0.001

Cerebral peduncle 0.46 ± 0.02 0.43 ± 0.01 −5.5 0.01

Fimbria 0.70 ± 0.06 0.62 ± 0.03 −12.3 0.001

Fornix 0.15 ± 0.01 0.14 ± 0.00 −4.7 0.01

Internal capsule 0.58 ± 0.03 0.53 ± 0.02 −9.5 <0.001

Percent difference is also listed when significant with the corresponding False Discovery Rate (FDR).
†The periaqueductal gray matter includes the raphe nuclei.
† †The arbor vita of the cerebellum includes the deep cerebellar nuclei.

the deep cerebellar nuclei, namely the fastigial nuclei (red arrows)
and the nucleus interpositus (yellow arrow). Also there was a large
decrease in the anterior cerebellar vermis (green arrow).

DISCUSSION
The most striking difference between the ITGβ3 mouse and its
corresponding WT was the large difference in total brain vol-
ume (Figure 1). The 11% decrease in brain volume was larger
than previous studies in mouse models related to autism. In the
Neuroligin3 R451C knockin (NL3 KI) an 8% decrease in total
brain volume was found (Ellegood et al., 2011). In mouse models
of fragile X syndrome (FXS) and 16p11.2 deletion/duplication
syndrome, both of which are relevant to autism, no signifi-
cant total brain volume differences were found (Ellegood et al.,
2010; Horev et al., 2011). Furthermore, neuroanatomy differ-
ences in the ITGβ3 were more widespread. Relative volume
measurements in the ITGβ3 mouse found 30 of the 62 regions
to be significantly different at and FDR of <5%. In the other

autism studies, significant relative volume measurements at an
FDR of <5% were found in 14 regions in the NL3 KI mouse,
11 in the 16p11.2 deletion, 0 in the 16p11.2 duplication, and
1 in the FXS model (Ellegood et al., 2010, 2011; Horev et al.,
2011). Contrary to what is found in the ITGβ3, a well repli-
cated finding in human autism is an increase in total brain vol-
ume. Although, the ITGβ3 mice used in this study were adult
animals, and the human brain overgrowth is reported in chil-
dren, which has been hypothesized to have an age-dependent
effect (Amaral et al., 2008; Stanfield et al., 2008; Anagnostou
and Taylor, 2011). In spite of this smaller overall brain vol-
ume, relative volume increases in the cortical gray matter were
found, specifically in the frontal (+5.5%,FDR < 0.01) and parieto-
temporal lobe (+5.4%, FDR < 0.001), as well as in the entorhi-
nal cortex (+7.8%, FDR < 0.001). No significant volume change
were found in the occipital lobe (−0.1%, FDR = 0.98). Interest-
ingly, the frontal and parieto-temporal lobes are reported to be
increased in the autistic children compared to controls. A similar
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FIGURE 2 | Coronal slices highlighting the differences between the

ITGβ3 mouse and the WT. The slices are arranged from anterior (A) to
posterior (H). These maps were created by thresholding the effect size
measurement by the TFCE multiple comparison correction; therefore only
effects sizes of significance (TFCE corrected p value < 0.05) are displayed.
Anything displayed in blue indicates a smaller volume in the ITGβ3 mouse
and anything displayed in red indicates a larger volume in the ITGβ3 mouse.

increase was not found in the occipital lobe (Courchesne et al.,
2011).

Neuroanatomical observations in autism has shown reduced
neuronal cell size and increased cellular packing density in the hip-
pocampus, subiculum, entorhinal cortex, amygdala, mammilary
body, anterior cingulated gyrus, and septum (Bauman and Kem-
per, 2005). Of these seven regions with notable cellular differences
in human autism five had significant relative volume differences
in the ITGβ3 mouse, hippocampus (−4%), subiculum (−5%),

FIGURE 3 |The relative volume differences in the corpus callosum (A)

and the periaqueductal gray matter (B) are highlighted. The specified
anatomical regions are displayed in yellow. Significant relative volume
increases are displayed in red while significant volume decreases are
displayed in blue.

entorhinal cortex (+8%), amygdala (+7%), and mammilary bod-
ies (+10%); one had no significant difference, the septum; and
one was not examined as the cingulate gyrus is included within
our corpus callosum region. The reduced neuronal cell size and
increased pack density may only account for those regions that
were smaller in the ITGβ3 mouse, however. The reported neu-
roanatomical assessment of these structures could certainly be the
cause of these volume difference seen in the ITGβ3 brains. How-
ever, it would require an extensive histological examination to
determine what the specific driving force is behind these changes,
which was beyond the scope of this study. Similarly, within the hip-
pocampus the CA1 regions were noted after golgi staining to have
a decrease complexity and the extent of dendritic arbors (Bau-
man and Kemper, 2005), this could be the reason for the bilateral
decrease found in the CA1, shown in Figure 5. The entorhinal cor-
tex has also been linked to schizophrenia and found to be reduced
in volume (Falkai et al., 2000). Schizophrenia and autism have a
number of overlapping genetic findings (neurexin1 for example;
Voineskos et al., 2012), so there might be a similar mechanism
causing the difference, although an increase in the size of the
entorhinal cortex was found in the ITGβ3 mouse.

Many white matter structures were smaller in the ITGβ3
mouse. Sixteen of the 23 white matter structures in the atlas
had significantly smaller relative volumes compared to the WT
at FDR < 10%. White matter differences have become common
findings in human autism, with the theory that children with
autism undergo a period of abnormal white matter development
(Ecker et al., 2012). White matter deficits in autism have often
been thought of as atypical or under-connectivity (Geschwind and
Levitt, 2007), and therefore the large decreases found in the white
matter in this model would add weight to that finding. The corpus
callosum, the largest most well formed white matter structure in
the mouse, had an absolute volume decrease of 17% compared
to the WT, which corresponded to a relative volume decrease of
7.1%. This is consistent with a number of volumetric findings in
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FIGURE 4 |The dorsal raphe nuclei in the ITGβ3 show a large decrease in

the lateral wings located within the periaqueductal gray matter. The
relative volume changes in the highlighted voxel (pink cross) are displayed in

the bar graph on the left. IC, inferior colliculus; SC, superior colliculus; PAG,
periaqueductal gray matter; SCP, superior cerebellar peduncle; and DR, dorsal
raphe nuclei.

FIGURE 5 | Volume differences in the hippocampus. The differences are
localized around the midline CA1 region as well as the dentate gyrus (DG)
and stratum granulosum (SG).

human autism (Cody et al., 2002; Stanfield et al., 2008; Verhoeven
et al., 2010). This difference has also been seen in the Neuroli-
gin3 R451C knockin (NL3 KI) mouse model, also associated with
autism (Ellegood et al., 2011). In the NL3 KI mouse, the changes
in the corpus callosum along the midline were localized in the
posterior region, which is consistent with the ITGβ3 mouse seen
in Figure 3A. These differences in the posterior part of the corpus
callosum have also been reported in human autism populations
(Egaas et al., 1995; Piven et al., 1997).

A number of regions affected in the ITGβ3 mouse are closely
related to the serotonin system and human autism. Perhaps the
most interesting finding was the bilateral decrease in the lateral
wings of the dorsal raphe nuclei (Figure 4). The initial formation
of the serotonergic neurons is in the brain stem, specifically in
the raphe nuclei (Takahashi et al., 1986). From these nuclei the

FIGURE 6 |The most highly significant changes in the cerebellum.

These differences have effect sizes smaller (i.e., more significant) than
−3.0. Highlighted in this figure are strong changes in the anterior cerebellar
vermis (green arrow), fastigial nucleus (red arrows), and nucleus
interpositus (yellow arrows).

serotonin neurons project to a number of different areas in the
brain (Sodhi and Sanders-Bush, 2004). Changes in these nuclei,
therefore, could have long lasting effects on many other regions of
the brain. Specifically, a number of serotonergic projections from
the raphe nuclei travel to the cortex, which could be the cause of
the relative volume increases in three of the four cortical struc-
tures (Table 1). Also, one of the serotonergic projections to the
hippocampus originates from the lateral wings of the dorsal raphe
nuclei (Jacobs and Azmitia, 1992), which is the exact area outlined
in Figure 4. The smaller dorsal raphe nuclei, therefore, may be
causing a corresponding decrease in size in the hippocampus. The
hippocampus has also been long reported as a region of interest
in autism (Aylward et al., 1999). In this current study, the hip-
pocampal region as a whole is divided into three regions, namely
the dentate gyrus, the stratum granulosum, and the residual hip-
pocampus. The residual hippocampus in the ITGβ3 mouse has a
relative volume decrease of −4.3%, the dentate gyrus decreased by
−7.8%, and the stratum granulosum decreased by −11.8%. The
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dentate gyrus and stratum granulosum are more affected than
the residual hippocampus, and this is also seen in Figure 5. Yan
et al. (1997) determined that a reduction of serotonin in the early
postnatal period could result in changes in the morphology of the
dentate granule cells, particularly in the synaptic spine density. In
fact dendritic spine density was reduced by 27% in all ages in that
study. This change in the morphology in the dentate granule cells
may account for the stronger effect in dentate gyrus than the rest
of the hippocampus, but it remains to be seen whether that is the
only effect causing the difference.

The cerebellum has also been implicated in human autism, in
particular the cerebellar vermis (Courchesne et al., 1988), which
has been found to be underdeveloped or decreased in size. Further,
a number of changes have been found in the cellular organiza-
tion of the cerebellum, with reported findings of reductions in
the density of Purkinje cells (Palmen et al., 2004; Bauman and
Kemper, 2005). Volumetric changes in the cerebellum have been
studied quite extensively using MRI in human autism often find-
ing increases in the overall volume of the cerebellum, which was
reported to be consistent with the total brain volume change (Ama-
ral et al., 2008). This is in contrast to what was found in the ITGβ3
mouse where the cerebellar changes are quite drastic, with relative
volume decreases in the arbor vita of the cerebellum (the white
matter part, which included the deep cerebellar nuclei) of −12.8%
and the cerebellar cortex of −9.0%. While the cerebellum as a
whole was drastically different in the ITGβ3 mouse, a very strong
decrease was found in the size of the anterior cerebellar vermis
(Figure 6, green arrow). Furthermore, a number a large changes
were also localized to two of the deep cerebellar nuclei (Figure 6),
namely the fastigial nuclei (red arrows) and the nucleus inter-
positus (yellow arrow). These two deep cerebellar nuclei were also
implicated in FXS (Ellegood et al., 2010), but in that study the
difference was more subtle.

Behaviorally, the ITGβ3 KO mouse shows a lack of preference
for social novelty (Carter et al., 2011), in the study by Carter et al.
(2011) they state that it would be tempting to label this deficit as
a hippocampal-associated memory deficit and they indicate that
previous work has suggested that social memory may be more
dependent on the amygdala and the olfactory bulbs (Ferguson
et al., 2001; Adolphs, 2009; Carter et al., 2011). With the differ-
ences reported here in the amygdala, hippocampus, and olfactory
bulbs (+8% relative volume), it may in fact be a combination
of all three regions that is causing this change in social novelty.
Also reported in that study was an increase in grooming behavior
in novel environments (Carter et al., 2011), and while it may be
tempting to label this as an OCD phenotype, there is a consider-
able amount of overlap between the repetitive behaviors seen in
OCD and autism in humans (Zandt et al., 2009). Clinically, the
distinction is often based on the sophistication of the compulsion
or obsession, which may be inaccessible in the mouse (Zandt et al.,
2007). The ITGβ3 could be modeling aspects of both conditions
and yield insight into the genetic basis of repetitive behaviors. The

increased grooming behavior was thought to implicate a cortico-
striatal circuit in mice, and has been reported previously in mouse
models of OCD (Welch et al., 2007; Shmelkov et al., 2010). In the
Shmelkov et al. (2010) study, the mice had abnormalities in the
striatal anatomy, specifically a decrease in volume, and an over
activation of the orbitofrontal cortex. Similarly, the striatum in
the ITGβ3 KO mouse was also decreased by −3.7% in relative
volume and may be the cause of this increased grooming seen in
both models. A larger relative volume of the frontal cortex was also
found in the ITGβ3 mice (+5.5%), which could be due to the over
activation reported in the orbitofrontal cortex in the OCD mice.

Future histological examination of these mice is required to
answer some of the open ended questions left by this study. Specif-
ically, what is reason behind the smaller dorsal raphe nuclei? Is
it a cellular loss that is causing the difference? Is there a loss in
the number of projections from the nuclei? With regards to the
hippocampus, are the decreases in the dentate gyrus caused by
the morphological change in the synaptic spine density as was
hypothesized? Or is there an unknown factor contributing to this
difference? The strong changes in the deep cerebellar nuclei are
intriguing, specifically as they are related to previous findings in a
Fragile X mouse model. In that study it was hypothesize that neu-
ronal loss may contribute to the changes in the nuclei (Ellegood
et al., 2010), is that the same for the ITGβ3 mouse model?

In summary, the ITGβ3 mouse model has a number of inter-
esting changes which are related to both autism and the serotonin
system in general, and based on the behavioral findings in these
mice may also have relevance to other brain disorders, such as
OCD. The ITGβ3 KO mouse also appears to have a more severe
anatomical phenotype that previously examined mouse models
related to autism. The changes in the lateral wings of the dor-
sal raphe nuclei are particularly intriguing, since that nucleus is
so integral to the development of many different brain regions.
Further investigation on the cause of some of these differences is
required; however, this study was an important first step in the
investigation of the neuroanatomy of the ITGβ3 mouse model.
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