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ABSTRACT

Since the last published update in 2014, the Super-
Pred webserver has been continuously developed
to offer state-of-the-art models for drug classifica-
tion according to ATC classes and target prediction.
For the first time, a thoroughly filtered ATC dataset,
that is suitable for accurate predictions, is provided
along with detailed information on the achieved pre-
dictions. This aims to overcome the challenges in
comparing different published prediction methods,
since performance can vary greatly depending on
the training dataset used. Additionally, both ATC and
target prediction have been reworked and are now
based on machine learning models instead of over-
all structural similarity, stressing the importance of
functional groups for the mechanism of action of
small molecule substances. Additionally, the dataset
for the target prediction has been extensively filtered
and is no longer only based on confirmed binders
but also includes non-binding substances to reduce
false positives. Using these methods, accuracy for
the ATC prediction could be increased by almost 5%
to 80.5% compared to the previous version, and addi-
tionally the scoring function now offers values which
are easily assessable at first glance. SuperPred 3.0
is publicly available without the need for registration
at: https://prediction.charite.de/index.php.

GRAPHICAL ABSTRACT

INTRODUCTION

Since its first publication in 1976, the Anatomical Thera-
peutic Chemical (ATC) classification system of the World
Health Organization (WHO) is still the prevalently used
classification system for approved drugs. Continuously up-
dated to account for new findings, it classifies drugs ac-
cording to their anatomical, therapeutic, pharmacological
and chemical properties. It is built strictly hierarchically,
with level 5 representing singular drugs and levels 1–4 in-
creasingly larger groups of drugs with similar properties
(1). Therefore, predicting the ATC group of an unknown
substance can give insights into its medical properties and
be used to assess drug candidates. Different methods have
been proposed over the years to predict ATC classes, for in-
stance supervised learning techniques for lower levels (2),
with higher levels being predicted by combining the level 1
prediction with external sources such as ChEMBL (3) or
STITCH (4). Other prediction methods are based on multi-
label network inference (5–8) or deep learning in the form
of convolutional neural networks (9). Similarly important
when assessing properties of drug candidates are their in-
teractions with human protein targets. Binding of a struc-
ture to unintended off-targets can potentially cause dan-
gerous side effects (10–11) and therefore not only renders
a substance unsuitable for approval but also offers chances
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for new therapeutic application areas, even for already ex-
isting drugs (12–13). Therefore, a wide variety of methods
for the prediction of protein targets for unknown chemical
structures have been developed, including network-based
approaches, machine learning models, molecular docking
and ligand-based in silico predictions (14).

However, only few webservers exist that offer ATC or tar-
get prediction services. In the last decade, only one other
webserver for ATC prediction was published (8), which is
currently not reachable. Similarly, available servers for tar-
get prediction are based on molecular docking (15–16) and
therefore need a target protein in addition to the chemi-
cal structure of interest. Promiscuous 3.0 aims to overcome
this limitation by providing a freely available webserver that
offers both ATC and target prediction services for user-
provided molecular structures, with the possibility to com-
pare input structures simultaneously to all available targets
and obtain prediction scores immediately.

MATERIALS AND METHODS

Data filtering for ATC prediction

To obtain a dataset suitable for the prediction of ATC codes
for unknown chemical structures, a number of filtering steps
needed to be applied. The initial dataset was obtained from
the WHO website (https://www.whocc.no/) and contained
5067 distinct ATC codes that were spread over 795 different
level 4 groups. In multiple stages, the dataset was polished
to contain a remaining number of 1552 ATC codes over 233
predictable level 4 groups, satisfying the following require-
ments:

1. All ATC codes starting with the letter ‘V’ were removed
from the dataset, as they belong to the group ‘various’,
which can contain many different types of drugs and
therefore a broad variety of potentially unrelated struc-
tures.

2. To enhance the unambiguity of the dataset, all singular
ATC codes that belong to a combination of two or more
different drugs were removed.

3. As another step to ensure the unambiguity of the ATC
groups in the prediction dataset., structures that were as-
sociated with different ATC codes had all their respective
codes removed from the dataset.

4. Since the prediction is based on molecular structure,
only ATC codes that were assigned to structures and can
therefore be translated into a SMILES string were kept.
This removes ATC codes associated with plants, materi-
als, proteins and similar substances from the prediction
dataset.

5. Salts were removed as well. Especially for the valida-
tion, inclusion of salts would lead to an overestimation
of the prediction performance, since the same chemical
structure could be present multiple times in the train-
ing dataset, with only the secondary atom/a very small
chemical substructure being different between the sub-
stances.

After applying the described filtering steps, the remain-
ing ATC codes were grouped according to their respective

level 4 codes. Furthermore, all groups that consisted of only
one remaining structure were removed as well, since their in-
clusion would likely lead to extreme overfitting. Lastly, all
groups ending on the letter ‘X’ were excluded, since they are
established for newly added substances that are not clearly
belonging to an existing level 4 group and therefore classi-
fied as ‘other’ structures in the respective level 3 groups.

Data filtering for target prediction

The dataset for the target prediction was obtained from the
ChEMBL database (3), using version 29. As for the ATC
code prediction, the binding dataset needed to be filtered
first, which was done similarly as in Peón et al. (17). Only as-
says for the organism of ‘Homo sapiens’ were included, and
the assay type had to be either type B (binding) or type F
(functional). Furthermore, the associated assay confidence
level had to at least 7. The denoted activity types were re-
quired to be IC50, EC50, Ki, Kd or Potency, with a stan-
dard unit of nanometer (nm), with values of 0 nm addition-
ally excluded.

Using the remaining binding assay data, we defined two
sets of associated structures for each target: strong binders
and non-binders. For strong binders, at least one activity
value for the specified target structure had to be 1000 nm
or less, with the published relation of ‘ = ’ or ‘<’. Similarly,
non-binders were defined as substances with activity values
of 30 000 nm or more and a relation of ‘ = ’ or ‘>’. Ad-
ditionally, potential ambiguity from the varying assay data
was removed by requiring that for strong binders no further
assay exists that defines it as a non-binder and vice versa.
Additionally, in this way binding data with the data validity
comment ‘Outside typical range’ were excluded from both
sets.

These filtering steps resulted in 500 979 unique trusted re-
lations between 365 719 strong binding substances and 2353
targets. About 691 of these have assigned at least 20 binders
and nonbinders, respectively, and therefore enough associ-
ated data to be part of the prediction pipeline.

Machine learning methodology

As training data for the machine learning models, the
molecular structures with known ATC codes and target
relations were used in the form of molecular fingerprints,
which were derived from their corresponding SMILES rep-
resentation.

For both ATC and target prediction, a number of dif-
ferent machine learning models were tested and evaluated
regarding their performance. This included logistic regres-
sion, linear discriminant analysis, k-nearest neighbors, de-
cision tree, support vector machines, gaussian naı̈ve bayes
and random forests. In addition to this, a combination of
varying parameters was tested regarding length and (if ap-
plicable) radiuses for the molecular fingerprints. Further-
more, since the size of level 4 groups greatly varied, with the
largest groups containing 52 structures and smaller groups
only 2–3, random oversampling was applied to the training
dataset, meaning a structure from the minority class was
randomly chosen to be re-inserted into the dataset, until all
classes were of the same size.

https://www.whocc.no/
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Figure 1. Overview of the accuracies for the different target prediction
models, evaluated via 10-fold cross-validation.

Of the tested models, logistic regression using Morgan
fingerprints of length 2048 and radius 2 achieved the high-
est accuracy (evaluated via leave-one-out cross-validation),
classifying 70.1% of level 4 ATC codes correctly. Prediction
of the ATC code for an unknown molecular structure was
performed using a multi-class prediction model, which does
not evaluate the probability for each of the 233 predictable
ATC classes separately but instead works with the assump-
tion that each structure belongs to exactly one ATC group
and therefore distributes a total value of 100% between the
different classes. This corresponds to the filtered training
dataset, where ambiguous ATC codes were previously re-
moved. Still, structures associated with multiple ATC codes
can be recognized via the distribution of the resulting prob-
abilities, when multiple high scoring ATC codes are pre-
dicted.

For the target prediction, one machine learning model
was trained for each of the predictable targets. Accuracy
of the models was evaluated using 10-fold cross-validation,
with 82% of the target models achieving at least 85% ac-
curacy and only 5% scoring worse than 70% accuracy (Fig-
ure 1). Since the performance of the machine learning mod-
els varies between targets, two different scores are reported
as results: the probability that the input structure interacts
with the target in question as determined by the correspond-
ing machine learning model, and the overall accuracy of the
respective model.

Assigning of indications

As an additional feature, possible relevant indications for
predicted targets were extracted from the Therapeutics
Target Database (TTD, 18). Each of the included pre-
dictable targets was mapped to targets in the TTD database
and their associated indications are displayed in a sepa-
rate table, if the respective target is predicted to be active
for a structure of interest. If multiple indications are as-
signed to a single target, each indication is displayed in
a separate row to facilitate searching the table for indica-
tions that are shared between multiple different predicted
targets.

THE SUPERPRED 3.0 PLATFORM

Server architecture

Data for the webserver is stored in a relational MySQL
database, hosted on the Charité IT system. For the han-
dling of chemical information in the database, as well as
for the preprocessing of the training data for the machine
learning models, the Python package RDKit (http://www.
rdkit.org/) and ChemAxon (https://chemaxon.com/) soft-
ware were used. The webserver back-end consists of a lab-
based LAMP (Linux/Apache/MySQL/PHP) server, using
PHP as back-end language. The connection to the under-
lying database is established through a MySQL interface,
and front-end data delivery via a mixture of Html form sub-
mission responses and AJAX requests. Website functional-
ities are implemented using JavaScript and, in extension, its
plugin jQuery (https://jquery.com/). Additionally, the CSS
framework Bootstrap 4 (https://getbootstrap.com/) is used.
Tables on the website are created using the jQuery plugin
DataTables (https://datatables.net/) and its absolute sorting
extension (https://datatables.net/plug-ins/sorting/absolute).
For the chemistry interface, the JavaScript library Chem-
Doodle Web components (https://web.chemdoodle.com/)
was used.

For further security improvements, we activated
Fail2Ban (https://www.fail2ban.org/wiki/index.php/
Main Page) as well as an App-Firewall. Fail2Ban inspects
logs and reacts to suspicious signatures via IP-bans at the
firewall. By this, it blocks automated mass-scan and route
attack, and also reinforces other security systems by adding
bans for perpetrators. In addition, we also implemented
an App-Firewall, configured specifically to this applica-
tion, that actively blocks many dangerous requests before
they can happen. Here, both security systems are used
in conjunction, by additionally configuring Fail2Ban to
ban anyone violating App-Firewall rules. An app firewall
protects from many threats, from cross-side scripting (CSS)
to SQL-injections, session hijacking and more. By this, it
could happen to users that they will be blocked by one
of these security mechanisms, if they use the webserver
in an incorrect way. Should this happen, they will remain
blocked for a short period, where the site will not load for
this IP-address.

The usage of a JavaScript-capable browser is essential
and the server was tested on the most recent versions of
Google Chrome and Mozilla Firefox. No login or providing
of email address is needed to access all functionalities of the
webserver.

Data input

Both ATC and target prediction require a molecular struc-
ture as input parameters, using the same input mechanisms.
Structures can be uploaded by a number of ways in the
ChemDoodle web interface. The simplest possibility is en-
tering the PubChem (19) name of a structure of interest,
but SMILES strings and molecular structure files can be
entered/uploaded as well. Additionally, drawing tools are
provided, either to draw a molecular structure from scratch
or to modify an uploaded structure. When satisfied with the
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displayed structure, calculations can be started using a sim-
ple button-press.

Output data

Calculations should take only a couple seconds, and results
are displayed immediately on the webpage for both ATC
and target prediction.

Prediction of the ATC code for an input structure dis-
plays all known ATC codes, in case of the structure already
being included in the SuperPred 3.0 database. Known ATC
codes are reported without a probability score, to further
differentiate them from the predicted ATC groups. Depend-
ing on the probability score, newly found ATC codes are re-
ported either in green, yellow or red color, and structures
with multiple potential ATC codes are highlighted in par-
ticular. It is possible that both known and newly found, po-
tential ATC codes are reported.

Similarly, using the target prediction for structures that
are included in the database, both known and newly pre-
dicted targets can be reported. For this purpose, only tar-
gets that classify as ‘strong binders’ (as described in the data
filtering for the target prediction) are considered known tar-
gets and displayed with their corresponding assay binding
data. Predicted targets are reported in form of a table, pro-
viding the formerly described two accuracy scores as well
as information and visualization links. Additionally, associ-
ated indications of predicted targets are displayed in a sep-
arate table, according the TTD mapping. Targets with mul-
tiple indications are displayed with separate rows for each
indication, so the table is easily searchable by (shared be-
tween different targets) indications.

Comparison to other methods/servers

A challenge when comparing performances between differ-
ent methods is the inexistence of a standard ATC predic-
tion dataset, on which accuracies of different models can be
evaluated. Furthermore, multiple different metrics exist for
the assessment of performance, and lastly not all webservers
aim to predict the same level of ATC groups. Therefore,
accuracies are compared both for level 1 and level 4 ATC
prediction (even though the models used in SuperPred 3.0
were optimized only for level 4 prediction), and for publica-
tions where a different measure of performance was used,
the analogous performance metric was calculated. Addi-
tionally, to ensure comparability to the previous version of
SuperPred, performance was evaluated on the previously
used dataset as well.

Compared to other recent publications, SuperPred 3.0
performs best, both in level 1 and level 4 prediction. Ad-
ditionally, performance on the legacy dataset could be in-
creased by almost 5%, compared to SuperPred 2.0 (Table
1). Only one of the publications also offers their method in
form of a webserver, which is unfortunately currently not
reachable, so that, to the best of our knowledge, SuperPred
3.0 is the only freely available webserver offering ATC code
prediction.

Among the webservers doing target prediction, compa-
rable servers are either currently not reachable (20–21), not
displaying a result (22) or using a docking approach (15–

Table 1. Comparison of the accuracy of different ATC prediction servers.
* = accuracy for expected ATC code reported as first hit evaluated from
AUC figure, ** = using SuperPred 2.0 dataset, *** = using SuperPred 3.0
dataset

Publication
Level 1

accuracy [%]
Level 4

accuracy [%] Webserver

Olson, 2017 73.7 41.2 No
Cheng, 2017 67.1 - No
Lumini, 2018 77.8 - No
Wang, 2019 79.5 - No
Peng, 2021 - 33* Not reachable
SuperPred 2.0 80.9 75.1 -
SuperPred 3.0 87.9**/82.3*** 80.5**/70.1*** Yes

16), which requires the desired target to be provided addi-
tionally. In contrast, SuperPred 3.0 allows the comparison
of an input structure to all available targets immediately.

Example case

To demonstrate the functionalities of the webserver, the
newly approved drug levonadifloxacin was chosen, which
was assigned with the ATC code J01MA24 in 2021. It is a
stereoisomer of the previously approved drug nadifloxacin,
more specifically an arginine salt of the active S(-)isomer
(23). With the ATC code being assigned so recently, it was
not included in the training data for the prediction dataset
and is therefore unknown to the database. In contrast, nad-
ifloxacins ATC code D10AF05, which has been established
for a longer time, is included both in the database and the
prediction training dataset. Therefore, performing an ATC
prediction for levonadifloxacin first reports D10AF as an
ATC code, that is known for a stereoisomer of the structure
in question. Despite a stereoisomer being included in the
training dataset, J01MA and J01MB are additionally pre-
dicted as potential ATC codes. These groups only differ in
the last letter and contain structurally similar substances.
Still, the actual ATC group J01MA is predicted with a like-
lihood of 83%, while J01MB only achieves a score of 15%
(Figure 2).

Levonadifloxacin is an antibacterial agent that was ap-
proved for the treatment of acute bacterial skin and skin
structure infections (24). Among its predicted targets is
DNA topoisomerase II alpha, which is predicted to be asso-
ciated with levonadifloxacin with a probability of over 90%,
while the respective target prediction model was evaluated
with an accuracy of 89% via 10-fold cross-validation (Fig-
ure 2). DNA topoisomerase II alpha is listed on TTD as a
functionally relevant target for other drugs from the ATC
group J01MA, such as ciprofloxacin, which also share an-
tibacterial properties.

CONCLUSIONS

The prediction method of SuperPred has been completely
reworked and is now based on machine learning models
instead of overall structural similarity. This allows for the
accurate prediction of ATC groups, even in cases where
only small parts of the respective structures, such as func-
tional groups, are responsible for the therapeutic impact or
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Figure 2. Computational output for ATC and target prediction of the substance levonadifloxacin.
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metabolic processes and therefore the assignment to a spe-
cific ATC code. By these means, accuracy of the ATC pre-
diction could be improved by more than five percent in com-
parison to the previous version of the webserver.

The prediction of (therapeutic) targets is no longer
based only on active binders but also includes experimen-
tally confirmed nonbinders, which were extracted from the
ChEMBL database. Together with the machine learning
methodology, this design enables a much more accurate as-
sessment of structural groups that play a role in the protein
binding process, in addition to the advantage that focus-
ing on substructure features in contrast to overall structural
similarity already offers. Furthermore, the previous scor-
ing function was replaced with much more intuitive values,
which are easily assessable on first glance.

Lastly, the inexistence of a commonly used ATC dataset
complicates the comparison between different prediction
approaches. Here, we made an effort to compile and accu-
rately filter an ATC dataset which is both suited for the pre-
cise prediction of ATC codes, but at the same time down-
samples all too similar structures, which leads to a more ac-
curate assessment of the performance and simultaneously
serves to avoid overfitting in unknown datasets. The filtered
dataset is available in the supplementary material, including
information about expected and predicted ATC codes.

DATA AVAILABILITY

SuperPred 3.0 is publicly available and accessible without
any need for registration at https://prediction.charite.de/
index.php. Results are displayed immediately and directly
on the website without the need to provide an e-mail ad-
dress or similar means. The filtered dataset (including re-
sults from the performed leave-one-out cross-validation) is
both available in the supplementary data and downloadable
in the website FAQs.
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