

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl acetate

Alexsandro F. dos Santos,^a Rodrigo Cristiano,^a Petrônio F. Athayde-Filho^a and Adailton J. Bortoluzzi^b*

^aDepto. de Química - Campus I - Universidade Federal da Paraíba, 58051-900 - João Pessoa, PB, Brazil, and ^bDepto. de Química - Universidade Federal de Santa Catarina, 88040-900 - Florianópolis, Santa Catarina, Brazil Correspondence e-mail: adailton.bortoluzzi@uísc.br

Received 21 January 2014; accepted 9 April 2014

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.136; data-to-parameter ratio = 12.9.

In the title compound, $C_{11}H_{10}N_2O_3$, which is a potential bioactive compound, the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane is rotated out of the benzene plane [dihedral angle = 82.69 (9)°]. In the crystal, the molecules form layers down the *a* axis with weak π - π interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

Related literature

For the bioactivity of 1,3,4-oxadiazole derivatives, see: Boström *et al.* (2012); Rajak *et al.* (2009); Polshettiwar & Varma (2008). For the properties of the 1,3,4-oxadiazole heterocycle, see: Bolton & Kim (2007); Liu *et al.* (2007); Kulkarni *et al.* (2004). For material chemistry applications, see: Hughes & Bryce (2005); Wang *et al.* (2011); Cristiano *et al.* (2006); Han (2013). For the synthesis, see: Gallardo *et al.* (2001). For related structures, see: Vencato *et al.* (1996); Gutov (2013).

b = 16.925	(3) Å	
c = 9.5078	(6) Å	

 $\beta = 92.113 \ (6)^{\circ}$ $V = 1066.7 \ (2) \ Å^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Enraf–Nonius CAD-4 diffractometer 1998 measured reflections 1885 independent reflections 1403 reflections with $I > 2\sigma(I)$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.136$ S = 1.111885 reflections organic compounds

 $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K $0.50 \times 0.36 \times 0.16 \text{ mm}$

R_{int} = 0.018
3 standard reflections every 200 reflections intensity decay: 1%

146 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max}=0.24~e~{\rm \AA}^{-3}\\ &\Delta \rho_{min}=-0.20~e~{\rm \AA}^{-3} \end{split}$$

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *SET4* in *CAD-4 Software*; data reduction: *HELENA* (Spek, 1996); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2285).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bolton, O. & Kim, J. (2007). J. Mater. Chem. 17, 1981-1988.
- Boström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. (2012). J. Med. Chem. 55, 1817–1830.
- Cristiano, R., Vieira, A. A., Ely, F. & Gallardo, H. (2006). *Liq. Cryst.* 33, 381–390.
- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). *Liq. Cryst.* 28, 1343–1352.
- Gutov, O. V. (2013). Cryst. Growth Des. 13, 3953-3957.
- Han, J. (2013). J. Mater. Chem. C1, 7779-7797.
- Hughes, G. & Bryce, B. (2005). J. Mater. Chem. 15, 94-107.
- Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.
- Liu, Y., Zong, L., Zheng, L., Wu, L. & Cheng, Y. (2007). Polymer, 48, 6799–6807.
- Polshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 879-883.
- Rajak, H., Kharya, M. D. & Mishra, P. (2009). Int. J. Pharm. Sci. Nanotech. 1, 390–406.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vencato, I., Gallardo, H. & Meyer, E. (1996). Acta Cryst. C52, 2301-2303.
- Wang, X., Guang, S., Xu, H., Su, X. & Lin, N. (2011). J. Mater. Chem. 21, 12941–12948.

Monoclinic, $P2_1/n$

supplementary materials

Acta Cryst. (2014). E70, o559 [doi:10.1107/S1600536814007946]

2-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl acetate

Alexsandro F. dos Santos, Rodrigo Cristiano, Petrônio F. Athayde-Filho and Adailton J. Bortoluzzi

1. Comment

Molecules containing the heterocycle 1,3,4-oxadiazole exhibit a wide range of biological activities, such as anticancer, antidiabetic, anti-inflammatory, analgesic, antibacterial, anticonvulsant, anti-HIV, herbicidal, fungicidal, pesticidal and antihypertensive (Boström *et al.*, 2012; Rajak *et al.*, 2009). This five-membered ring has been studied as a potential pharmacophore in a variety of chemical structures, due to its favorable metabolic profile and its capability of forming H-bonding associations (Polshettiwar & Varma, 2008; Gutov, 2013). Furthermore, aromatic substituted 1,3,4-oxadiazoles have widely been used in electro-optical devices due to their good thermal and chemical stability, blue luminescence with high quantum yield and electron transporting capabilities (Hughes & Bryce, 2005; Han, 2013).

As part of our continuing interest in the synthesis and evaluation of bioactive molecules containing *N*-heterocycles, we now report the synthesis and structure of the title compound $C_{11}H_{10}N_2O_3$. In this structure (Fig. 1), the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane defined by O1, O2, C13, C14 is rotated out of the benzene plane giving a dihedral angle of 82.69 (9)° which corresponds to a torsion angle C6—C7—O1—C13 of 83.26 (22)°. In the crystal the molecules form layers down the *a* axis with weak inter-layer π - π interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

2. Experimental

A mixture of 5-(2-hydroxyphenyl)tetrazole (Gallardo *et al.*, 2001) (2.0 g, 12.3 mmol) and acetic anhydride (6.3 g, 61.5 mmol) was heated under reflux for 2 h. The reaction mixture was poured into water/ice, the precipitate was filtered, washed with cold water and dried under vacuum to give the title compound as a white solid (1.88 g, 70%). Crystals suitable for X-ray diffraction were obtained from slow evaporation of the CDCl₃ solution. M.p.= 108 °C. ¹H NMR (CDCl₃) = 8.00 (dd, J = 7.8 and 1.6 Hz, 1H), 7.60 - 7.51 (m, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 2.60 (s, 3H), 2.42 (s, 3H); ¹³C NMR (CDCl₃) = 169.88, 163.35, 162.12, 148.68, 132.67, 129.21, 126.60, 124.22, 117.65, 21.20, 11.08.

3. Refinement

All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at their idealized positions with distances of 0.93 Å for C— H_{Ar} and 0.96 Å for CH₃ groups and allowed to ride. Their U_{eq} were fixed at 1.2 and 1.5 times U_{iso} of the preceding atom for aromatic and methyl groups, respectively. H atoms of the methyl groups were treated as ideally disordered over two sites.

Figure 1

The molecular structure of the title compound with atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2-(5-Methyl-1,3,4-oxadiazol-2-yl)phenyl acetate

Crystal data	
$C_{11}H_{10}N_{2}O_{3}$ $M_{r} = 218.21$ Monoclinic, $P2_{1}/n$ $a = 6.6335$ (6) Å b = 16.925 (3) Å c = 9.5078 (6) Å $\beta = 92.113$ (6)° V = 1066.7 (2) Å ³ Z = 4 F(000) = 456	$D_{\rm x} = 1.359 \text{ Mg m}^{-3}$ Melting point: 381 K Mo $K\alpha$ radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 6.5 - 15.6^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 293 K Block, colorless $0.50 \times 0.36 \times 0.16 \text{ mm}$
Data collection Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube ω -2 θ scans 1998 measured reflections	1885 independent reflections 1403 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -7 \rightarrow 7$

 $k = -20 \longrightarrow 0$ $l = -11 \longrightarrow 0$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.136$ S = 1.111885 reflections 146 parameters 0 restraints Hydrogen site location: inferred from neighbouring sites 3 standard reflections every 200 reflections intensity decay: 1%

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.07P)^2 + 0.1662P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.020 (4)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)	
C3	0.7116 (3)	0.20207 (12)	0.5466 (2)	0.0529 (5)		
C5	0.7187 (3)	0.09558 (12)	0.42764 (19)	0.0449 (5)		
C6	0.7352 (3)	0.00994 (11)	0.4065 (2)	0.0438 (5)		
C7	0.7258 (3)	-0.02402 (12)	0.2733 (2)	0.0466 (5)		
C8	0.7460 (3)	-0.10475 (13)	0.2556 (2)	0.0572 (6)		
H8	0.7388	-0.1265	0.1658	0.069*		
C9	0.7766 (3)	-0.15261 (13)	0.3706 (3)	0.0613 (6)		
H9	0.7912	-0.2068	0.3587	0.074*		
C10	0.7858 (3)	-0.12053 (13)	0.5041 (3)	0.0602 (6)		
H10	0.8053	-0.1532	0.5820	0.072*		
C11	0.7660 (3)	-0.03993 (13)	0.5220(2)	0.0509 (5)		
H11	0.7733	-0.0187	0.6123	0.061*		
C12	0.7142 (4)	0.25279 (14)	0.6729 (3)	0.0694 (7)		
H12A	0.7253	0.2204	0.7557	0.104*	0.5	
H12B	0.5916	0.2829	0.6741	0.104*	0.5	
H12C	0.8274	0.2881	0.6712	0.104*	0.5	
H12D	0.7043	0.3072	0.6449	0.104*	0.5	
H12E	0.8379	0.2447	0.7266	0.104*	0.5	
H12F	0.6021	0.2395	0.7295	0.104*	0.5	
C13	0.8374 (4)	0.06195 (13)	0.0975 (2)	0.0552 (6)		
C14	0.7638 (4)	0.11009 (17)	-0.0244 (3)	0.0776 (8)		
H14A	0.6205	0.1038	-0.0371	0.116*	0.5	
H14B	0.8285	0.0929	-0.1077	0.116*	0.5	
H14C	0.7949	0.1647	-0.0073	0.116*	0.5	
H14D	0.8754	0.1371	-0.0643	0.116*	0.5	
H14E	0.6674	0.1481	0.0063	0.116*	0.5	
H14F	0.7011	0.0762	-0.0942	0.116*	0.5	
N1	0.7036 (3)	0.15221 (10)	0.33808 (19)	0.0611 (5)		
N2	0.6990 (3)	0.22223 (11)	0.4170 (2)	0.0669 (6)		
01	0.6816 (2)	0.02180 (8)	0.15409 (14)	0.0548 (4)		
O2	1.0070 (2)	0.05640 (10)	0.14221 (17)	0.0666 (5)		
O4	0.7239 (2)	0.12238 (8)	0.56256 (14)	0.0491 (4)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U ²³
C3	0.0587 (13)	0.0460 (12)	0.0541 (13)	0.0042 (10)	0.0026 (10)	-0.0013 (10)
C5	0.0451 (11)	0.0506 (11)	0.0391 (10)	0.0001 (8)	0.0021 (8)	0.0012 (9)
C6	0.0368 (10)	0.0470 (11)	0.0476 (11)	-0.0006 (8)	0.0021 (8)	0.0024 (9)
C7	0.0421 (10)	0.0490 (12)	0.0487 (12)	-0.0030 (8)	0.0011 (8)	0.0009 (9)
C8	0.0546 (12)	0.0531 (13)	0.0639 (14)	-0.0025 (10)	0.0026 (10)	-0.0103 (11)
C9	0.0547 (14)	0.0443 (12)	0.0853 (18)	0.0006 (10)	0.0070 (12)	0.0026 (12)
C10	0.0504 (12)	0.0543 (13)	0.0762 (16)	0.0013 (10)	0.0056 (11)	0.0214 (11)
C11	0.0452 (11)	0.0561 (13)	0.0517 (12)	-0.0011 (9)	0.0057 (9)	0.0100 (10)
C12	0.0863 (17)	0.0600 (14)	0.0617 (15)	0.0041 (13)	-0.0012 (12)	-0.0142 (11)
C13	0.0674 (15)	0.0549 (13)	0.0434 (11)	0.0016 (11)	0.0032 (10)	-0.0043 (9)
C14	0.0953 (19)	0.0802 (18)	0.0571 (14)	0.0043 (14)	0.0002 (13)	0.0150 (13)
N1	0.0915 (14)	0.0473 (10)	0.0446 (11)	0.0068 (9)	0.0045 (9)	0.0027 (8)
N2	0.0977 (15)	0.0453 (10)	0.0580 (12)	0.0072 (10)	0.0057 (10)	0.0011 (9)
O1	0.0577 (9)	0.0606 (9)	0.0456 (8)	-0.0032 (7)	-0.0046 (6)	0.0004 (7)
O2	0.0631 (11)	0.0777 (12)	0.0591 (10)	-0.0034 (8)	0.0038 (8)	0.0065 (8)
04	0.0542 (8)	0.0504 (8)	0.0427 (8)	0.0029 (6)	0.0007 (6)	-0.0010 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C3—N2	1.278 (3)	C12—H12A	0.9600	
C3—O4	1.359 (2)	C12—H12B	0.9600	
C3—C12	1.476 (3)	C12—H12C	0.9600	
C5—N1	1.283 (3)	C12—H12D	0.9600	
C5—O4	1.360 (2)	C12—H12E	0.9600	
C5—C6	1.468 (3)	C12—H12F	0.9600	
С6—С7	1.390 (3)	C13—O2	1.191 (3)	
C6—C11	1.395 (3)	C13—O1	1.364 (3)	
С7—С8	1.384 (3)	C13—C14	1.485 (3)	
C7—O1	1.395 (2)	C14—H14A	0.9600	
С8—С9	1.370 (3)	C14—H14B	0.9600	
С8—Н8	0.9300	C14—H14C	0.9600	
C9—C10	1.380(3)	C14—H14D	0.9600	
С9—Н9	0.9300	C14—H14E	0.9600	
C10-C11	1.382 (3)	C14—H14F	0.9600	
С10—Н10	0.9300	N1—N2	1.404 (3)	
C11—H11	0.9300			
N2—C3—O4	111.94 (18)	H12C—C12—H12E	56.3	
N2-C3-C12	128.9 (2)	H12D—C12—H12E	109.5	
O4—C3—C12	119.19 (19)	C3—C12—H12F	109.5	
N1-C5-04	112.05 (17)	H12A—C12—H12F	56.3	
N1-C5-C6	130.60 (18)	H12B-C12-H12F	56.3	
O4—C5—C6	117.34 (16)	H12C-C12-H12F	141.1	
C7—C6—C11	117.89 (19)	H12D—C12—H12F	109.5	
C7—C6—C5	122.15 (17)	H12E-C12-H12F	109.5	
С11—С6—С5	119.94 (18)	O2—C13—O1	122.6 (2)	
C8—C7—C6	121.16 (19)	O2—C13—C14	126.9 (2)	

C8—C7—O1	117.97 (18)	O1—C13—C14	110.4 (2)
C6—C7—O1	120.73 (17)	C13—C14—H14A	109.5
C9—C8—C7	120.0 (2)	C13—C14—H14B	109.5
С9—С8—Н8	120.0	H14A—C14—H14B	109.5
С7—С8—Н8	120.0	C13—C14—H14C	109.5
C8—C9—C10	120.1 (2)	H14A—C14—H14C	109.5
С8—С9—Н9	119.9	H14B—C14—H14C	109.5
С10—С9—Н9	119.9	C13—C14—H14D	109.5
C9—C10—C11	120.1 (2)	H14A—C14—H14D	141.1
C9—C10—H10	120.0	H14B—C14—H14D	56.3
C11—C10—H10	120.0	H14C—C14—H14D	56.3
C10—C11—C6	120.8 (2)	C13—C14—H14E	109.5
C10—C11—H11	119.6	H14A—C14—H14E	56.3
C6—C11—H11	119.6	H14B—C14—H14E	141.1
C3—C12—H12A	109.5	H14C—C14—H14E	56.3
C3—C12—H12B	109.5	H14D—C14—H14E	109.5
H12A—C12—H12B	109.5	C13—C14—H14F	109.5
C3—C12—H12C	109.5	H14A—C14—H14F	56.3
H12A—C12—H12C	109.5	H14B—C14—H14F	56.3
H12B—C12—H12C	109.5	H14C—C14—H14F	141.1
C3—C12—H12D	109.5	H14D—C14—H14F	109.5
H12A—C12—H12D	141.1	H14E—C14—H14F	109.5
H12B—C12—H12D	56.3	C5—N1—N2	106.16 (17)
H12C-C12-H12D	56.3	C3—N2—N1	106.76 (17)
C3—C12—H12E	109.5	C13—O1—C7	117.22 (16)
H12A—C12—H12E	56.3	C3—O4—C5	103.10 (15)
H12B—C12—H12E	141.1		
C7—O1—C13—C14	-177.68 (18)	N1C5C6C11	175.0 (2)
C13—O1—C7—C6	83.3 (2)	O4C5C6C11	-3.4 (3)
C13—O1—C7—C8	-101.1 (2)	N1C5C7	-3.5 (3)
C7—O1—C13—O2	3.3 (3)	C11—C6—C7—O1	175.59 (17)
C3—O4—C5—C6	178.30 (17)	C7—C6—C11—C10	-0.2 (3)
C5—O4—C3—N2	0.4 (2)	C11—C6—C7—C8	0.1 (3)
C3—O4—C5—N1	-0.4 (2)	C5—C6—C7—C8	178.61 (19)
C5—O4—C3—C12	-179.60 (19)	C5-C6-C7-O1	-5.9 (3)
C5—N1—N2—C3	0.0 (2)	C5—C6—C11—C10	-178.75 (19)
N2—N1—C5—O4	0.2 (2)	C6—C7—C8—C9	-0.2 (3)
N2—N1—C5—C6	-178.2 (2)	O1—C7—C8—C9	-175.85 (18)
N1—N2—C3—O4	-0.2 (2)	C7—C8—C9—C10	0.5 (3)
N1—N2—C3—C12	179.7 (2)	C8—C9—C10—C11	-0.6 (3)
O4—C5—C6—C7	178.11 (18)	C9—C10—C11—C6	0.5 (3)