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Abstract Metabolic pathways can be conceptualized as

the biological equivalent of a data pipeline. In living cells,

series of chemical reactions are carried out by different

proteins called enzymes in a stepwise manner. However,

many pathways remain incompletely characterized, and in

some of them, not all enzyme components have been

identified. Kernel methods are useful in many difficult

problem areas, such as document classification and bioin-

formatics. Specifically, kernel methods have been used

recently to predict biological networks, such as protein–

protein interaction networks and metabolic networks. In

this paper, we implement and compare different methods

and types of data to predict metabolic networks. The

methods are Penalized Kernel Matrix Regression (PKMR)

and pairwise Support Vector Machine (pSVM). We

develop several experiments using these methods with

sequence, non-sequence, and combined data. We obtain

better accuracy when the sequence data are used in both

methods. Whereas when the methods are compared using

the same type of data, the pSVM approach shows better

accuracy. The best results are obtained with pSVM using

all combined kernels.

Keywords Network prediction � Metabolic pathways �
Machine learning � Kernel methods

1 Introduction

Biochemical pathways are chemical reactions in the cell

where enzymes catalyse reactions to produce other com-

pounds based on substrates. For example, in the metabolic

pathway that involves glycolysis, the glucose is broken

down into smaller products, such as carbon dioxide and

water (Luo et al. 2007). Finding the enzymes involved in

the reactions and their interactions is still a very chal-

lenging topic. The development of pathway databases, such

as KEGG (Kanehisa et al. 2008) and EcoCyc (Latendresse

et al. 2012), has increased the current knowledge about

metabolic networks. Using these databases, methods based

on gene annotations are used to predict metabolic networks

(Latendresse et al. 2012; Karp et al. 2011). However,

current genome annotation pipelines may fail to assign

identities correctly to score genes and to detect other genes

altogether. Thus, metabolic network prediction algorithms

using current genome annotation pipelines may predict

inaccurate interactions, for example, the Pathway Tools

described by Karp et al. (2011).

To infer metabolic networks, supervised learning

approaches have been developed in the framework of

kernel methods by Kotera et al. (2013), such as Support

Vector Machines (SVMs). While SVMs are a classical

paradigm in machine learning, they cannot be directly

applied to the biological network inference problems, since

the goal is to predict pair of genes (Ben-Hur and Noble

2005). Thus, the pairwise Support Vector Machine (pSVM)

approach is used instead (Oyama and Manning 2004). Vert

et al. (2007) and Kashima et al. (2010) apply pSVM

methods to predict metabolic networks, but only combine

non-sequence data. In addition, Roche-Lima et al. (2014)

use sequence kernels (i.e., PRK—Pairwise Rational Ker-

nels) combined with SVM methods and obtain good
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accuracy values and execution times, but do not compare

with non-sequence kernels.

There are other supervised learning algorithms, such as

Kernel Canonical Correlation Analysis (KCCA) (Yaman-

ishi et al. 2004) and Penalized Kernel Matrix Regression

(PKMR) (Yamanishi and Vert 2007), which are computa-

tionally more efficient, but they lack the ability to give

precise predictions. In addition, these algorithms have only

been reported in the literature using non-sequence kernels

(Yamanishi 2010; Kotera et al. 2012).

In our research, we consider these problems, imple-

menting methods to predict metabolic networks based on

raw data directly related to the sequence information (e.g.,

nucleotides and protein sequences). We hypothesize that

sequence kernels, created from raw sequence data, will be

more precise that non-sequence kernels to predict meta-

bolic networks. We then implement two of the supervised

learning methods (i.e., PKMR and pSVM), and for first

time, we compare these two methods combined with

sequence and non-sequence kernels.

2 Materials and methods

2.1 Metabolic networks

Metabolic networks were represented as a graph, where

vertices (nodes) were the enzymes, and the edges (bran-

ches) were the enzyme–enzyme relations (proteins cat-

alyzing two continuous reactions in a pathway).

Traditionally, metabolic pathway representations consid-

ered enzymes as vertices, and metabolites as edges. To

avoid confusion, our graphs represented interactions

between pairs of enzymes as discrete data points similar to

Yamanishi (2010). An example of the graph representation

can be seen in (Roche-Lima et al. 2014, Fig. 2).

2.2 Data

We used information of the yeast Saccharomyces cere-

visiae (Sikorski and Hieter 1989) taken from the KEGG

pathway databases (Kanehisa et al. 2008). This species was

selected, because it was a well-studied organism with

several defined models to predict biological networks.

Moreover, other kernel methods had been described and

tested using data from this species (Ben-Hur and Noble

2005; Kashima et al. 2010; Yamanishi 2010). As a training

set, we used 5149 interactions from 755 known genes. A

graph was built based on these interactions (training set) as

a representation of the metabolic networks of the yeast

Saccharomyces cerevisiae. Then, this graph and other

related data sets were converted into kernels.

Kernels allowed working in a unified mathematical

framework across different types of data. A kernel was a

measure of similarity that satisfied the additional condition

of being a dot product in some feature space (see Scholkopf

and Smola 2002 for details). Data were represented as a

positive definite kernel K that was a symmetric function

K : X2 ! R that satisfied
Pn

i;j aiajK XxiXj

� �
and

ða1; a2; . . .; anÞ 2 Rn, where X was the set of entities.

2.2.1 Non-sequence data

In our context, non-sequence kernels manipulate data

that were binary or numerical. We used three different

types of non-sequence data, i.e., gene expression, gene

localization, and phylogenetic data. All these data have

been used in other research as kernels (Vert et al. 2007;

Kashima et al. 2010; Yamanishi 2010). Gene expression

data were obtained by Yamanishi (2010) using the

results from 157 microarray experiments (Spellman et al.

1998; Eisen et al. 1998). Each gene was associated with

a 157-element numerical vector that represented the

results from the experiments. Gaussian Radial Bases

Function (RBF) Kernel was used to manipulate this data,

and we defined the same parameters that Yamanishi

(2010) used in their experiments. We denoted the final

kernel as kexp.

The gene localization data were represented as a

23-element binary vector for each gene, following

Yamanishi (2010). A total of 23 intracellular localizations

were defined (e.g., mitochondrion, Golgi, nucleus, and

others). The value was 1, if the gene was present in the

intracellular localization or 0 otherwise. Similar to

Yamanishi (2010), we used the linear kernel applied to

these data with the same parameters. We denoted this

kernel as kloc.

The phylogenetic profile data were obtained from 145

organisms, which describe the set of orthologous genes.

These organisms were selected based on the criteria

defined in Yamanishi (2010). Each gene was associated

with a 145-element binary vector. The value was 1, if the

gene was present in this organism or 0 otherwise.

A Gaussian RBF kernel was used to compute this data with

the same parameters used by Yamanishi (2010). This final

kernel was denoted as kphy.

2.2.2 Sequence data

Sequence kernels defined similarities over finite sequences

of symbols with different lengths. The sequence data were

then converted to sequence kernels. In our research, we

used three sequence kernels, Pfam, Motif, and Spectrum,

defined by Ben-Hur and Noble (2005). We chose these
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sequence kernels to be able to compare our results with the

previous published works, such as Yu et al. (2010); Ben-

Hur and Noble (2005); Roche-Lima et al. (2014), and

Allauzen et al. (2008).

The Pfam kernel (Gomez et al. 2003) was computed

based on a set of Hidden Markov Models (HMMs), where

each gene that codes for an enzyme was compared with

every HMM in the Pfam database. The E value statistics

were obtained as features for the 13,672 domain HMMs in

the Pfam version 26.0 (Punta et al. 2012). Thus, each

protein was represented by a vector of 13,672 log E values,

and the kernel was computed based on these vectors (see

Allauzen et al. (2008) for more details). We denoted this

kernel as kpfam.

The Motif kernel (Ben-Hur and Brutlag 2003) was also

used. It was obtained by calculating how many times a

discrete sequence motif matched each of the protein

sequences. The eMotif database (Huang and Brutlag

2001) was used to extract the discrete sequence motifs. A

vector of E values was associated for each of the proteins

(genes coding for the proteins). The kernel was finally

computed as dot products of those vectors (see Ben-Hur

and Noble 2005 for more details). The kernel was called

kmotif.

Finally, the Spectrum kernel defined by Leslie et al.

(2004) was also considered. This kernel represented

sequence similarities by counting how many times an n-

gram (kmer) appeared in each of the pairs of sequences.

Each gene had an associated featured vector of n-gram

counts (we considered n = 3). Similar to the data above,

the kernel was computed to represent the dot products

using the associated feature vectors. We denoted this kernel

as kngram.

2.2.3 Combined data

We also computed the linear combination of the kernels

described above, representing the heterogeneous data

combination. We used different types of data to predict

metabolic networks. K1; . . .;Kn were the kernels that rep-

resented the data, so Kn corresponded to the n-th data set.

Yamanishi (2010) mentioned the advantages of considering

the linear combination as weighted sum of kernels, i.e.,
PN

n¼1 WnKn, where Wn was a weight (real coefficient)

associated to the kernel Kn. The coefficients should be

related to the importance of the data set n for the prediction

method. In our research, we considered the weights (Wn) as

the accuracy values obtained during the inference process

using the individual kernel Kn, i.e., ROC score Yamanishi

et al. (2005). In future studies, weight values may be

computed in different ways.

2.3 Methods

We used kernel-based supervised learning network infer-

ence methods to predict biological networks based on

kernel frameworks. First, part of the network (with known

interactions—training set) was used during the learning

inference process to obtain the model. Second, new inter-

actions were predicted using the model. In machine

learning, supervised classifications are a classical para-

digm. However, it could not be applied directly to the

problem of network inference, because our goal was to

predict relations between pairs of nodes, not individual

nodes (Yamanishi 2010). Therefore, we first define the

pairwise kernel and, later, the methods PKMR and pSVM.

2.3.1 Pairwise kernels

The kernels described in the sections above provide simi-

larities between simple enzymes. In our experiments, we

used a different type of kernel called pairwise kernel

(Pahikkala et al. 2012; Brunner et al. 2012) that provide

similarity measures for pairs of entities. The general pair-

wise kernel was represented as K : ðX � XÞ
ðX � XÞ ! R, where X is a set of vertices (enzymes) and

R is a set of real values. In this research, we used the

Pairwise Tensor Product Kernel or Kronecker Kernel

(Basilico and Hofmann 2004; Oyama and Manning 2004;

Ben-Hur and Noble 2005) that is computed as

K X1;X2ð Þ; X0
1;X

0
2

� �� �
¼ k0 X1;X

0
1

� �
k0 X2;X

0
2

� �
þ k0 X1;X

0
2

� �

k0 X2;X
0
1

� �
, where k0 is a simple kernel and X1; X2; X

0
1; X

0
2

are the enzymes (k0 represent any of the kernel described in

the previous sections).

2.3.2 Penalized kernel matrix regression (PKMR)

Kernel Matrix Regression methods were based on the

supervised graph inference framework to predict metabolic

networks with metric learning. A formalism of the problem

can be defined as follows:

given an undirected graph C ¼ ðV ; EÞ, with a set of

vertices V ¼ ðV1; V2; . . .; VnÞ and a set of edges

E � V � Vð Þ;
then, for an additional set of vertices V 0 ¼
V 0
1; V

0
2; . . .; V

0
n; the goal was to infer the set of new

edges E0 � V 0 � V þ V 0ð Þ [ V þ V 0ð Þ � V 0;
that involved the additional vertices in V 0.

Yamanishi et al. (2005) described methods to solve this

problem, such as KCCA, PKMR, Kernel Matrix Comple-

tion, and Expectation-Maximization algorithms. He

obtained as a result that the method with the best accuracy
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was PKMR (Yamanishi and Vert 2007), a modified version

of Kernel Matrix Regression method.

In our research, we implemented PKMR using the R

library (R Core Team 2013). To make the data compatible

with the pSVM method, the chemical compatibility network

was not taken into consideration (Yamanishi 2010), since we

aimed to compare data directly related to the genes. Future

implementations may include this information.

2.3.3 Pairwise support vector machine (pSVM)

pSVM methods classified whether a pair (x1; y1) belonged

to the same category or to a different one. Then, while

SVM methods classified simple entities, pSVM methods

classified pairs of entities. pSVM was defined by Brunner

et al. (2012) as follows:

given a training data set ððxi; yiÞ; diÞ; di with binary

classification values (i.e., ðxi; yiÞ classified as ?1 or

ðxi; yiÞ classified as -1), i = 1, …, n and the func-

tion U;
then, a pSVM method found an optimal hyperplane,

i.e., wTU xi; yið Þ þ b ¼ 0; where the points were sep-

arated into two categories.

We implemented programs to apply pSVM to predict

the metabolic networks with our data sets, using LIBSVM

(Chang and Lin 2011) and Python Machine Learning

(PyML) (Ben-Hur et al. 2008) libraries.

2.4 Experiments

We developed six groups of experiments using different

data and methods (see Table 1 for more details).

For evaluation, we used the area under the ROC curve

(AUC score) (Gribskov and Robinson 1996) to measure the

accuracy. It was defined as a function of the rates of true-

positives (predicted enzymes pairs were present in the data

set) and false-positives (predicted protein pairs were absent

in the data set). A stratified cross-validation procedure was

used with fold equal to 10 (tenfold cross-validation) (Ko-

havi et al. 1995). We also collected execution times (Time

s). All experiments were run using a computer with a

microprocessor Intel i7CORE and RAM memory of 8 MB.

In addition, we computed the 95 % confidence intervals

(CIs) for average AUC scores. We used a distribution-in-

dependent technique proposed by Cortes and Mohri (2005).

As they described, the variance depends on the number of

positive and negative examples in the training set and the

number of errors during the classification process. In our

case, the training set consisted in 2575 positive and 2574

negative interactions, out of 5149 total interactions. The

errors in the classification process ranged between 750 and

1851.

3 Results and discussion

3.1 Comparing data

When we compare sequence and non-sequence data, within

the same supervised learning method, better accuracy

values are obtained with the sequence kernel (see Table 2,

Experiments II–PKMR–Sequence and V–pSVM–Se-

quence). For example, in the PKMR method, the accuracy

value is improved from AUC = 0.503 (the lowest value in

experiment I–PKMR–Non-Sequence kernel) to

AUC = 0.821 (the highest value in experiment II–PKMR–

Sequence kernel). This proves our hypothesis about better

accuracy values when sequence kernels are used, since

errors from the genome annotation process are bypassed.

However, the execution times for the methods using

sequence kernels are more than doubled when they are

compared with non-sequence kernels (i.e.,

Time = 240 s—the lowest time in experiment I–PKMR–

Non-Sequence versus Time = 530 s—the highest time in

experiment II–PKMR–Sequence). This is because com-

puting sequence kernels (i.e., kpfam, kmotif, and kmer)

consume more computational resources.

The best results are obtainedwith the kernels that represent

the combined heterogeneous data within the same supervised

learning method, i.e., Table 2, experiment III–PKMR–Com-

bined and VI–pSVM–Combined. In this case, for the PKMR

method, the accuracy is improved from AUC = 0.797 (i.e.,

the best accuracy using the simple kernel—kpfam in Experi-

ment II) to AUC = 0.840 (i.e., weighted kernel: w1kexp þ
w2klocþ w3kphy þ w4kpfam þ w5kmotif þ w3kmer in

Table 1 Experiments are

grouped by methods

(experiment I, II, III—PKMR

and experiment IV, V, VI—

pSVM) and by type of data (I,

IV—non-sequence data, II, V—

sequence data, and III, VI—

combined data)

Experiment Methods Type of kernel

I PKMR Non-sequence (described in Sect. 2.2.1)

II PKMR Sequence (described in Sect. 2.2.2)

III PKMR Combined sequence and non-sequence (described in Sect. 2.2.3)

IV pSVM Non-sequence (described in Sect. 2.2.1)

V pSVM Sequence (described in Sect. 2.2.2)

VI pSVM Combined sequence and non-sequence (described in Sect. 2.2.3)

26 Page 4 of 7 Netw Model Anal Health Inform Bioinforma (2016) 5:26

123



Experiment III). Likewise, whenwe use only the Pfam—kpfam
kernel (AUC = 0.797 in experiment II), the best accuracy is

obtained. Then, we also test this simple sequence kernel

combined with other simple kernels. The best results are

obtained combining the Pfam—kpfam and phylogenetic—kphy
kernels (see the accuracy values of kphy ? kpfam kernel in

Table 2, experiment III–PKMR–Combined and VI-pSVM–

Combined). This result coincides with Allauzen et al. (2008),

where they stated ‘‘the importance of the phyletic retention

feature as a possible reason for the superior performance of the

combined kernel compared with Pfam alone’’.

3.2 Comparing methods

As can be seen in Table 2, pSVM methods (experiment

IV–pSVM–Non-Sequence, V–pSVM–Sequence, and VI–

pSVM–Combined) outperform the precision values of

PKMR method (experiment I–PKMR–Non-Sequence, II–

PKMR–Sequence and III–PKMR–Combined). For exam-

ple, using the PKMR method, the AUC score for kexp

(Experiment I–PKMR–Non-Sequence) is 0.660 compared

to 0.791 (experiment III–PKMR–Combined). However,

the execution times are considerably increased for pSVMs

(see Table 2 Times values for experiments I–PKMR–

Non-Sequence and II–PKMR–Sequence in comparison

with experiments IV–pSVM–Non-Sequence and V–

pSVM–Sequence). Processing pSVM involves more

computational resources than PKMR methods; however,

better accuracy values are obtained. In all the cases, the

confidence intervals are above the behaviour of a random

classifier.

Figure 1 represents the results for both methods (PKMR

and pSVM) using only sequence kernels. Although the

most time consuming method is pSVM, it provides an

important improvement in the accuracy values [the peaks

are reached combining the sequence kernel (kpfam ?

kmotif ? kngram) and pSVM method]. Yamanishi (2010)

mentions these expected high processing times for SVM

methods, but never tested them to evaluate how the accu-

racy could be improved. Roche-Lima et al. (2014) use a

Table 2 Results collected during the experiments

Experiment Predictor kernel AUC

score

Time

s

Confidence

intervals

I–PKMR–Non-Sequence kexp 0.660 300 [0.655, 0.665]

kloc 0.503 240 [0.499, 0.507]

kphy 0.775 240 [0.771, 0.779]

kexp ? kloc ? kphy 0.755 350 [0.752, 0.759]

w1kexp ? w2kloc ? w3kphy 0.799 420 [0.791, 0.807]

II–PKMR–Sequence kpfam 0.797 450 [0.793, 0.801]

kmotif 0.782 430 [0.778, 0.786]

kmer 0.725 420 [0.720, 0.731]

kpfam ? kmotif ? kmer 0.817 480 [0.811, 0.823]

w4kpfam ? w5kmotif ? w6kmer 0.821 530 [0.818, 0.824]

III–PKMR–Combined

(sequence and non-sequence)

kphy ? kpfam 0.812 470 [0.809, 0.816]

kexp ? kloc ? kphy ? kpfam ? kmotif ? kmer 0.831 610 [0.828, 0.834]

w1kexp ? w2kloc ? w3kphy ? w4kpfam ? w5kmotif ? w6kmer 0.840 720 [0.831, 0.849]

IV–pSVM–Non-Sequence kexp 0.791 9020 [0.786, 0.796]

kloc 0.696 7800 [0.692, 0.700]

kphy 0.802 7980 [0.797, 0.807]

kexp ? kloc ? kphy 0.818 10,100 [0.812, 0.824]

w1kexp ? w2kloc ? w3kphy 0.877 10,121 [0.871, 0.883]

V–pSVM–Sequence kpfam 0.887 12,060 [0.879, 0.895]

kmotif 0.868 12,000 [0.859, 0.877]

kmer 0.840 11,760 [0.836, 0.844]

kpfam ? kmotif ? kmer 0.898 12,220 [0.891, 0.905]

w4kpfam ? w5kmotif ? w6kmer 0.910 12,800 [0.901, 0.919]

VI–pSVM–Combined

(Sequence and non-sequence)

kphy ? kpfam 0.890 12,100 [0.882, 0.898]

kexp ? kloc ? kphy ? kpfam ? kmotif ? kmer 0.939 13,420 [0.935, 0.944]

w1kexp ? w2kloc ? w3kphy ? w4kpfam ? w5kmotif ? w6kmer 0.940 14,010 [0.934, 0.946]

These are AUC score (area under the ROC curve as accuracy), time s (Execution times in seconds), and confidence intervals
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different representation of the sequence kernel and

decrease execution time of the sequence kernel computa-

tion; however, they still use existing SVM methods. In

addition, the accuracy values obtained in this research are

better than the values reported by Roche-Lima et al.

(2014). Thus, we consider that pSVM implementation can

be optimized to obtain better processing time and to

maintain these good accuracy values. Likewise, sequence

kernel representations can be also optimized to combine

with pSVM methods to improve both performance and

accuracy.

4 Conclusion

We developed, for the first time, experiments using

sequence data with PKMR and pSVM methods to predict

metabolic networks. We proved that the best accuracy

values were obtained using sequence kernels. This was

because other tools to predict metabolic networks were

based on the gene annotations (Latendresse et al. 2012;

Karp et al. 2011). As we used raw sequence data (repre-

sented as sequence kernels), it bypassed the annotations

and the errors associated with these steps.

We also proved that pSVM methods were more precise

than PKMR methods. The best accuracy values were

obtained when pSVM methods were combined with

sequence kernels. However, pSVM methods were very

expensive in terms of computational resources, such as

execution times. pSVM methods required even more

computational resources when using sequence kernels.

In future works, pSVM method can be optimized using

other implementations, such as Dual Coordinate Descent

algorithm combined with rational kernels to manipulate

sequence data (Allauzen et al. 2011). As well, a parallel

implementation could be used to improve performance

(Tyree et al. 2014).
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