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Parasite genetic variation has been used to delineate and enumerate species, describe host-par-
asite associations, and observe the distribution of lineages among hosts and throughout the en-
vironment. Mechanisms or pathways inferred by these studies have often been carried forward
in a predictive manner to inform assumptions about the organism’s biology, its life history, and
host-parasite interactions. For medically relevant parasites, these observations have undoubt-
edly proven useful for a fuller epidemiological understanding of parasite transmission path-
ways and patterns. Here, we argue that functional parasite genetic variation in natural
populations of schistosomes is poorly understood and that a better understanding of this varia-
tion is crucial to the development of effective vaccines.

Parasites in the genus Schistosoma are responsible for causing the disease schistosomiasis, a
neglected tropical disease that affects over 200 million people in 74 countries [1]. Despite con-
siderable effort and exploration, an effective human vaccine for this disease remains elusive [1].
An increasing array of studies assessing genetic variation within the medically relevant species
of Schistosoma has indicated that old paradigms of focal transmission patterns and subsequent-
ly restricted parasite gene flow do not always hold up against genetic evidence (e.g., [2,3]).
These conclusions are generated by the often surprising amount of genetic variation observed
within natural schistosome populations, where even within the limited radius of a single village,
high neutral genetic variation has been maintained [2]. How universal this is, how it varies
across landscapes—both biological and cultural—and what it implies for the host-parasite co-
evolutionary trajectory has yet to be fully explored. However, it is clear that a remarkable
amount of genetic variation has been recorded within natural populations of schistosome spe-
cies. These observations have been largely generated with presumed neutral, noncoding loci
like microsatellites [2,4] and random amplified polymorphic DNAs (RAPDs) or with mito-
chondrial haplotypes [3]—none of which are expressly indicative of variation in functional re-
gions of the genome. Yet, even a minimal connection between neutral genetic variation and the
functional end of the “-ome” should perhaps be concerning to scientists focused on developing
an effective schistosome vaccine with long-lasting potential.

Unfortunately, to date, much of schistosome genomics and molecular biology, as well as the
vast majority of studies assessing vaccine efficacy, have used laboratory strains of parasites
both to develop antigenic proteins and as the experimental subject. A review of 120 schisto-
some vaccine studies published in the past 7 years (using the search terms: schistosom*,
vaccine®, 2007-2015) and queries of GenBank sequence repositories for key terms typically
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Table 1. Percentage of published schistosome vaccination studies and GenBank genomic and expressed sequence tag (EST) entries from 2007-
present that utilized laboratory or field isolates.

Schistosoma spp.

S. mansoni Lab strain
Field
Not specified
S. japonicum Chinese mainland
Other
Not specified

Published Experiments GenBank Genomic and EST Entries (n = 1,409)
(n=121)

Parasite Host Parasite

80% 93% 79%

8% 7% 2%

12% 0% 19%

74% 87% 84%

12% 10% 6%

14% 3% 10%

Results indicate that the majority of experiments use laboratory-maintained parasites and hosts.

doi:10.1371/journal.pntd.0003805.t001

seen in the vaccine literature (e.g., tegument, tetraspanin, glycan, etc.) found that laboratory
strains were dramatically over-represented relative to field strains for all Schistosoma mansoni
studies and in submitted sequence data (Table 1). Within S. japonicum, the Chinese mainland
strain is used disproportionally to other regional isolates. These parasite lines, in particular
those of S. mansoni, have been maintained in limited population sizes for up to 100 or more
generations [5]. Comparison to field parasite populations [6] and longitudinal evaluations of
neutral genetic variation [7] indicate that the effects of a laboratory bottleneck can be signifi-
cant and rapid. In short, much of our-omics and empirical investigations of biomolecular
host-parasite interaction are based on what could effectively be a genetically limited caricature
of the parasite we are trying to prevent.

Granted, we expect high levels of polymorphism and rapid change in neutral alleles like mi-
crosatellites. Yet one could also argue, and several have demonstrated, that schistosomes have
surprising potential for generating variation in functional regions as well. These variations in-
clude single-nucleotide polymorphisms in coding regions that can produce significant confor-
mational changes in proteins [8], impressive capacity for variation in proteins at the host-
parasite interface due to post-translational modification and alternative splicing [9], and an in-
creasingly appreciated role of transposable elements in generating and maintaining variation
throughout the genome [10]. We do not suggest that the entire assemblage of functional re-
gions in the schistosome genome is likely to be hypervariable or easily mutable. However, the
observations referenced here are noteworthy in that they have documented variation in coding
regions that are most often targeted for vaccine research. These are often tegumental moieties
(e.g., [11-13]) but in general represent anything at the host-parasite interface that is likely to
elicit an immune response for which the human host can be primed via inoculation. As is also
pointed out by Philippsen et al. [10], these are the exact entities that one would expect to be
under intense evolutionary pressure to maintain diversifying potential in a blood-dwelling par-
asite that seeks to evade immune detection by the highly variable vertebrate immune system.
Thus, it is perhaps not surprising that the few studies that have looked at these areas have
found high variation. Different types of vaccine targets, such as internal proteins, may not be
under such strong diversifying selective pressure, but, again, this is a question that remains
largely unaddressed. In short, our general lack of understanding about the full extent and dis-
tribution of variation throughout the genome, and in the majority of vaccine target regions, is a
problem that schistosome researchers have not yet addressed. Other high-profile diseases have
faced difficulties concerning vaccine development and high pathogen variability (e.g., malaria,
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HIV, tuberculosis, and hepatitis C), suggesting that researchers working towards the produc-
tion of schistosome vaccines should be concerned not only with extant genetic variability but
with the parasite’s ability to generate variation.

The deficiency of studies examining genetic diversity in recent field isolates at non-neutral
sites (e.g., those encoding tegument proteins) presents a gap in our knowledge about schisto-
some populations, one that could directly impact the success of human vaccines implemented
into the field. This viewpoint should in no way be considered a rebuke to the schistosome com-
munity, but rather a call to acknowledge and seek to better understand the breadth of the para-
sitic arsenal in this particular arms race. We specifically acknowledge the logistical difficulty
associated with acquiring parasites from the field and the daunting financial requirements for
the-omics work that has been done to date and has yet to be done. Moreover, apart from logis-
tics and finances, development of appropriately robust references for each species required ac-
cess to a single well-characterized lineage with ample biological resources. But now, with
reference genomes [14-17], transcriptomes [15,18-20], exomes [21], phylogenomes [22], and
proteomes [19,20,23] in hand, there exist a variety of resources that increase the ability of re-
searchers to examine this variation. While not reflective of field variation, these resources vastly
increase the ease of-omics work by providing a means for the creation of genetic tools [4] that
can then be used in the field and a template that researchers can use to map their data. Aside
from field collection, existing museum collections can be put to use—for example, the cercariae
bank SCAN (Schistosomiasis Collection at the Natural History Museum-London) [24], from
which researchers can obtain cercariae samples from several geographic locations to investigate
genetic variability. These resources will allow researchers to check levels of variation within tar-
get genes of interest (which may be the most cost-effective and efficient approach) and begin to
understand adaptive variation on a genome-wide and global scale.

Likewise, the continued advances in next-generation sequencing and analysis have exponen-
tially increased our ability to generate genome-wide data with high and affordable throughput.
Though they might not move at the pace of biotechnology, the bioinformatics and statistical an-
alytics to accompany the data generation are also making giant strides. Methods such as whole-
genome sequencing of pooled DNA samples (Pool-Seq), already used on laboratory populations
of S. mansoni to evaluate variation across the genome [5], could be used to interrogate larger
swaths of field-collected specimens across the whole genome without the expense of sequencing
multiple specimens individually. Together with an increasingly annotated and functionally de-
scribed genome, these data could go a long way to both providing an increased understanding of
the schistosome’s biology and ensuring a rationally devised and informed suite of human vac-
cine targets that incorporates, a priori, the parasite’s potential to adapt.

Schistosomes present a clear burden of disease on much of the globe’s population. We know
from current data that these parasites can harbor significant amounts of genetic variation, but
we are only just beginning to understand how that variation could alter approaches to vaccine
development. Gobert et al. [25] recently called for an increased effort to place schistosome ge-
nomic elements into a more biologically functional perspective. We build upon this call and en-
courage the schistosome community to incorporate studies that will provide perspective on the
variable nature of the schistosome’s functional biology. As we explore the target(s) that will
most effectively elicit a protective immune response, we cannot overlook the role that natural
adaptive variation of the parasite could play in thwarting widespread vaccine efficacy.
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