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Background. Pancreatic cancer patients with similar clinicopathological status exhibit substantially different therapeutic re-
sponses, which might be caused by the vast molecular heterogeneity of tumors. In this study, we attempted to identify specific
molecular subgroups and construct a prognostic prediction model based on the expression level of immune-related genes in
pancreatic cancer. .e transcriptome profiling, single nucleotide variation, copy number variation, clinicopathological infor-
mation, and follow-up data of pancreatic cancer patients were obtained from.e Cancer Genome Atlas database. .ereafter, the
immune-related genes with prognostic significance were identified for further consensus cluster analysis. .e molecular
characteristics and clinicopathological information were compared between the identified subgroups, and a weighted correlation
network analysis was performed to identify the hub genes associated with the subgroups. Finally, the prognostic prediction model
based on immune-related genes was established using the least absolute shrinkage and selection operator (LASSO) analysis.
Results. A total of 67 immune-relevant genes with prognostic significance were selected and used for the consensus cluster
analysis..e total samples were divided into two groups, C1 and C2..e subgroup C1 had a significantly worse prognosis than C2,
as well as lower levels of immune cell infiltration, which indicate an immunosuppressed state. .e mutational rate of the cancer-
related genes including KRAS, TP53, and RNF43 was higher in the C1 subgroup. .e C1 subgroup was associated with more
advanced tumor grade and T stage and with higher mortality. Using LASSO regression, we developed a prognostic prediction
model based on the expression levels of 19 immune-related genes, which we validated in three external data sets. In addition, we
identified four potential therapeutic and prognostic biomarkers (TNNT1, KCNN4, SH2D3A, and PHLDA2). Conclusion. We
identified two novel molecular subgroups of pancreatic cancer and developed a prognostic prediction model based on the
expression levels of immune-related genes, which could be used in a clinical setting and could aid in unraveling the molecular
processes leading to the development of pancreatic cancer.

1. Introduction

Pancreatic cancer is one of the most lethal malignancies
affecting the digestive system. It is characterized by an in-
sidious onset with nonspecific early symptoms and early

metastasis [1, 2]. As a result, pancreatic cancer patients often
are at an advanced stage or present distant metastases when
they are diagnosed. .is greatly hinders surgical manage-
ment, which is the most effective therapeutic approach for
pancreatic cancer nowadays [3]. In addition, pancreatic
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cancer is associated with a high risk of relapse. Altogether,
these factors contribute to the high mortality associated with
this disease, which is the fourth leading cause of cancer-
related deaths in America, and that has a five-year survival
rate of less than 9% [4]. .e traditional tumor staging
methods that merely rely on basic clinicopathological in-
formation such as the tumor-node-metastasis classification
or the age group in the same category individuals with
substantial phenotypic differences have a considerable im-
pact on prognosis. .erefore, traditional staging methods
are not sensitive enough to provide individualized diagnosis
and treatment for pancreatic cancer patients [5, 6]. In ad-
dition, classical serum tumor biomarkers such as carbo-
hydrate antigen 19-9, carbohydrate antigen 125, or
carcinoembryonic antigen perform poorly in the early di-
agnosis and outcome prediction of pancreatic cancer [7, 8].
Improving early diagnosis and developing new risk strati-
fication methods will contribute to more effective man-
agement and a better prognosis for pancreatic cancer
patients. With the rapid development and progress of se-
quencing methods, huge amounts of high-throughput data
from different omics technologies are now available in
public databases such as .e Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO). Wise use of this
information may help us further investigate the molecular
mechanisms underlying the development of pancreatic
cancer.

Previous studies have already investigated the molecular
classification and the internal heterogeneity of pancreatic
cancer using omics data [9, 10]. Integrating genomics data,
Bailey et al. established four distinct molecular subtypes of
pancreatic cancer (squamous, pancreatic progenitor, im-
munogenic, and aberrantly differentiated endocrine-exo-
crine), a new classification system that might contribute to
understanding the molecular evolution of pancreatic cancer,
as well as to developing new therapeutic methods [11]. Using
transcriptional data, Collisson et al. distinguished three
pancreatic ductal adenocarcinoma subtypes (classical,
quasimesenchymal, and exocrine-like) that are associated
with different survival and progress rates, as well as distinct
therapeutic responses [12]. Finally, a classifier constructed
using the expression levels of 19 miRNAs was reported to
accurately predict the prognosis of pancreatic cancer pa-
tients with high sensitivity [13]. .ese studies highlight the
potential ways in which the use of omics data can help
molecularly characterize tumors, contributing to the dis-
covery of new diagnostic and prognostic biomarkers.

.e malignant behaviors of pancreatic cancer largely
depend on the complex cross-talk between tumor cells and
the tumor immune microenvironment [14]. A deeper un-
derstanding of the immune landscape in pancreatic cancer
could help elucidate these interactions and develop new
immunotherapy approaches [15]. A previous study identi-
fied four molecular subtypes of prostate cancer that
markedly differed in their prognosis by analyzing the ex-
pression levels of immune-related genes. Six of these im-
mune-related genes were used to develop a prognostic
prediction model using least absolute shrinkage and selec-
tion operator (LASSO) regression [16]. To our knowledge,

no molecular subgroups of pancreatic cancer have been
identified using immune-related genes to date.

In this study, we attempted to identify specific molecular
subtypes of pancreatic cancer that are closely associated with
the immune system signature. Analyzing the expression
levels of immune-related genes with prognostic value using
consensus cluster analysis, we identified two specific mo-
lecular subgroups, C1 and C2. Significant differences in the
overall survival (OS) and clinical features including tumor
grade, Tstage, and survival status were observed between the
C1 and C2 subgroups. To molecularly characterize these two
subgroups, we annotated the differentially expressed genes
(DEGs) according to gene ontology (GO) and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) and performed
gene set enrichment analysis (GSEA). In addition, we also
performed immune infiltration, mutation spectrum, and
copy number variation analyses. Weighted correlation
network analysis (WGCNA) identified four hub genes as-
sociated with the molecular subgroups. In the future, it is
necessary to further study the function of the four genes
identified, TNNT1, KCNN4, SH2D3A, and PHLDA2, and
evaluate their potential use as biomarkers. Finally, we
constructed a prognostic prediction model using the ex-
pression levels of 19 immune-related genes and validated it
using three external data sets. In addition, uni- and mul-
tivariate Cox analyses revealed that the constructed model
was an independent prognostic factor in pancreatic cancer.
.ese results indicate that the model could be used in a
clinical setting in the near future to aid clinicians in making
management-related decisions.

2. Materials and Methods

2.1. Data Download and Preprocess. Transcriptome data
(RNA-Seq, HTSeq-Counts type), single nucleotide variation
data (MuTect2, Annotation type), copy number variation
(Copy Number Segment, Masked type), clinicopathological
information, and the latest follow-up data of pancreatic
cancer patients from TCGA database were downloaded from
the Genomic Data Commons Data Portal (https://portal.
gdc.cancer.gov) on December 8, 2020 [17]. Genes with RNA-
sequencing missing values in more than half of the total
samples and data from patients with overall survival (OS) of
less than 30 days were excluded from the subsequent ana-
lyses. A total of 171 pancreatic cancer samples met the se-
lection criteria and were used for consensus cluster analysis.
In addition, three GEO data sets, GSE62452 [18], GSE71729
[19], and GSE78229 [20], were used for external validation
[21, 22]. .e detailed information on pancreatic cancer
samples from TCGA and the three validation data sets are
provided in Supplementary Tables 1 and 2, respectively.

2.2. Identification of Prognosis-Related Molecular Subgroups
Based on the Immune-Related Genes. To study the existence
of distinct molecular subgroups in pancreatic cancer, we
selected immune-related genes with prognostic significance
for further analyses. First, 1,811 immune-relevant genes
were obtained from the Immunology Database and Analysis
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Portal (ImmPort) website (https://www.immport.org/) [23].
.ereafter, log-rank and Cox survival analyses were per-
formed to identify survival-relevant genes based on the gene
expression data of pancreatic cancer samples from the
TCGA data set. A total of 1,350 genes had associated
p-values< 0.01 in both the log-rank and Cox analyses and
were selected for further study. Immune-related genes with
prognostic significance were defined as the intersection of
potential prognosis-related markers and immune-related
genes, and a total of 67 genes were selected. Detailed in-
formation about the selected genes is provided in Supple-
mentary Table 3. Subsequently, consensus cluster analysis
based on the above 67 genes was performed using the R
package “ConsensusClusterPlus” [24]. .e number of
consensus clusters was set to 2, based on the package
guidelines. Finally, the pancreatic cancer samples were
separated into groups C1 (n� 103) and C2 (n� 68). OS and
principal component analysis (PCA) between the two
subgroups were performed with the R packages “survival,”
“survminer,” and “DESeq2” [25–28].

2.3. Molecular Characteristics and Clinicopathological Infor-
mation Comparisons between the Two Subgroups. To further
elucidate the mechanisms underlying the two subgroups, the
DEGs between the C1 and C2 subgroups were identified and
selected using the criteria |Log2 Fold Change|> 1 and ad-
justed p-value< 0.05. A total of 2,698 DEGs were identified
using the R package “DESeq2” [28]. Furthermore, GO,
KEGG, and GSEA were performed using the R packages
“clusterProfiler” and “enrichplot” to identify the related
molecular signaling pathways of the specific subgroups
[29, 30]. Detailed information on the DEGs is provided in
Supplementary Table 4. In addition, the TIMER2.0 database
was used to estimate and compare the immune infiltrate
levels between the two subgroups [31–33]. Next, mutation
spectrum analysis of the two subgroups was performed using
the R package “maftools” [34]. .e function “mafComapre”
of the R package “maftools” was used to perform Fisher’s test
on all genes to detect differentially mutated genes between
C1 and C2 subgroups. Correlation analysis between gene
expression levels and copy numbers was analyzed. Genes
with different frequencies of copy number variations were
compared between C1 and C2 subgroups. Finally, the
clinicopathological features were compared between the C1
and C2 subgroups.

2.4. Identification of Genes Associated with the Molecular
Subgroups Using WGCNA. We performed WGCNA using
the R package “WGCNA” to identify the genes associated
with each molecular subgroup [35, 36]. .e hub genes were
selected and visualized using the software Cytoscape (ver-
sion 3.8.2) [37, 38] and the website Metascape [39]..e web-
based tool gene expression profiling interaction analysis
(GEPIA) was used to visualize the expression levels of the
hub genes in 179 pancreatic tumor samples and 171 normal
tissue samples [40]. Overall survival (OS) and relapse-free
survival (RFS) analyses of the selected hub genes in

pancreatic cancer patients were performed based on the
Kaplan-Meier Plotter website [41].

2.5. Construction of aPrognostic PredictionModel Based on 19
Immune-Related Genes. To aid clinicians in stratifying
pancreatic cancer patients based on the risk level, we de-
veloped a prognostic predictor model based on the ex-
pression data of 67 immune-relevant genes via LASSO
analysis using the R package “glmnet” according to the
official recommendations [42, 43]. First, the total samples
from the TCGA data set were randomly divided into the
training (70% of the total sample, n� 120) and validation sets
(30% of the total sample, n� 51). We developed a prognostic
prediction model based on 19 immune-related genes using
the training set. Detailed information on the 19 immune-
related genes is provided in Table 1. A risk score was
assigned to each patient in the training set, according to the
following formula:
Risk score � 􏽐19

n�1(Coefficientn ∗Expression of genen).
Samples were categorized as high or low risk, considering the
threshold of the median value of the overall risk scores. OS
analysis was performed between the high- and low-risk
groups. .e predictive efficiency of the model was assessed
by determining the receiver operating characteristic (ROC)
curve and the area under the curve (AUC) using the R
package “timeROC” [44]. .e validation set and three ex-
ternal data sets (GSE62452, GSE71729, and GSE78229) were
used to assess the validity of the model. .e expression data
of all data sets used were standardized using z-scores.

2.6. Uni- and Multivariate Cox Analyses of the Prognostic
Factors. We performed univariate analysis using the con-
structed model and common clinicopathological factors
such as age, gender, tumor grade, clinical stage, T stage, M
stage, and N stage, to identify the prognosis-related factors
(p< 0.05). Next, these significantly prognostic factors were
extracted for further multivariate Cox analysis to identify the
independent prognostic factors (p< 0.05) in pancreatic
cancer.

2.7. Statistical Analysis. In this study, the R (version 3.6.3)
and RStudio software were utilized to carry out the statistical
analysis and figure preparation. p-values less than 0.05 were
defined as statistically significant.

3. Results

3.1. Identification of Specific Molecular Subgroups Based on
Immune-Related Genes Using Consensus Cluster Analysis.
To identify the molecular subgroups associated with im-
mune-relevant genes in pancreatic cancer, we extracted
1,811 immune-relevant genes from the ImmPort website,
which provides user-friendly bioinformatic analysis tools for
basic and clinical immunology..ereafter, log-rank and Cox
survival analyses were performed to identify survival-rele-
vant genes based on the gene expression data of pancreatic
cancer samples from the TCGA data set. .e genes with
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p< 0.01 in both log-rank and Cox analyses were selected and
defined as genes with a prognostic value. Immune-related
genes with prognostic significance were defined as the in-
tersection of potential prognosis-related markers and im-
mune-related genes, and a total of 67 genes were selected
(Figure 1(a)). Expression data of the immune-related genes
with prognostic significance were selected for further con-
sensus cluster analysis. Samples of patients with survival
time inferior to 30 days were excluded for further analyses to
avoid possible disturbances. .e consensus cumulative
distribution function (CDF) plot showed that the slope of
the CDF curve changes the most when the consensus index
is set at 0 or 1 and the number of clusters is set as 2, as per
official recommendations (Figure 1(b)). .e relative change
in the area under the CDF curve also indicated no substantial
changes occur when the k value is higher than 2
(Figure 1(c)). A tracking plot was constructed to reflect the
distribution of the samples when k ranges from 2 to 10
(Figure 1(d)). According to the cluster-consensus and
consensus matrix plots, the total sample is divided into two
distinct subgroups when k� 2 (Figures 1(e) and 1(f )). .e
pancreatic cancer samples were divided into groups C1
(n� 103) and C2 (n� 68). .e expression level of the 67
immune-related genes among C1 and C2 subgroups was
represented in a heat map (Figure 2(a)). .e subgroup C1
has a significantly worse prognosis in comparison to the
subgroup C2 (Figure 2(b); p< 0.0001). .e existence of two
distinct subgroups was further confirmed via PCA
(Figure 2(c)). .ese results indicate the existence of two
distinct molecular subgroups in pancreatic cancer according
to the expression levels of prognosis-associated immune
genes.

3.2. Identification of Signaling Pathways Related to the Mo-
lecular Subgroups. Since the molecular subgroups of

pancreatic cancer samples were significantly correlated to
the OS, the DEGs between the two subgroups might be
related with the initiation and development of pancreatic
cancer..erefore, we first determined the DEGs between the
C1 and C2 subgroups, using the standard criteria |Log2 Fold
Change|> 1 and adjusted p-value< 0.05. A total of 2,698
DEGs were identified, of which 827 were upregulated and
1,871 were downregulated (Figures 3(a) and 3(b)). To de-
termine the function of the DEGs, GO, KEGG, and GSEA
were used. .e top 10 enriched terms of the GO analysis
including the biological process, cellular component, and
molecular function are shown in Figure 3(c) (Supplementary
Table 5). Several important molecular mechanisms were
enriched in the GO analysis, including regulation of trans-
synaptic signaling, multicellular organismal signaling, signal
release, synaptic membrane, postsynaptic membrane, ion
channel activity, ion gated channel activity, and potassium
ion transmembrane transporter activity. .ese results in-
dicate that there is a close relationship between cellular
signal transduction pathways and the molecular subgroups.
KEGG enrichment analysis revealed several molecular
pathways that may play a vital role in the development of
pancreatic cancer, such as cytokine-cytokine receptor in-
teraction, cAMP signaling pathway, cell adhesion molecules,
pancreatic secretion, and primary immunodeficiency
(Figure 3(d) and Supplementary Table 6). GSEA showed that
apical junction, glycolysis, mitotic spindle, mTORC1 sig-
naling, and p53 pathway were significantly activated,
whereas bile acid metabolism and pancreas β cell pathways
were significantly inhibited (Figures 3(e) and 3(f )). Further
study of these alterations might contribute to a better un-
derstanding of the distinct molecular mechanisms under-
lying the two molecular subgroups identified.

3.3. Comparisons of Immune Infiltration,Mutation Spectrum,
Clinical Features, andCopyNumberVariation between theC1
andC2 Subgroups. As the subgroups identified based on the
immune-related genes were significantly associated with
prognosis, we compared the molecular characteristics and
some clinical features between the C1 and C2 subgroups..e
infiltration level of six immune-cell populations was higher
in the C2 subgroup compared with the C1 subgroup
(Figure 4(a)). .e difference was significant for the infil-
tration level of macrophages, myeloid dendritic cells, T cells
CD4+, and Tcells CD8+ (Figure 4(b)). .ese results indicate
an immunosuppression state in the C1 subgroup, which
might contribute to the poor prognosis associated with this
group. Mutational spectrum analysis of the two subgroups
was performed. .e top 20 mutated genes in the C1 and C2
subgroups are shown in Figures 4(c) and 4(d), respectively.
.e mutational frequency of KRAS, T753, RNF43, FLG,
PCDH15, and ADAMTS16was significantly higher in the C1
subgroup compared with the C2 subgroup (Supplementary
Table 7; Figure 4(e)). A comparison of common clinico-
pathological characteristics indicated that the two subgroups
significantly differed in tumor grade, T stage, and survival
(Table 2). .e C1 subgroup, with a worse prognosis, was
associated with a more advanced tumor grade and T stage

Table 1: .e 19 immune-related genes and their corresponding
coefficients that were selected to construct the prognostic pre-
diction model based on the LASSO regression model.

Number Gene name LASSO coefficient
1 MET 0.0951
2 SLURP1 0.8368
3 IL1RAP 0.0332
4 IL18 0.3994
5 IL31RA 0.6839
6 TNFSF10 0.1371
7 CXCL11 0.4979
8 IL20RB 0.2564
9 PLAU 0.1469
10 ERAP2 0.2966
11 PIK3CB −0.9853
12 EIF2AK2 −1.1102
13 IL6R −0.2665
14 NPR1 −0.2134
15 GDF11 −1.2324
16 INSL5 −0.0406
17 LRSAM1 −0.6822
18 TYK2 −0.0659
19 SEMA6C −0.3146
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and higher mortality than the C2 subgroup (Figure 4(f)).
Further analyses of genes with the difference in copy number
variation were performed between the C1 and C2 subgroups.
Interestingly, our results demonstrated that PTK2 and PLEC
expression levels were significantly correlated with their
copy number (Figures 5(a) and 5(d)). .e PTK2, also known
as FAK, upregulation of its expression could accelerate
progression and contribute to an immunosuppressive en-
vironment of pancreatic cancer [45, 46]. PTK2 gene ex-
pression was higher in the C1 than the C2 subgroup
(Figure 5(b)). And the frequencies of amplification and
single gain were also higher in the C1 subgroup (Figure 5(c)).
In addition, previous research proved that the PLEC gene
could serve as a novel biomarker to identify preinvasive,
primary, and metastatic pancreatic ductal adenocarcinoma,
and its expression was continuously increasing along with
tumor progression [47]. Similarly, PLEC expression was also
significantly higher in the C1 subgroup compared with the
C2 subgroup, and frequencies of amplification and single
gain were lower in the C2 subgroup than the C1 subgroup
(Figures 5(e) and 5(f))..e above results might contribute to
elucidating the underlying mechanisms behind the het-
erogeneity between different molecular subgroups.

3.4.HubGenesAssociatedwith theMolecular SubgroupsWere
Identified via WGCNA. We performed WGCNA of 2,698
DEGs to identify specific gene coexpression modules, and
subsequently, we identified the gene coexpression module
most correlated with the clinical traits. .e complete clinical

information is shown in the clustering dendrogram with the
trait heat map (Figure 6(a)). .e soft threshold of WGCNA
was defined as 6 to maintain the balance between scale
independence and mean connectivity (Figure 6(b)). Genes
were separated into eight modules depicted in different
colors in Figure 6(c). .e correlation analysis between the
gene modules and clinical traits identified that the module
labeled as brown was the one most significantly correlated
with the C1 subgroup (Figure 6(d)). In addition, this module
was also significantly correlated with the T stage and the
clinical stage. Gene significance, defined as the correlation
between gene expression and clinical traits, was put in re-
lation to module membership, defined as the correlation
between the module and the gene expression profile. .e
correlation between module membership and gene signifi-
cance for the Tstage, the clinical stage, or the subgroup in the
brown module is shown in Figures 6(e)–6(g). Detailed in-
formation on the genes in the brown module is provided in
Supplementary Table 8. To further identify the hub genes in
the brown module, the hub genes were selected using the
software Cytoscape (Figure 7(a)) and identified using the
database Metascape (Figure 7(b)). Analysis of the expression
level of the hub genes indicated that the genes TNNT1,
KCNN4, SH2D3A, and PHLDA2 were differentially
expressed between 179 pancreatic tumors and 171 normal
tissue samples (Figure 7(c)). .e expression level of the four
genes was significantly correlated with the OS, with higher
expression levels indicating a worse prognosis (p< 0.05;
Figure 7(d)), and with RFS (p< 0.05; Figure 7(e)). .ese
results suggest that these four genes might play an important
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Figure 1: Identification of molecular subgroups using consensus cluster analysis. (a) Venn diagram that shows the intersection of the
immune-related genes and the prognostic genes in pancreatic cancer. (b) Consensus cumulative distribution function (CDF) plot when the k
value ranges from 2 to 10. (c) Relationship between the relative change in area under the CDF curve and a different number of clusters (k
value). (d) Tracking plot of the total samples when the k value ranges from 2 to 10. Each color represents different clusters. (e) Relationship
between the average value of the consensus matrix and each cluster when k value ranges from 2 to 10..e Y-axis stands for the average value
of the consensus matrix and X-axis means the different number of clusters. (f ) Heat map of consensus matrix when the total samples are
divided into two groups, that is, C1 and C2 subgroups.
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Figure 3: GO, KEGG, and GSEA based on the differentially expressed genes (DEGs) between the C1 and C2 subgroups: (a) heat map of the
DEGs between the C1 and C2 subgroups; (b) volcano plot of the DEGs and genes with |Log2 Fold Change|> 1 and adjusted p-value< 0.05
were identified as significantly differentially expressed; (c) top 10 enriched items of the GO analysis including the biological process, cellular
component, and molecular function; (d) top 20 signaling pathways of the KEGG enrichment analysis; (e) significantly activated signal
pathways identified via GSEA; and (f) significantly inhibited signal pathways identified via GSEA.
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Figure 4: Continued.
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Figure 4: Comparisons of the immune infiltration, mutation spectrum, and clinical features between the C1 and C2 subgroups: (a) heat map
of the immune infiltration levels of six types of immune cells between the C1 and C2 subgroups, (b) boxplot of the immune infiltration levels
of the six types of immune cells between the C1 and C2 subgroups, (c) mutation spectrum of the top 20 genes in the C1 subgroup, (d)
mutation spectrum of the top 20 genes in the C2 subgroup, (e) top six genes with different mutational frequencies between the C1 and C2
subgroups, and (f) distribution plots of different clinical features including tumor grade, Tstage, and survival status between the C1 and C2
subgroups.

Table 2: Comparisons of clinicopathological information between the C1 and C2 subgroups in pancreatic cancer.

Clinicopathological factors
Consensus cluster

p-value
C1 (n� 103) C2 (n� 68)

Age (year), median (IQR) 65.0 (56.5–74.0) 65.0 (57.0–71.0) 0.4298a

Gender 0.3495b

Female 44 34
Male 59 34

Tumor grade 0.0202b

G1 +G2 65 55
G3 +G4 36 13
NA 2 0

Clinical stage 0.7055c

I + II 97 64
III + IV 5 2
NA 1 2

T stage 0.0006b

T1 +T2 9 19
T3 +T4 94 47
NA 0 2

M stage 0.6355c

M0 44 33
M1 3 1
NA 56 34

N stage 0.8867b

N0 29 18
N1 72 47
NA 2 3

Survival status 0.0001b

Alive 36 44
Dead 67 24

a.e Mann–Whitney U test, bchi-square test, and cFisher’s exact test were used to calculate the p-values. IQR: Interquartile range. NA: not available.
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role in the progression of pancreatic cancer. Further in vitro
and in vivo experiments should be performed to verify its
biological function in pancreatic cancer.

3.5. Construction of the Prognostic PredictionModel Based on
the 19 Immune-Related Genes. In this study, a prognostic
prediction model was developed to accurately stratify
pancreatic cancer patients according to the risk level, which
could be a tool of great importance in a clinical setting. To
select the genes to construct the model, LASSO regression

was performed using the 67 immune-relevant genes with
prognostic significance. Samples in the TCGA data set were
randomly divided into the training (70% of the total samples,
n� 120) and validation sets (30% of the total samples,
n� 51). .e prognostic prediction model was constructed
using the training data set using the LASSO regression
model. .e c-index was highest when log (λ) � −3.08
(Figure 8(a)). With these parameter values, a total of 19
immune-related genes were selected to construct the
model. .e coefficients of different genes corresponding
to various combination models are shown in Figure 8(b).
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Figure 5: Comparisons of genes with copy number variation between the C1 and C2 subgroups: (a) correlation analysis between PTK2 gene
expression level and its copy number variation, (b) PTK2 gene expression level between C1 and C2 subgroups, (c) frequency of copy number
variation of PTK2 gene between C1 and C2 subgroups, (d) correlation analysis between PLEC gene expression level and its copy number
variation, (e) PLEC gene expression level between C1 and C2 subgroups, and (f) frequency of copy number variation of PLEC gene between
C1 and C2 subgroups.
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Figure 6: Continued.
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Figure 6: Identification of genes associated with the molecular subgroups usingWGCNA: (a) dendrogram of total samples and heat map of
clinical traits, (b) correlation between the soft threshold and scale-free topology model fit (left plot) and correlation between the soft
threshold andmean connectivity (right plot), (c) gene dendrogram andmodules in different colors, (d) correlation analysis between the gene
modules and clinical traits, (e) correlation analysis between module membership in brown module and gene significance for C1 subgroup,
(f ) correlation analysis between module membership in brown module and gene significance for T stage, and (g) correlation analysis
between module membership in brown module and gene significance for the clinical stage.
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Detailed information on 19 genes and their coefficients is
listed in Table 1. A risk score was calculated for each
patient according to the following formula:

Risk score � 􏽘
19

n�1
Coefficientn ∗Expression of genen( 􏼁. (1)

.e distribution plots of risk score and OS between the
high- and low-risk groups in the training set are shown in
Figure 8(c). A heat map of the expression levels of the se-
lected genes in the training set is depicted in Figure 8(e). .e
OS analysis between the high-risk (n� 60) and low-risk
(n� 60) groups showed that the high-risk group had a
significantly worse prognosis (log-rank p< 0.001, Cox
p< 0.001, HR� 4.7, 95% CI: 3− 7.3; Figure 8(f )). .e effi-
ciency of the model constructed based on the expression
levels of the 19 genes was assessed using a ROC curve. .e
AUC of 1-, 3-, and 5-year survival time were 0.80, 0.89, and
0.96, respectively (Figure 8(g), c-index: 0.76, 95% CI:
0.66–0.87). .ereafter, the samples in the validation set were

classified as high or low risk based on the median value of the
overall risk scores. .e risk score and OS distribution plots
and the heat map of the genes for the internal validation
set are provided in Figures 8(d) and 8(h), respectively. A
significant difference between the high-risk (n � 25) and
low-risk (n � 26) groups was also identified in the internal
validation set (log-rank p< 0.014, Cox p< 0.001, HR � 3,
95% CI: 1.7 − 5.2; Figure 8(i)). .e AUC of 1, 3, and 5 years
in the ROC curve were 0.84, 0.91, and 1.00 in the internal
validation set, respectively (Figure 8(j), c-index: 0.79, 95%
CI: 0.65–0.94). .ese results indicated that the model
based on the expression levels of the selected immune-
related genes could serve as an accurate prognostic pre-
diction tool in pancreatic cancer.

.e universality of the model was investigated via ex-
ternal validation using multiple data sets obtained from the
GEO database (GSE62452, GSE71729, and GSE78229).
According to the risk score formula, the samples of the three
external data sets were separated into high- and low-risk
groups. .e risk score and survival time distribution plots in
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Figure 7: Identification of four potential target genes in pancreatic cancer: (a) top 20 hub genes of the brown module are selected by using
the Cytoscape software; (b) hub genes of the brown module are selected by using the metascape database; (c) expression levels of TNNT1,
KCNN4, SH2D3A, and PHLDA2 between the 179 pancreatic tumors and 171 normal tissue samples based on the GEPIA database; (d) overall
survival analysis of TNNT1, KCNN4, SH2D3A, and PHLDA2 in pancreatic cancer using the Kaplan-Meier Plotter website; and (e) relapse-
free survival of TNNT1, KCNN4, SH2D3A, and PHLDA2 in pancreatic cancer using the Kaplan-Meier Plotter website.
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the high- and low-risk groups from the GSE62452 data set
are shown in Figure 9(a), those from GSE71729 in
Figure 9(e), and those from GSE78229 in Figure 9(i). .e
heat map of the expression levels of the 19 immune-related
genes in the GSE62452, GSE71729, and GSE78229 data sets
are shown in Figures 9(b), 9(f), and 9(j), respectively. OS
analysis showed that the prognosis of the low-risk group was
better than that of the high-risk group in the three data sets
(for GSE62452, log-rank p � 0.035, Cox p � 0.009, HR� 1.9,
95% CI: 1.2–3.1, Figure 9(c); for GSE71729, Log-rank
p � 0.018, Cox p � 0.016, HR� 1.3, 95% CI: 1.1–1.7,
Figure 9(g); and for GSE78229, Log-rank p � 0.028, Cox
p � 0.012, HR� 2.1, 95% CI: 1.2–3.8, Figure 9(k)). .e AUC
for 1-year OS in the ROC curve in GSE62452 was 0.9
(Figure 9(d), c-index: 0.62, 95% CI: 0.47–0.76). .e AUC for
1- and 3-year OS in GSE71729 were 0.66 and 0.56, re-
spectively (Figure 9(h), c-index: 0.67, 95% CI: 0.56–0.78).
.e AUC for 1-year OS in the GSE78229 data set was 0.87
(Figure 9(l), c-index: 0.65, 95% CI: 0.49–0.81). .ese results
demonstrated that the prognostic prediction model based on
the 19 immune-related genes also had a satisfactory function
in the external validation data sets.

3.6. Uni- and Multivariate Cox Analyses of the Prognostic
Factors. To identify the prognosis-associated factors for
pancreatic cancer patients, univariate Cox regression anal-
ysis was performed on the risk score model and common
clinicopathological information, including age, gender, tu-
mor grade, clinical stage, T stage, M stage, and N stage based
on the data from TCGA data set. Risk score, age, tumor
grade, T stage, and N stage could serve as prognosis-related
factors (p< 0.05). Multivariate Cox regression analysis in-
dicated that from these five prognosis-related factors, risk
score and N stage were independent prognostic predictor

factors (p< 0.05). Detailed results of the uni- and multi-
variate Cox analysis are provided in Table 3. .ese results
demonstrate that the prognostic prediction model based on
the 19 immune-related genes could serve as an independent
prognostic factor.

4. Discussion

Pancreatic cancer patients with similar tumor morphology
and clinicopathological status often show considerable
differences in responses to the same therapeutic method,
which may be caused by the vast molecular heterogeneity
of the tumor tissue [10, 48, 49]. Accurately stratifying
patients in molecular subgroups with specific OS, clinical
outcome, and therapeutic responses would aid clinicians
in making accurate decisions and administering indi-
vidualized treatment, leading to a better prognosis in
pancreatic cancer [50–52]. As the immune landscape is
closely associated with the development of pancreatic
cancer and immunotherapy stands as a promising ther-
apeutic option in the near future [53, 54], we attempted to
identify distinct molecular subgroups in pancreatic cancer
by analyzing the expression level of immune-related
genes.

For this purpose, we selected the expression data of the
immune-related genes with p< 0.01 in both log-rank and
Cox survival analyses for further analysis. To identify the
distinct molecular subgroups, we performed consensus
cluster analysis, an unsupervised technique that allows the
grouping of similar objects and division of the data and has
been widely used to study the existence of distinct subgroups
in various cancer types [55, 56]. Using this approach, the
samples were divided into two distinct molecular subgroups,
C1 (n� 103) and C2 (n� 68), which presented significant
differences in the prognosis.
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Figure 8: Construction and validation of the prognostic prediction model based on the 19 immune-related genes: (a) relationship between
c-index and log (λ) value in the LASSO regression model, (b) coefficients of different genes corresponding to different combination models,
(c) distribution plots of risk score and survival time between the high- and low-risk groups in the TCGA training set, (d) distribution plots of
risk score and survival time between the high- and low-risk groups in the TCGA validation set, (e) heat map of 19 genes in the TCGA
training set, (f ) overall survival (OS) analysis between the high- and low-risk groups in the TCGA training set, (g) the ROC curve was used to
evaluate the efficiency of the 19 gene model in the TCGA training set, (h) heat map of 19 genes in the TCGA validation set, (i) OS analysis
between the high- and low-risk groups in the TCGA validation set, and (j) the ROC curve was used to evaluate the efficiency of the 19 gene
model in the TCGA validation set.
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Figure 9: Validation of the prognostic predictionmodel in the three external validation sets from the GEO database: (a) distribution plots of
risk score and survival time between the high- and low-risk groups in the GSE62452 data set, (b) heat map of 19 genes in the GSE62452 data
set, (c) overall survival (OS) analysis between the high- and low-risk groups in the GSE62452 data set, (d) the ROC curve was used to evaluate
the efficiency of the 19 gene model in the GSE62452 data set, (e) distribution plots of risk score and survival time between the high- and low-
risk groups in the GSE71729 data set, (f ) heat map of 19 genes in the GSE71729 data set, (g) OS analysis between the high- and low-risk
groups in the GSE71729 data set, (h) the ROC curve was used to evaluate the efficiency of the 19 gene model in the GSE71729 data set, (i)
distribution plots of risk score and survival time between the high- and low-risk groups in the GSE78229 data set, (j) heat map of 19 genes in
the GSE78229 data set, (k) OS analysis between the high- and low-risk groups in the GSE78229 data set, and (l) the ROC curve was used to
evaluate the efficiency of the 19 gene model in the GSE78229 data set.
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To further elucidate the underlying molecular mecha-
nisms behind the established molecular subgroups, we
utilized GO, KEGG, and GSEA by employing the DEGs to
identify the signaling pathways specifically associated with
each subtype. Immune infiltration analysis revealed that the
immune scores of six immune cell types were higher in the
C2 subgroup than in the C1 subgroup. .ese differences
were significant for macrophages, myeloid dendritic cells,
and the T cell populations CD4+ and CD8+. .ese results
suggest a state of immune suppression in the C1 subgroup,
which might underlie the poor prognosis associated with
this subgroup. Mutation analysis indicated that classical
cancer-related genes such as KRAS, TP53, and RNF43 were
more frequently mutated in the C1 subgroup [57–59].
Analyses of genes with the difference in copy number
variation were performed between the C1 and C2 subgroups.
.e expressions of the cancer-promoting PTK2 and PLEC
genes were significantly higher in the C1 subgroups than the
C2 subgroups. Besides, the two genes’ frequencies of am-
plification and single gain were lower in the C2 subgroup
than the C1 subgroup. Finally, analysis of the clinical fea-
tures in the two subgroups revealed that a more advanced
tumor grade and T stage and higher mortality were asso-
ciated with the C1 subgroup. Our analysis provides a
comprehensive perspective of the differential characteristics
of the two identified groups.

To identify the DEGs specifically associated with each
molecular subgroup, we performed WGCNA. .e coex-
pression gene module labeled in brown in Figure 6(d) was
the one most significantly correlated with the molecular
subgroups. .e hub genes in this module were identified
using the Cytoscape software and the Metascape database.
.e expression level of genes TNNT1,KCNN4, SH2D3A, and
PHLDA2 was significantly different between the 179
pancreatic tumors and 171 normal tissue samples. In
addition, the expression level of these genes was signifi-
cantly correlated with the OS and RFS of pancreatic cancer
patients. A previous study reported that TNNT1 is sig-
nificantly upregulated in breast tumor samples, and it
facilitated their uncontrolled proliferation of tumor cells
[60]. In addition, another study reported TNNT1 over-
expression in colorectal cancer cells, where it enhances
their proliferation, migration, and invasion capacities
[61]. KCNN4 has been shown to modulate epithelial-
mesenchymal transition and cell apoptosis, increasing the
malignant behavior of papillary thyroid cancer cells [62].

Finally, high expression of SH2D3A has been reported to
enhance the progression of ovarian cancer [63], and
downregulation of PHLDA2 has been reported to sig-
nificantly inhibit the development of colorectal cancer
through the PI3K/AKT signaling pathway [64]. In the
future, we aim to study in detail the function of these four
genes using in vitro and in vivo approaches.

We constructed a risk model using the expression levels of
19 immune-related genes using LASSO regression. .e
resulting model performed well in the internal training and
validation TCGA subsets, as well as in three external validation
data sets, although the AUC for 3- and 5-year OS were not all
available in the three external data sets due to time limitations.
Finally, uni- and multivariate Cox analyses demonstrated that
the prognostic-prediction model developed using these genes
could serve as an independent prognostic factor, indicating its
potential use in a clinical setting.

5. Conclusions

In this study, we established two specific molecular sub-
groups based on the immune-related genes with prognostic
significance using consensus cluster analysis. .e two
subgroups demonstrated significant differences in the OS
and clinical features, including tumor grade, T stage, and
survival status. .e signaling pathways identified using GO,
KEGG, and GSEA could contribute to understanding the
underlying mechanisms behind the molecular classifica-
tions. .e immune infiltration, copy number variation, and
mutation spectrum analysis provided novel insights into the
molecular subgroups. Four potential biomarkers, TNNT1,
KCNN4, SH2D3A, and PHLDA2, were identified using
WGCNA. .e prognostic prediction model based on 19
immune-related genes could serve as an effective tool to
predict the overall survival of pancreatic cancer patients.
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Table 3: Uni- and multivariate Cox analyses of the prognostic factors in pancreatic cancer.

Prognostic factors
Univariate Cox analysis Multivariate Cox analysis

HR Lower 95% CI Upper 95% CI p-value HR Lower 95% CI Upper 95% CI p-value
Risk score 3.949 2.801 5.566 <0.001 3.838 2.626 5.610 <0.001
Age 1.030 1.008 1.052 0.006 1.016 0.995 1.036 0.135
Gender 0.802 0.531 1.211 0.294
Grade 1.457 1.094 1.941 0.010 0.964 0.698 1.331 0.823
Stage 1.314 0.897 1.926 0.161
T 1.555 1.002 2.413 0.049 0.968 0.575 1.629 0.904
M 1.028 0.246 4.297 0.970
N 2.082 1.238 3.501 0.006 1.891 1.097 3.260 0.022
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