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Abstract: A 1,4,7,10-tetraazacyclododecane (cyclen) variant bearing two thiosemicarbazone pendant
groups has been prepared. The ligand forms complexes with Mn2+, Co2+ and Zn2+. X-ray crystal-
lography of the Mn2+, Co2+ and Zn2+ complexes showed that the ligand provides a six-coordinate
environment for the metal ions. The Mn2+ and Zn2+ complexes exist in the solid state as racemic
mixtures of the ∆(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and ∆(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, and the Co2+ complex
exists as the ∆(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and ∆(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastereomers. Density functional theory
calculations indicated that the relative energies of the diastereomers are within 10 kJ mol−1. Magnetic
susceptibility of the complexes indicated that both the Mn2+ and Co2+ ions are high spin. The ligand
was radiolabelled with gallium-68, in the interest of developing new positron emission tomography
imaging agents, which produced a single species in high radiochemical purity (>95%) at 90 ◦C for
10 min.

Keywords: thiosemicarbazone; macrocycle; transition metal; cyclen; gallium-68; coordination chem-
istry; radiochemistry

1. Introduction

Thiosemicarbazone functional groups are versatile N,S donors that can coordinate
metal ions as neutral or anionic ligands, with the resulting complexes displaying diverse
coordination chemistry. In general, thiosemicarbazones are easy to synthesise by way of a
condensation reaction between a thiosemicarbazide and an aldehyde or ketone. The struc-
tures can be modified in multiple ways, allowing for the generation of tri-, tetra-, penta-
or even hexadentate ligands, as well as multinuclear complexes and coordination poly-
mers [1–9]. Modifications to the thiosemicarbazone substituents can also result in dramatic
changes to the structural, physical and biological properties of the metal complexes [10,11].

Hybrid ligands containing thiosemicarbazone groups and additional donor atoms
can introduce modifiable properties to the complexes for a variety of biological applica-
tions [12–14]. N-heterocyclic thiosemicarbazones have been investigated for their pharma-
cological properties, which have shown that the metal complexes can display bioactivities
which differ from those of either the ligand or the metal ion [15–18]. Lipophilic Mn2+, Zn2+

and Ga3+ complexes have demonstrated anti-tumour activity due to their ability to facilitate
intracellular delivery of the free ligand upon metal dissociation or transmetallation to the
Fe3+ or Cu2+ complexes [19–24]. Cobalt thiosemicarbazonato complexes have been isolated
in the Co2+ and Co3+ oxidation states and have been investigated as redox-active prodrugs
for hypoxia targeting and as anti-bacterial and anti-cancer agents [25–27]. Zinc ions have
been found to play an important role in medicine, with compounds developed for treating
neurodegeneration as well as anti-diabetic, anti-tumour, anti-bacterial, anti-microbial and
anti-inflammatory agents [16,28–34].
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Radioactive metal complexes of bis(thiosemicarbazonato) ligands derived from 1,2-
diones have been of interest for diagnostic and therapeutic applications. The ligands form
complexes with positron-emitting isotopes of copper such as copper-64 (64Cu, t1/2 = 12.7 h)
that have been investigated as perfusion and hypoxia imaging agents and as probes for
measuring altered copper trafficking in the brain during Alzheimer’s disease [35–38].
Copper complexes of thiosemicarbazone-pyridylhydrazone hybrid ligands, incorporating
a targeting group within the chelate domain, demonstrate blood–brain barrier permeability
and an ability to bind to amyloid-β plaques in vitro, and have the potential to assist with
Alzheimer’s disease diagnosis [39,40]. Bis(thiosemicarbazones) have also gained attention
as bifunctional chelators for labelling small peptides with radioactive isotopes of copper
due to their fast radiolabelling kinetics under ambient conditions, and peptide coupling
routes by way of ligands with pendant amine or carboxylic acid groups [41–43].

The positron emitter gallium-68 (68Ga, t1/2 = 68 min) is readily obtained from a
68Ge/68Ga generator from which it is eluted as a [68Ga][GaCl4]- solution in aqueous acidic
solution and is increasingly utilised for positron emission tomography (PET) [44]. The
68Ga3+ ion, administered as the citrate and nitrate salts, has been used to image tumours,
inflammation and infection [45]. Incorporating the radionuclide into a stable bifunctional
chelator is a method that allows for effective targeting to a wide range of disease states
such as prostate cancer and neuroendocrine tumours [46–48]. Interest in the development
of chelating agents for 68Ga3+ has been ongoing, mostly due to the requirements for fast
radiolabelling in high yields at moderate temperatures and in vivo stability [49,50].

Macrocyclic polyamines such as 1,4,7,10-tetraazacyclododecane (cyclen) have been
utilised in materials chemistry, medicinal chemistry, bioinorganic chemistry and chemical
biology [51–54]. The metal complexes of macrocyclic polyamines have been vital to the
development of radiopharmaceuticals owing to the higher kinetic inertness and thermody-
namic stability in comparison to metal complexes of acyclic ligands [55–58]. The modifiable
structures and the versatile chemistry of macrocyclic polyamines make them attractive scaf-
folds for generating hybrid ligands. These ligands incorporate various functional groups
in an effort to assemble metal complexes suitable for a multitude of applications. The
chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) is widely utilised
to produce Gd3+ and Mn2+ magnetic resonance contrast agents and 68Ga3+, 64Cu2+ and
177Lu3+ radiopharmaceuticals [58–62].

Previously, we have used the tetraazamacrocyclic framework of cyclen to integrate
two pendant semicarbazone groups to produce an octadentate chelator for Pb2+ and Bi3+

radionuclides [63]. In this work, we investigated the coordination chemistry of a tetraaza-
macrocycle incorporating thiosemicarbazone pendant groups with the transition metals
Mn2+, Co2+ and Zn2+. Thiosemicarbazone complexes of 68Ga3+ and the gamma emitting
radioisotope 67Ga3+ have been prepared previously, which prompted an investigation of
the 68Ga3+ radiolabelling properties of the new chelator [64–67].

2. Results and Discussion
2.1. Synthesis of H2L and the Manganese(II), Cobalt(II) and Zinc(II) Complexes

The synthesis of the diketone 1,1′-(4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-
diyl)bis(propan-2-one) (1) has been previously reported [63]. The synthesis of H2L involves
a condensation reaction between the ketone groups of 1 and two equivalents of 4-methyl-3-
thiosemicarbazide (Scheme 1).
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Scheme 1. The synthetic route for the synthesis of H2L. i) 4-methyl-3-thiosemicarbazide, acetic ac-
id, ethanol, rt, 48 h. 

H2L was characterised by 1H and 13C{1H} NMR spectroscopy. Variable-temperature 
1H NMR demonstrated sharpening of the macrocyclic CH2 proton signals (δ = 2.70–2.85 
ppm) as the temperature increased, which suggested fluxionality (Figure S3) [68]. High-
resolution mass spectrometry analysis showed an isotopic pattern at m/z = 487.31987 cor-
responding to the [H2L + H]+ cation (Figure S7). Analytical-HPLC indicated the presence 
of a single compound (RT = 5.27 min) (Figure S11). 

The addition of the metal acetate salts to a suspension of H2L in methanolic solution 
gave the complexes [MnHL]+, [CoHL]+ and [ZnHL]+ (Scheme 2). Addition of NaBPh4 re-
sulted in precipitation of the complexes as the tetraphenylborate salts. High-resolution 
mass spectrometry analysis showed isotopic patterns at m/z = 540.2335, 544.2298 and 
549.2249 attributed to the [MnHL]+, [CoHL]+ and [ZnHL]+ complex cations, respectively 
(Figures S8–S10). Analytical-HPLC showed the presence of the compounds at retention 
times of 6.06, 6.05 and 6.01 min attributed to the [MnHL](BPh4), [CoHL](BPh4) and 
[ZnHL](BPh4) complexes, respectively (Figures S12–S14). Single crystals of the tetra-
phenylborate coordination compounds were obtained by slow diffusion of diethyl ether 
into solutions of the compounds in acetone. 
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ii) Co(OAc)2·4H2O, methanol, rt, NaBPh4, 24 h; iii) Zn(OAc)2·2H2O, methanol, rt, NaBPh4, 24 h. 

2.2. NMR Studies 
The complex [ZnHL](BPh4) was characterised by 1H and 13C{1H} NMR spectrosco-

py. The presence of one equivalent of tetraphenylborate and a single hydrazinic nitrogen 

Scheme 1. The synthetic route for the synthesis of H2L. i) 4-methyl-3-thiosemicarbazide, acetic acid,
ethanol, rt, 48 h.

H2L was characterised by 1H and 13C{1H} NMR spectroscopy. Variable-temperature 1H
NMR demonstrated sharpening of the macrocyclic CH2 proton signals (δ = 2.70–2.85 ppm) as
the temperature increased, which suggested fluxionality (Figure S3) [68]. High-resolution
mass spectrometry analysis showed an isotopic pattern at m/z = 487.31987 corresponding
to the [H2L + H]+ cation (Figure S7). Analytical-HPLC indicated the presence of a single
compound (RT = 5.27 min) (Figure S11).

The addition of the metal acetate salts to a suspension of H2L in methanolic so-
lution gave the complexes [MnHL]+, [CoHL]+ and [ZnHL]+ (Scheme 2). Addition of
NaBPh4 resulted in precipitation of the complexes as the tetraphenylborate salts. High-
resolution mass spectrometry analysis showed isotopic patterns at m/z = 540.2335, 544.2298
and 549.2249 attributed to the [MnHL]+, [CoHL]+ and [ZnHL]+ complex cations, respec-
tively (Figures S8–S10). Analytical-HPLC showed the presence of the compounds at
retention times of 6.06, 6.05 and 6.01 min attributed to the [MnHL](BPh4), [CoHL](BPh4)
and [ZnHL](BPh4) complexes, respectively (Figures S12–S14). Single crystals of the
tetraphenylborate coordination compounds were obtained by slow diffusion of diethyl
ether into solutions of the compounds in acetone.
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Scheme 2. Synthesis of [MnHL](BPh4), [CoHL](BPh4) and [ZnHL](BPh4). i) Mn(OAc)2·4H2O, methanol, rt, NaBPh4, 24 h;
ii) Co(OAc)2·4H2O, methanol, rt, NaBPh4, 24 h; iii) Zn(OAc)2·2H2O, methanol, rt, NaBPh4, 24 h.
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2.2. NMR Studies

The complex [ZnHL](BPh4) was characterised by 1H and 13C{1H} NMR spectroscopy.
The presence of one equivalent of tetraphenylborate and a single hydrazinic nitrogen
proton (δ = 10.01 ppm) indicated deprotonation of the ligand at the hydrazinic nitrogen
of the coordinated pendant arm. The ligand resonances in the 1H NMR spectrum for the
thiosemicarbazonato coordinated pendant arm of [ZnHL](BPh4) have shifted compared to
the spectrum for H2L and the non-coordinated arm (Figure 1). For example, the methyl
group in the pendant arm at δ = 1.96 ppm in the 1H NMR spectrum of H2L splits into
two peaks at δ = 1.96 and 2.03 ppm for the complex. The two methyl groups attached to
the macrocycle shifted from δ = 2.45 ppm for H2L to δ = 2.31 ppm for [ZnHL](BPh4). A
significant shift was observed for the terminal NH proton of the thiosemicarbazonato arm
from δ = 8.22 ppm to 6.56 ppm. Although the signals due to the protons of the macrocycle
of [ZnHL](BPh4) (δ = 2.40–3.04 ppm) are somewhat broad, variable-temperature analysis
of the 1H NMR spectra indicated that, unlike H2L, this was not temperature dependent
(Figure S6).
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Figure 1. (a) The 1H NMR spectrum of H2L in DMSO-d6 at 25 ◦C. (b) The 1H NMR spectrum of [ZnHL](BPh4) in DMSO-d6

at 25 ◦C. Residual solvent peaks are marked with an asterisk.

2.3. X-ray Crystal Structures of [MnHL](BPh4), [CoHL](BPh4) and [ZnHL](BPh4)

The coordination compounds [MnHL](BPh4), [CoHL](BPh4)·(C3H6O) and [ZnHL]
(BPh4)·1.67(C3H6O) crystallised in the monoclinic P21/c space group. Each asymmetric unit
contains two discrete diastereomeric complexes, [M1HL]+ and [M2HL]+, that are present
as racemic mixtures of enantiomers in the unit cell. A single pendant thiosemicarbazonato
arm is coordinated to the M2+ centre through the sulfur (S1) and azomethinic (Nazo)
nitrogen donor atoms (N5), along with the four macrocyclic (Nmac) nitrogen atoms (N1,
N2, N3 and N4), forming six five-membered chelate rings. The Mn2+, Co2+ and Zn2+

structures are consistent with the loss of one proton from the ligand. The C12–S1 bond
lengths for the Mn2+ (1.745(2) Å), Co2+ (1.735(6) Å) and Zn2+ (1.743(3) Å) structures are
indicative of more thiolate character than the thione character of the C18–S2 bond lengths
(1.683(2) Å, 1.685(5) Å and 1.687(3) Å, respectively). Crystallographic data are shown in
Table 1. Representations of the isostructural [Mn1HL]+ and [Zn1HL]+ complex cations are
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shown in Figure 2. A list of metal to donor bond lengths is given in Table 2. The donor
atoms N1, N2, N3, N4, N5 and S1 are analogous to the donor atoms N11, N12, N13, N14,
N15 and S3 of the Mn2, Co2 and Zn2 complexes.

Table 1. Experimental, crystallographic and refinement data for [MnHL](BPh4), [CoHL](BPh4)·(C3H6O) and
[ZnHL](BPh4)·1.67(C3H6O).

[MnHL](BPh4) [CoHL](BPh4)·(C3H6O) [ZnHL](BPh4)·1.67(C3H6O)

Empirical formula C44H61BMnN10S2 C47H67BCoN10OS2 C49H70.75BN10O1.67S2Zn
Formula weight 859.89 921.96 966.86
Crystal system Monoclinic Monoclinic Monoclinic

Space group P21/c P21/c P21/c
Temperature (K) 123(2) 173(2) 123(1)

a (Å) 17.4842(3) 17.2017(2) 17.32220(10)
b (Å) 35.9904(5) 35.8919(4) 36.0585(2)
c (Å) 17.4662(3) 17.3716(2) 17.36950(10)
α (◦) 90 90 90
β (◦) 100.8860(10) 102.2170(10) 101.7190(10)
γ (◦) 90 90 90

V (Å3) 10,793.1(3) 10,482.4 10,623.06(11)
Z 8 8 8

Dc (g cm−3) 1.058 1.168 1.209
Absorption coefficient (mm−1) 0.358 3.639 1.729

F(000) 3656 3928 4121

Angle range 2θ, ◦ MoKα

6.630 to 55.754
CuKα

7.168 to 154.048
CuKα

7.012 to 154.846
Reflections collected 143,110 102,026 115,251

Independent reflections 25,679
[R(int) = 0.0469]

21,504
[R(int) = 0.0832]

22,186
[R(int) = 0.0456]

Final R1 values (I > 2σ(I)) 0.0440 0.0889 0.0572
Final wR1(F2) values (I > 2σ(I)) 0.1111 0.2389 0.1622

Final R1 values (all data) 0.0606 0.1252 0.0617
Final wR1(F2) values (all data) 0.1180 0.2764 0.1667

GoF on F2 1.076 1.036 1.023
CSD no. 2,072,659 2,072,660 2,072,661

Table 2. Metal to donor bond lengths for [Mn1HL]+, [Mn2HL]+, [Co1HL]+, [Co2HL]+, [Zn1HL]+ and [Zn2HL]+.

Mn1 (Å) Mn2 (Å) Co1 (Å) Co2 (Å) Zn1 (Å) Zn2 (Å)

M-N1/11 2.362(2) 2.397(1) 2.331(4) 2.325(4) 2.340(2) 2.393(2)
M-N2/12 2.264(2) 2.254(2) 2.156(4) 2.183(5) 2.152(2) 2.140(2)
M-N3/13 2.501(2) 2.471(2) 2.620(4) 2.317(4) 2.737(2) 2.630(2)
M-N4/14 2.244(2) 2.250(2) 2.113(4) 2.159(4) 2.121(2) 2.125(2)
M-N5/15 2.257(2) 2.218(2) 2.120(4) 2.087(4) 2.147(2) 2.130(2)
M-S1/3 2.462(1) 2.455(1) 2.323(2) 2.365(1) 2.346(7) 2.344(7)
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Figure 2. Single-crystal X-ray diffraction structure representations of the (a) [Mn1HL]+ and (b) [Zn1HL]+ complex cations
at 30% thermal ellipsoid probability. Hydrogen atoms are omitted for clarity (except hydrogen atoms bound to nitrogen).

The bonds between the metal ions and N3/N13 are significantly longer than the other
bonds between the metal and nitrogen donor atoms of the macrocycle. This is presumably
a result of the steric effects of the uncoordinated thiosemicarbazone pendant arm. The
metal to sulfur donor bond lengths are typical of Mn2+ and Zn2+ thiosemicarbazonato
complexes [11,20]. The Mn1, Mn2, Zn1, Zn2 and Co1 ions sit above the plane defined by
the four nitrogen atoms of the macrocycle by 1.1 Å, while the Co2 ion sits above the plane
by 1.0 Å.

The torsion angles defined by the N–C–C–N bonds in the macrocycle are described as
δ (positive value) or λ (negative value) [69]. The average N–C–C–N torsion angles in the
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[Mn1HL]+ and [Mn2HL]+ complexes are ±58◦ and in [Zn1HL]+ and [Zn2HL]+ are ±57◦.
The trigonal distortion from an idealised octahedral geometry can be analysed using the
dihedral angle (θ) defined as the twist angle between the corners of the trigonal planes [70].
The trigonal planes of the complexes are defined by N1-N4-N5 and N2-N3-S1 (Figure 3).
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A positive torsion angle indicates the ∆ enantiomer, and a negative torsion value
indicates the Λ enantiomer. A trigonal prismatic geometry is indicated by a torsion angle
of 0◦, whereas a torsion angle of 60◦ indicates an octahedral geometry. The average torsion
angles within the complexes are shown in Table 3. Interestingly, [Mn1HL]+ and [Zn1HL]+

exist as the ∆(δ,δ,δ,δ) and Λ(λ,λ,λ,λ) enantiomers, and [Mn2HL]+ and [Zn2HL]+ exist as
the ∆(λ,λ,λ,λ) and Λ(δ,δ,δ,δ) enantiomers.

Table 3. The dihedral angles between the two trigonal planes in the [Mn1HL]+, [Mn2HL]+, [Co1HL]+,
[Co2HL]+, [Zn1HL]+ and [Zn2HL]+ metal centres.

θ1 (◦) θ2 (◦) θ3 (◦) Av (◦)

Mn1 35.7 20.2 8.1 21.4
Mn2 32.0 18.6 7.0 19.2
Co1 37.5 21.4 12.3 23.7
Co2 40.7 31.2 20.9 30.9
Zn1 37.4 21.7 13.1 24.1
Zn2 33.7 21.5 12.6 22.6

Representations of the [Co1HL]+ and [Co2HL]+ complex cations are shown in Figure 4.
The [Co1HL]+ complex occurs as the ∆(δ,δ,δ,δ) and Λ(λ,λ,λ,λ) enantiomeric pair with
average N–C–C–N torsion angles of±55◦. Interestingly, the [Co2HL]+ complex is a racemic
mixture of the ∆(λ,λ,λ,δ) and Λ(δ,δ,δ,λ) enantiomeric pair. The N–C–C–N torsion angles
in the ∆(λ,λ,λ,δ) enantiomer are 48.1◦, 40.7◦, 48.8◦ and −60.2◦. This results in a Co2–N13
bond length of 2.317(4) Å, which is significantly shorter than the Co1–N3 bond length of
2.610(4) Å. The average dihedral angle for [Co2HL]+ is 30.9◦, resulting in an intermediate
geometry between trigonal prismatic and octahedral. The change in chirality probably
reflects the competition between steric effects imposed by the ligand and the metal to donor
atom bond length requirements of each of the complexes. Experimentally observed Co2+

complexes with (λ,λ,λ,δ) and (δ,δ,δ,λ) isomers have been reported previously in a complex
with tetraethylcyclen and proline [71].
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Several instances of trigonal prismatic high-spin 3d5 Mn2+, high-spin 3d7 Co2+ and
3d10 Zn2+ azamacrocyclic complexes have been reported [72–77]. While most six-coordinate
complexes have a distinct octahedral preference over trigonal prismatic, high-spin d5 and
d10 electron-configurations have no octahedral preference due to the absence of crystal
field stabilisation energy, and high-spin d7 configurations have only a marginal prefer-
ence [78]. A trigonal prismatic geometry can be forced upon Co2+ complexes by sterically
constrained pendant arms, whereas two discrete ligands can give trigonal prismatic com-
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plexes with Mn2+ and Zn2+, including the formation of a Mn2+ complex with an N4S2
donor sphere [72,73,76,77]. Only two N5S cyclen-based complexes have been previously
reported with Co2+ and Zn2+, both with octahedral geometry [79,80]. H2L is the first
example of an azamacrocyclic N5S donor for Mn2+. A trigonal prismatic Zn2+ complex has
been previously reported with a N5O ligand containing a single pendant arm [75].

2.4. Magnetic Susceptibility

The distorted coordination geometries of the [MnHL](BPh4) and [CoHL](BPh4) com-
plexes suggested that the metal ions were high-spin 3d5 and 3d7, respectively. To confirm
this hypothesis, the magnetic susceptibility of both the Mn2+ and Co2+ complexes were
measured. The [MnHL](BPh4) complex had a magnetic moment of 5.82 B.M corresponding
to five unpaired electrons (µs = 5.92 B.M.). The [CoHL](BPh4) complex had a magnetic
moment of 4.24 B.M. corresponding to three unpaired electrons (µs = 3.87 B.M.). The
difference from the spin-only value is due to the mixing of angular momentum from the
excited state and spin-orbit coupling [81]. The Co2+ value indicates a spin quartet ground
state, obtained from six-coordinate octahedral or trigonal prismatic geometry [82].

2.5. Density Functional Theory Calculations

Complexes incorporating the cyclen scaffold with pendant groups are known to
have multiple stereoisomeric forms that result from the combination of the two chiral
elements [83]. The diastereomers can have distinctly different coordination geometries
and properties [77,84]. Furthermore, formation of a predominant diastereoisomer can
result when there is a free-energy difference between the diastereomers [85,86]. Density
functional theory (DFT) calculations were used to investigate the energetics of each species
identified from the X-ray crystallography. The calculations were performed using the
Becke, 3-parameter, Lee–Yang–Parr (B3LYP) functional for all complexes investigated. The
standard Ahlrichs valence triple-ξ including polarization functions (TZVP) basis set was
used for the high-spin Co2+ complexes and the DGDZVP basis set for the Zn2+ complexes.
These combinations of functional and basis sets were chosen because they have shown good
agreement with experimental values for similar combinations of ligands and metals [87,88].
For comparison with the XRD data, values for selected bond lengths of the optimised struc-
tures are shown in Table 4. The optimised geometries of [Co1HL]+, [Co2HL]+, [Zn1HL]+

and [Zn2HL]+ are provided in Figures S16–S23. A bond length difference of ~0.074 Å for
Zn-S and ~0.078 Å for Zn-Nmac and Zn-Nazo was observed between the DFT optimised
and XRD experimental values that was attributed to solvent effects.

Table 4. Selected bond lengths (Å) of the optimised and XRD structures of [Co1HL]+, [Co2HL]+, [Zn1HL]+ and [Zn2HL]+.

Zn1 XRD Zn1 DFT Zn2 XRD Zn2 DFT Co1 XRD Co1 DFT Co2 XRD Co2 DFT

M-N1/N11 2.340(2) 2.390 2.393(2) 2.411 2.331(4) 2.351 2.325(4) 2.402
M-N2/N12 2.151(2) 2.240 2.140(2) 2.260 2.156(4) 2.248 2.183(5) 2.259
M-N3/N13 2.737(2) 2.727 2.630(2) 2.701 2.620(4) 2.680 2.317(4) 2.400
M-N4/N14 2.120(2) 2.228 2.125(2) 2.238 2.113(4) 2.217 2.159(4) 2.239
M-N5N/15 2.147(2) 2.211 2.130(2) 2.212 2.120(4) 2.164 2.087(4) 2.128
M-S1/S3 2.346(7) 2.420 2.344(7) 2.419 2.323(2) 2.401 2.365(1) 2.412

DFT analysis of the [ZnHL]+ complexes in the presence of water indicated four energy
minima corresponding to the following diastereomeric pairs: ∆(δ,δ,δ,δ) and Λ(λ,λ,λ,λ) for
[Zn1HL]+, and ∆(λ,λ,λ,λ) and Λ(δ,δ,δ,δ) for [Zn2HL]+. According to these calculations, the
minimum energy conformation corresponds to the Λ(λ,λ,λ,λ) isomer, with the relative en-
ergies of the ∆(δ,δ,δ,δ), ∆(λ,λ,λ,λ) and Λ(δ,δ,δ,δ) isomers being 0.34, 1.27 and 2.53 kJ mol−1,
respectively. The optimisation of the Co2+ structures indicated that the minimum en-
ergy conformation corresponds to the ∆(δ,δ,δ,δ) isomer, with the relative energies of the
Λ(λ,λ,λ,λ), ∆(λ,λ,λ,δ) and Λ(δ,δ,δ,λ) isomers being 4.17, 8.14 and 8.14 kJ mol−1, respectively.
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2.6. Radiolabelling with 68Ga3+

Preliminary radiolabelling studies were performed with 68Ga3+ eluted from a 68Ge/68Ga
generator. The eluate was buffered with 1 M sodium acetate to pH 3.5 or 6 and reacted
with H2L (0.5, 5, 50 and 500 µM) at ambient temperature, 40 and 90 ◦C for 10 min. The
68 min half-life of 68Ga3+ necessitates relatively short reaction times. The reaction mixtures
were analysed by radio-HPLC, which showed a single product with a retention time
(RT) of 5.3 min while there was negligible retention of the [68Ga]Ga3+ ion on the C18
column (RT = 1.5 min). The synthesis of the non-radioactive Ga3+ complex was attempted
but isolation was unsuccessful. The radiolabelling reaction with DOTA was performed
previously under the same conditions and used as a comparison [49]. The percentage of
68Ga3+ incorporation is dependent on ligand concentration, pH and temperature. 68Ga3+

incorporation was investigated at both pH 3.5 and pH 6 at 50 µM with an activity to ligand
ratio of 0.2 MBq nmol−1 (Figure 5). A radiochemical yield (RCY) > 95% was achieved at
pH 6 at both 40 and 90 ◦C but required a ligand concentration of 500 µM (Table 5). At
pH 3.5, a RCY > 95% was achieved with a ligand concentration of 50 µM at 90 ◦C.
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Table 5. The radiochemical yields for the reaction of 68Ga3+ with H2L (50 µM) and DOTA (50 µM) at
pH 3.5 and pH 6 and various temperatures (25, 40 and 90 ◦C) [49].

H2L DOTA
pH 3.5 pH 6 pH 3.5 pH 6

25 ◦C 1.8 ± 1.7 19.8 ± 2.6 86.7 ± 5.0 73.2 ± 6.4
40 ◦C 60.4 ± 3.1 70.3 ± 1.9 - -
90 ◦C 95.1 ± 2.3 89.0 ± 4.3 95.3 ± 0.9 97.2 ± 0.3

Under similar conditions, DOTA required concentrations of 50 µM or above to reach
yields > 95%, similar to H2L. At pH 6, a RCY > 95% for DOTA was achieved with a concen-
tration of 500 µM at 25 ◦C or 50 µM at 90 ◦C [49]. The RCY for DOTA with a concentration
of 50 µM at 25 ◦C is ~87% whereas H2L achieved only 2% RCY under the same conditions.
These results demonstrate that H2L radiolabelling with 68Ga3+ is temperature dependent at
both pH values studied, and that it does not possess the radiolabelling efficiency properties
to be a potential alternative chelator for 68Ga3+ radiolabelling. This is perhaps unsurprising
given the combination of soft base sulfur donor atoms and the hard acid Ga3+ [89]. A
ligand design incorporating oxygen donor-containing semicarbazone pendant arms may
be better suited for use in 68Ga3+ radiopharmaceuticals [90].

3. Materials and Methods
3.1. General Procedures

Reagents were purchased from standard commercial sources unless otherwise stated
and used without further purification. Cyclen was purchased from Strem Chemicals
(Newburyport, MA, USA). Nuclear magnetic resonance (NMR) data were collected on a
Bruker AVANCE III 600 (1H at 600.27 MHz, 13C{1H} at 150.95 MHz) (Bruker, Billerica, MA,
USA). Spectra were processed using MestReNova 10.0 software. DMSO-d6 was obtained
from Cambridge Isotope Laboratories Inc. Chemical shifts (δ) are reported in parts per
million (ppm) with respect to TMS and are referenced to residual solvent peaks. Coupling
constants (J) are reported in Hz. Unless specified, all NMR spectra were recorded at 25 ◦C.
Low-resolution mass spectrometry (LR–MS) was carried out using an Agilent 1260 Infinity
liquid chromatograph system coupled with a 6120 series quadrupole mass spectrometer
(Agilent Technologies, Santa Clara, CA, USA) in MeOH using ESI. High-resolution mass
spectrometry (HR–MS) was carried out with an Agilent 6540 UHD Accurate Mass Q-TOF
LCMS (Agilent Technologies, Santa Clara, CA, USA). The mass spectrometer was fitted
with the Agilent Jet Stream Source using ESI. Positive detection is shown by the charge on
the ion, e.g., [M + H]+ for a positive protonated ion. All calculated values were determined
using the PerkinElmer software ChemDraw® Professional 19.0 to four decimal places.
HPLC traces of both radiolabelled and non-radiolabelled complexes were acquired using
a Shimadzu HPLC system (Shimadzu, Kyoto, Japan) with a Phenomenex Luna C18(2)
column (4.6 mm × 150 mm, 5 µm), a 1 mL/min flow rate gradient elution of 0.05% TFA in
5% MeCN in H2O to 100% MeCN over 15 min at 25 ◦C with UV spectroscopic detection at
254 nm and 280 nm. Data were processed and analysed using Laura radio chromatography
software (Lablogic, Brandon, FL, USA). Magnetic susceptibility was measured at room
temperature by calibrating a Johnson Matthey MSB balance with [Ni(en)3]S2O3 at 295 K
and diamagnetic corrections of the paramagnetic susceptibilities were calculated using
standard Pascal’s constants [91,92].

3.2. Synthesis

1,1′-(4,10-Dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(propan-2-one) (1) was
prepared according to previously published methods [63].

H2L: To a solution of 1 (1.432 g, 4.582 mmol, 1 equiv.) and 4-methyl-3-thiosemicarbazide
(1.060 g, 10.08 mmol, 2.2 equiv.) in EtOH (40 mL) was added 7 drops of glacial acetic acid.
The solution was stirred for 72 h at room temperature. The precipitate was collected on a
vacuum glass frit, washed with EtOAc and Et2O to afford a light-yellow solid (0.6532 g,
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1.342 mmol, 29%). RP-HPLC: RT = 5.27 min; 1H NMR (600 MHz, DMSO-d6): δ = 1.96 (s, 6H,
CH2CCH3), 2.45 (s, 6H, CH2NCH3), 2.75 (s, 16H, NCH2CH2N), 2.98 (d, 6H, CSNCH3,
3JH-H = 4.6 Hz), 3.34 (s, 4H, NCH2C), 8.18 (d, 2H, CSNHCH3

3JH-H = 4.6 Hz), 10.03 (s, 2H,
NNHCS); 13C{1H} NMR (150 MHz, DMSO-d6): δ = 15.8 (CH2CCH3), 30.9 (CSNCH3),
40.1 (CH2NCH3), 49.8 (NCH2CH2N), 63.3 (NCH2C), 150.8 (C=N), 178.8 (C=S); HRMS (ESI)
[H2L + H]+: m/z = 487.3199 (experimental), 487.3035 (calculated).

General Procedure for the Synthesis of the Complexes

To a solution of H2L (0.0500 g, 0.103 mmol, 1 equiv.) in MeOH (4 mL) was added a
solution of Mn(OAc)2·4H2O, Co(OAc)2·4H2O or Zn(OAc)2·2H2O (0.103 mmol, 1 equiv.) in
MeOH (2 mL), and the solution was left to stir for 17 h at ambient temperature. A solution
of NaBPh4 (0.0352 g, 0.103 mmol, 1 equiv.) in MeOH (3 mL) was added and the resulting
suspension was stirred for an additional 4 h at ambient temperature. The product was
collected on a glass frit and washed with Et2O. ([MnHL](BPh4): 0.0498 g, 0.0579 mmol,
56%), ([CoHL](BPh4): 0.0271 g, 0.0314 mmol, 30%), ([ZnHL](BPh4): 0.0565 g, 0.0649 mmol,
63%). The solids were each dissolved in acetone (1 mL) and Et2O was vapour diffused
to form crystals suitable for single-crystal X-ray diffraction. RP-HPLC [MnHL][BPh4]:
RT = 6.06 min; [CoHL][BPh4]: RT = 6.05 min; [ZnHL][BPh4]: RT = 6.01 min; 1H NMR
[ZnHL](BPh4) (600 MHz, DMSO-d6): δ = 1.96 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.31 (s, 6H,
CH3), 2.40, 2.59, 2.72, 2.88, 3.04 (m, 16H, NCH2CH2N), 2.74 (d, 3H, CH3, 3JH-H = 4.3 Hz),
2.98 (d, 3H, CH3, 3JH-H = 4.5 Hz), 3.40 (s, 2H, NCH2CN), 3.60 (s, 2H, NCH2CN), 6.78 (t, 4H,
ArH, 3JH-H = 7.0 Hz), 6.92 (t, 8H, ArH, 3JH-H = 7.5 Hz), 7.17 (m, 8H, ArH), 6.56 (q, 1H,
NHCH3), 8.22 (q 1H, NHCH3), 10.01 (s, 2H, NH); 13C{1H NMR (150 MHz, DMSO-d6):
δ = 17.2 (CH2CCH3), 18.1 (CH2CCH3), 28.9 (CSNCH3), 30.7 (CSNCH3), 45.2 (CH2NCH3),
51.8, 54.1, 54.9 (NCH2CH2N), 58.7 (NCH2CN), 61.3 (NCH2CN), 121.5 (ArC), 125.3 (ArC),
135.5 (ArC), 148.6 (C=N), 157.3 (C=N), 163.2 (ArCB), 179.8 (C=S); HRMS (ESI) [ZnHL + H]+:
m/z = 549.2249 (experimental), 549.2249 (calculated); [MnHL + H]+: m/z = 540.2335 (experimen-
tal), 540.2338 (calculated); [CoHL + H]+: m/z = 544.2298 (experimental), 544.2289 (calculated).

3.3. Radiolabelling with 68Ga
68Ga was eluted from an Eckert and Ziegler 68Ge/68Ga generator system (Eckert and

Ziegler, Berlin, Germany). Aqueous HCl solution (0.1 M, 5 mL) was passed through the
generator and the eluate was collected in five 1 mL fractions. Aqueous NaOAc (1 M)
was added to the fourth fraction (1 mL, containing ~77.6 MBq 68Ga) to increase the pH to
either pH 3.5 or pH 6. Aliquots from the pH adjusted fraction were used for radiolabelling
reactions. H2L was dissolved in DMSO (1 mg/mL) and diluted with ultrapure water. 68Ga
(15 µL, ~1.16 MBq in pH adjusted solution) was added to chelator solutions (105 µL) to
provide solutions with chelator concentrations ranging from 0.5–500 µM and the final
reaction solution was incubated at 25 ◦C, 40 ◦C or 90 ◦C for 10 min. The reaction solutions
were analysed via radio-HPLC (5–20 µL injection).

3.4. Single-Crystal X-ray Diffraction Procedure

Low-temperature (123 K or 173 K) X-ray intensity data were collected using a Rigaku
XtaLAB Synergy diffractometer (Rigaku Oxford Diffraction, Chalgrove, Oxford, United
Kingdom) fitted with a Hypix6000HE hybrid photon counting detector and MoKα

(λ = 0.71073 Å) or CuKα (λ = 1.54184 Å) radiation. Data were processed, including a
multiscan absorption correction, using the proprietary diffractometer software package
CrysAlisPro v1.171.39.46 [93]. The structure was solved by conventional methods and
refined on F2 using full matrix least squares using the SHELX 2018/3 software suite [94].
Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen
atoms attached to carbon were placed in calculated positions and were refined using a
riding model. The positions of the acidic hydrogen atoms attached to nitrogen were ini-
tially located in the difference Fourier map but were included in calculated positions and
refined using a riding model. In the [CoHL](BPh4) and [ZnHL](BPh4) complexes, solvent
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molecules were successfully modelled. However, after refinement of the primary molecule
[MnHL](BPh4), residual electron density was assumed to be isolated solvent molecules
located in the crystal lattice. These were accounted for using PLATON/SQUEEZE [95].
CSD reference numbers 2072659-2072661.

3.5. DFT Calculations

Density functional theory (DFT) calculations were performed using the Gaussian
16 program package with the Becke, 3-parameter, Lee–Yang–Parr (B3LYP) functional
and the DGDZVP basis set for the Zn2+ complexes [96–100]. The B3LYP functional and
the standard Ahlrichs valence triple-ξ including polarization functions (TZVP) basis set
were used for the high-spin Co2+ complexes [101,102]. The geometries of the various
complexes were fully optimised without imposing any symmetry constraint. No imaginary
frequencies were found at the optimised molecular geometries, which indicate that they
are real minima of the potential energy surface. The complexes were optimised in aqueous
solution by using the polarizable continuum model with the integral equation formalism
variant (IEFPCM), which creates a solvent cavity via a set of overlapping spheres [103]. The
calculated relative energies of the complexes include nonpotential energy contributions.
Calculation results were visualized and interpreted using GaussView version 6.1.1 [104].

4. Conclusions

Hybrid thiosemicarbazone ligands are of interest in the development of biologically-
active metal complexes and radiopharmaceuticals. A variant of cyclen with two thiosemi-
carbazone pendant groups was synthesised and the coordination complexes with Mn2+,
Co2+ and Zn2+ were prepared and characterised. 1H NMR spectroscopy of [ZnHL](BPh4)
indicated the formation of a singly deprotonated ligand with one pendant arm coordinated
to the metal centre. X-ray crystallography of [MnHL](BPh4) and [ZnHL](BPh4) indicated
the formation of the ∆(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and ∆(λ,λ,λ,λ)/Λ(δ,δ,δ,δ) diastereomers, whereas
[CoHL](BPh4) was present as the ∆(δ,δ,δ,δ)/Λ(λ,λ,λ,λ) and ∆(λ,λ,λ,δ)/Λ(δ,δ,δ,λ) diastere-
omers. The distorted trigonal prismatic geometries of the high-spin Mn2+, Co2+ and Zn2+

complexes are a result of the steric constraints of the ligand. DFT calculations indicated
small differences in the relative energies of the diastereomers, which suggests that they
likely also exist in solution. Further studies are required to indicate whether the particular
diastereomers could have distinct biological activities. Radiolabelling with 68Ga3+ pro-
duced a single species at ligand concentrations between 50 and 500 µM at 90 ◦C to achieve
RCY > 95%, indicating the potential of hybrid thiosemicarbazone ligands with radiometals
in the development of radiopharmaceuticals. Investigations into additional metal ions and
their properties are in progress.

Supplementary Materials: The following are available online: 1H and 13C{1H} NMR spectra, ESI–MS
spectra, HPLC spectra and computational methods.
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