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S u m m a r y  

In rabbits nearly all B lymphocytes express the glycoprotein CD5, in contrast to mice and hu- 
mans, where only a small proportion of  B cells express this molecule (Raman, C., and K.L. 
Knight. 1992.J. Immunol. 149:3858-3864). CD5 + B cells appear to develop early in ontogeny 
and be maintained throughout life by self-renewal. The function of CD5 on B cells is still un- 
known. We showed earlier that "positive" selection occurs during B lymphocyte development 
in the rabbit appendix. This selection favors B cells expressing surface immunoglobulins with 
VHa2 structures in the first and third framework regions (Pospisil, P,.., G.O. Young-Cooper,  
and tL.G. Mage. 1995. Proc. Natl. Acad. Sci. USA. 92:6961-6965). Here we report that F(ab')2 
fragments, especially those bearing VHa2 framework region determinants, specifically interact 
with the B cell-surface glycoprotein CD5. This interaction can be inhibited by anti-CD5 anti- 
bodies. Furthermore, immobilized F(ab')2 fragments selectively bind CD5 molecules in appen- 
dix cell lysates. Interactions of  V H framework region structures with CD5 may affect mainte- 
nance and selective expansion of particular B cells and thus contribute to autostimulatory 
growth of autoimmune or transformed cells. 

D uring B cell development a rigorous selection process 
acts on newly formed B cells. Those beating self-reac- 

tive Ig molecules can be eliminated (1, 2), undergo recep- 
tor editing (3, 4) or develop clonal anergy (5-7). In addi- 
tion, B cells appear to receive positive signals for survival 
(8-10). Superantigens or self-antigens interacting with evo- 
lutionarily conserved "family-specific" sequences in the 
first and third framework regions (FR) I and FR3) of  the 
VH may have the potential to significantly skew the com- 
position of the B cell repertoire (10-12). 

In normal rabbits of  the VHa2 haplotype, the majority of  
peripheral B cells that have undergone a productive VH- 
DH-JH gene rearrangement use the VHa2 allotype-encoding 
VH1 gene (13--15). The VHa2 specificities were found to 
correlate with consistent differences in the amino acids at 
certain positions in FI<I and FR3 (13, 16). Alicia (all) VH- 
mutants (17) have a small deletion encompassing the VH1 
gene at the 3' end of the VH cluster (13, 15) thus most of  
the B cells in young all/all rabbits are VHa2 negative. We 
showed earlier that B cells producing surface immunoglob- 
ulin with Ft<I and FR3 VHa2 allotypic structures are pref- 

1Abbreviations used in this paper: all, Alicia; BCP,., B cell receptor; FP,., 
framework region. 

la,. PospisiI is on leave from the Institute of Microbiology, Academy of 
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erentially expanded and positively selected during their de- 
velopment in the appendix (18). The antigen or Iigand(s) 
responsible for this selection, however, were not determined. 
In this study we provide evidence for CD5-VH framework 
region interaction. The interaction between CD5 and B 
cell surface immunoglobulin may affect maintenance and 
selective expansion of particular B cells and may be a pro- 
moting factor in the evolution of autoimmune or trans- 
formed cells. 

Materials and Methods  

Animals, Reagents, and Antibodies. Rabbits of the VHa2 (F-I) 
or VH mutant all (F-I) haplotype were bred and raised in our own 
National Institute of Allergy and Infections Diseases allotype- 
defined pedigreed colonies. The antibodies used in this study 
were mouse mAbs to rabbit CD5, RCD5 (19) and human CD5, 
T1 or T1-RD1 (Coulter Corp., Hialeah, FL), biotin-conjugated 
mouse anti-rabbit CD4 and mouse anti-rabbit CD8 (Spring Val- 
ley Laboratories Inc., Woodbine, MD), biotin conjugated poly- 
donal anti-rabbit IgM (Southern Biotechnology Associates, Bir- 
nfingham, AL), biotin-conjugated goat anti-mouse IgG and FITC- 
labeled normal goat IgG (Jackson ImmunoResearch Laboratories, 
Inc., West Chester, PA), avidin conjugated to biotinylated glu- 
cose oxidase (ABC-GO; Vector Laboratories, Inc., Burlingame, 
CA), nitro blue tetrazolium in conjugation with 5-bromo- 
4-chloro-3-indotyl phosphate (Sigma Chemical Co., St. Louis, 
MO), Dynabeads M-450 and M-280 streptavidin (Dynal Inc., 
Great Neck, NY). 
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Figure 1. Biotinylated F(ab')2 fragments stain dark zone cells of appendix germinal center and the staining is inhibited by anti-Cl)5 antibody. Appen- 
dix tissue sections were stained with (a) VHa2 + F(ab')2-biotin; (b) anti-CD5 antibody RCD5; (c) anti-CD5 antibody RCI)5 followed by VHa2 ~ F(ab')~- 
biotin; (a t) VH-biotin; (e) purified V. followed by anti-CD5 (T1) antibody. 

Tissue Staining and lmmutwhistochemistry. The preparation and 
purification of  F(ab')2 fragments was described previously (20). 
Briefly, a globulin fraction of  rabbit serum was first prepared by 
precipitation with ammonium sulfate (50% saturation). The pre- 
cipitated proteins were dialyzed against acetate buffer, pH 4.5, 
and digested with pepsin (2 mg/100 mg protein) for 18 h at 
37~ Digests were dialyzed against PBS. The residual undigested 
IgG was removed with protein A-Sepharose. The isolation of  VH 
fragments was described previously (21). The purified F(ab')2 and 
V H were biotinylated with a biotinylation kit using NHS-LC-biotin 
(Pierce Chemical Co., Rockford, IL). Semithin 7-1.am serial sec- 
tions of  mutant VHa2- rabbit appendix collected at 6 wk of age 
were cut and incubated as described (18). In Fig. 1, tissue sections 
were stained with the primary reagent, mouse anti-rabbit CD5 
mAb, RCI )5  (b and c) or isotype-matched control, normal mouse 
IgG2a (a) tbllowed by VHa2 F(ab')2-biotin (a and c) or biotin-con- 
jugated goat anti-mouse IgG (Jackson hnmunoResearch Labora- 
tories) (b). In (d) the tissue section was stained with VH-biotin and in 
(e) with VH followed by anti-CD5 (T1) antibody and then with 
biotin-conjugated goat anti-mouse IgG. The sections were then 
incubated with A B C - G O  and labeled cells visualized by nitro 
blue tetrazolium in conjunction with BCIP. 

CellAttachment Assay, Iinnaulon 4 flat-bottom plates (Dyna- 
tech Laboratories, Inc., Alexandria, VA) were coated with VHa2 + 
or mutant VHa2- F(ab')2 fragments diluted in (IA M N a H C O  3 
and incubated at 4~ overnight (according to the directions from 
GIBCO BFZL, Gaithersburg, MD). N a H C O  3 alone was added to 
the control wells. The plates were washed three times with Dul- 
becco's PBS and 100 btl of  2% BSA was added to each well for 2 h 
at room temperature to block plates. After another wash with 
PBS 100 t*I of  CD4/CD8-deple ted  or IgM-depleted appendix 
cell suspensions in PBS (107/ml) were added and incubated for 1 h 
at 37~ To isolate C D 4 / C D 8  or IgM-depleted appendix cells, 
cells were first incubated with biotin-conjugated mouse anti-rab- 

bit CD4 and mouse anti-rabbit CD8 mAbs or biotin-conjugated 
polyctonal anti-rabbit IgM. After washing with PBS-I% BSA, 
the cells were incubated with Dynabeads M-280 streptavidin and 
bound cells were removed using a magnet (MPC; Dynal Inc.). 
The plates were rinsed very gently three times with PBS and cells 
fixed with 100 ~1 of  formalin solution (10% in PBS) for 3(1 rain at 
room temperature followed by addition of  50 I~l of  toluidine blue 
(1% [wt:vol] in 10% formalin solution) and incubation for an- 
other 30 min. After extensive washing with deionized water, 
plates were air dried, cells solubilized by addition of  1()0 ~.1 2% 
SI)S and incubation for 15 rain at 37~ and absorbance was 
measured at 650 nm using a microtiter plate reader (Molecular 
Devices Corporation, Menlo Park, CA). The relative absorbance 
was calculated as a ratio of  each sample to the control. 

Flow Cytonletry. Total ,appendix cells were first incubated with 
VHa2 + F(ab')2-biotin then washed with PBS and stained with flun- 
rescein-conjugated goat anti-rabbit IgM and streptavidin-PE 
conjugate. Cells stained with BSA-biotin and FITC-labeled nor- 
real goat IgG served as a negative control. C D 4 / C D 8  depleted 
appendix cells (isolated as described above) were incubated with 
BSA-biotin, mutant Vna2- F(ab')2-biotin, VHa2 + F(ab')2-biotin, 
or unlabeled anti-CD5 antibody (clone T1) followed by VHa2 + 
F(ab')2-biotin for 30 rain at 4~ The cells were washed and in- 
cubated for 30 mm at 4~ with streptavidin-fluorescem conju- 
gate. For competitive inhibition studies, total appendix cells were 
incubated with a nonsaturating amount of  PE-conjugated anti- 
CD5 (CD5-PE; clone TI-IKI)I) .  PE-conjugated mouse lgG2a 
served as a negative control. I)ifferent concentrations of F(ab')2 or 
nonconjugated anti-CD5 were incubated with the 1{) p,g anti- 
CD5-PE for 40 rain at 4~ 

CD5 Isolations from Appendix Cell Lysates. 5 X 10 a appendix 
cells were isolated from 2-wk-old Vu-mutant (ali/ali) rabbits with 
no endogenous VHa2 nmlecules. Isolated cells were biotinylated 
and cell lysates prepared with a cellular labeling and inmmnopre- 
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Figure 2. Attachment of appendix 
B cells to F(ab')e-coated plates. The 
plates were coated with VHa2 + (ll and 
D) or mutant VHa2- ([] and I )  
F(ab')e fragments. CD4/CD8-depleted 
("  and [~) or IgM-depleted ([2] and 
m) appendix cell suspensions in PBS 
(107/inl) were added. After incuba- 
tion, washing, and staining as de- 
scribed in Materials and Methods, the 
relative absorbance was calculated as a 
ratio of each sample to the control 
wells (buffer + BSA block). 

cipitation kit using biotin-7-NHS (Boehringer Mannheim, India- 
napolis, IN). To remove proteins that may bind nonspecifically to 
the beads, the lysate was first gently rocked with 100 ILl of un- 
coupled beads (4 • 10 ~ beads/M) for 30 min at 4~ and com- 
plexes removed with a magnet. This step was repeated three 
times. The lysate was then divided into two equal aliquots. One 
aliquot was first incubated on a rocking platform at 4~ overnight 
with 300 btl of Dynabeads M-450 coupled with anti-human 
CD5 antibody (T1). The complexes were collected with a mag- 
net and supernatants removed carefully. Both aliquots were first 
precleared with VHa2- F(ab')2-coated Dynabeads M-280 for 5 h 
at 4~ on a rocking platform and then incubated with VHa2 + 
F(ab')2-coated beads overnight at 4~ The complexes were col- 
lected again with a magnet and supernatants removed. Dynabead 
complexes were washed twice in buffer 1 (50 mM Tris, 150 mM 
NaC1, and 0.1% NP-40) then twice in buffer 2 (50 mM Tris, 50 
mM NaC1, and 0.1% NP-40) and finally once in 10 mM Tris 
buffer, pH 7.5. The beads were boiled in SDS gel-loading reduc- 
ing buffer for 3 min and protein content analyzed by 15% SDS- 
PAGE Ready Gels (Bio-R.ad Laboratories, Hercules, CA) and a 
streptavidin-peroxidase chemiluminescence technique according 
to the manufacturer's instructions. 

R e s u l t s  

Biotinylated F(ab ')2 Fragments Stain Dark Zone Cells of Ap- 
pendix Germinal Center and the Staining Is Inhibited by anti- 
CD5 Antibody. To identify a ligand for VH FR1 and FR3 
of  B cell surface immunoglobulin, we purified and biotiny- 
lated F(ab')2 fragments from rabbit IgG and used them as well 
as VH fragments (lacking an associated VL) to assess binding to 
appendix germinal center cells by immunohistochemistry. 
Biotin-labeled F(ab')2 or VH fragments mainly stained ger- 
minal centers with high intensity in the dark zones and low 
intensity in the light zones (Fig. 1, a and d). A similar pat- 
tern o f  staining was observed in appendix follicles stained 
by either mouse anti-rabbit CD5 mAb tLCD5 (1), or a 
mouse ant i -human CD5 mAb, T1 (22) (Fig. 1 b and data 
not shown). Staining of  the germinal centers by biotin- 
labeled F(ab')2 can be inhibited by prior incubation o f  tissue 
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sections with anti-CD5 antibodies (Fig. 1 c), suggesting that 
F(ab')2 fragments bind to the CD5 molecules on dark zone 
B cells. Similarly, staining of  the germinal centers by anti- 
CD5 antibody can be inhibited by preincubation o f  tissue 
sections with purified V H (Fig. 1 e). Thus, the interaction 
o f  CD5 and VH does not require VL. In addition, some but 
not all affinity-purified rabbit antibodies stain dark zones o f  
the appendix and the staining can be inhibited by anti-CD5 
antibodies (data not shown). Together these data argue that 
CD5-VH interaction is framework region specific and is 
not dependent on antibody specificity, although changes in 
VH sequences can alter or eliminate binding. 

VHa2 + F(ab')2 Binds to IgM + Appendix B Cells and the 
Binding Is Specifically Inhibited by anti-CD5 Antibody. To de- 
termine which cell subpopulation binds to F(ab')2, we used 
a cell attachment assay. IgM-depleted cells, enriched for non- 
lymphoid cells, did not bind to VHa2 + or VHa2- F(ab')2 
coated plates (Fig. 2). In contrast, CD4 /CDS-dep l e t ed  
appendix cells, mainly IgM + B cells, showed binding to 
F(ab')2 fragments, especially to those bearing VHa2 deter- 
minants. By flow cytometry,  we confirmed that F(ab')2- 
biotin stained IgM-positive appendix B cells (Fig. 3 a). 
CD4/CDS-deple ted  appendix B cells stained positively 
with biotinylated V.a2  + F(ab')2 (solid thick line) but not 
with mutant VHa2- F(ab')2 (Fig. 3 b, solid thin line). In ad- 
dition, anti-CD5 mAb was able to inhibit the interaction 
between biotinylated F(ab')2 and appendix B cells (dotted 
line, Fig. 3 b). This is consistent with the immunohis-  
tochemistry data and again indicates that F(ab')2 binds to 
CD5 on B cells. Under conditions o f  competitive inhibi- 
tion, F(ab')2 fragments were unable to inhibit binding of  
10 b~g of  ant i -CD5-PE to CD5 although unlabeled anti- 
CD5 antibody inhibited the binding (Fig. 3 c). Thus F(ab')2 
has a lower relative avidity compared to the anti-CD5 for 
the site on CD5 recognized by this mAb. 

Immobilized F(ab')2 Fragments Isolate CD5 Molecules from 
Appendix Cell Lysates. To isolate the molecule on B cells 
that interacts with F(ab')2 fragments, we covalently coupled 
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Figure 3. VHa2 + F(ab')2 binds to lgM + appendix B cells and the bind- 
ing is specifically inhibited by anti-CD5 antibody. (a) Total appendix cells 
were first incubated with VHa2 + F(ab')2-biotin then washed with PBS 
and stained with fluorescein-conjugated goat anti-rabbit IgM and strepta- 
vidin-PE conjugate. Cells stained with BSA-biotin and FITC-labeled nor- 
mal goat lgG served as a negative control (not shown). (b) CD4/CD8 de- 
pleted appendix cells were incubated with BSA-biotin (broken line), 
nmtant VHa2- F(ab')i-biotin (solid thin line), Vua2 + F(ab')2-biotin (solid 
thick lira'), or unlabeled anti-CD5 antibody (clone T1) followed by VHa2 + 
F(ab')2-biotin (dotted line). (c) Total appendix cells were incubated with 10 btg 
PE-conjugated anti-CD5 antibody and different concentrations of either 
F(ab')2 (open squares) or unconjugated anti-CD5 antibody (closed circles). 
The data were expressed as mean fluorescence minus control and percent 
inhibition calculated relative to CD5-PE in the absence of any inhibitor. 

purified F(ab')2 fragments to Dynabeads. Coated beads 
were then used to isolate F(ab')2 ligand from lysates o f  sur- 
face biotinylated appendix cells. Similarly, an t i -CD5 anti- 
bodies (T1 and R C D S )  were coupled to the Dynabeads. 
An t i -CD5 coated beads isolated two molecules (Fig. 4 and 
data not shown), one migrating at the posit ion correspond- 
ing to its expected relative molecular  mass o f  67,000 
(67,000 Mr) on SDS-PAGE and one o f  56,000 (56,000 Mr) 
most likely representing a differently glycosylated form of  
CD5 (23). VHa2 + F(ab')2-coupled beads also isolated two 
molecules from the cell lysate precleared with VHa2- 
F(ab')2-coupled beads. These had the same molecular mass 
as those from ant i -CD5 coated beads, the major one o f  
67,000 (67,000 Mr) and another one o f  56,000 (56,000 Mr). 
The  56,000 molecule was isolated by both ant i -CD5 and 
F(ab')2 coupled beads but  not  by control  uncoupled beads; 
thus it is unlikely to represent a nonspecifically bound  mol-  
ecule. Furthermore,  when cell lysates from biotinylated ap- 
pendix cells were first preincubated with an t i -CD5-coa ted  
beads, these two molecules were no longer isolated by 
VHa2 + F(ab')2 beads. In addition, some affinity-purified 
rabbit antibodies also isolated CD5 molecules from cell ly- 
sates (data not shown) arguing again that C D 5 - V  H interac- 
t ion is framework region specific and is not  dependent  on 
antibody specificity. 

Figure 4. hnmobilized F(ab')2 fragments isolate CI)5 molecules from 
appendix cell lysates. SDS-PAGE shows that 67-kD and 56-kD CI)5 pro- 
teins were isolated by (a) anti-CD5 antibody TI and (b) VHa2 + F(ab')_~- 
coated Dynabeads. CD5 molecules were not isolated by VHa2 + F(ab')e if 
the cell lysate was first preincubated with anti-CD5 coated beads (c). 

Discussion 

Interaction o f  F R  structures on B cells with previously 
unidentified ligand(s) was postulated to contribute to antigen- 
independent  signals to survive rather than undergo apopto-  
sis (18, 24). The  data reported here demonstrate an interac- 
tion between CD5 and B cell surface immunoglobul in ,  
most likely involving framework region sequences. W e  
showed earlier that "positive" selection occurs during B 
lymphocyte  development  in the rabbit appendix (18). This 
selection favors B cells with receptors bearingVHa2 + struc- 
tures in the first and third framework regions. VHa2 + struc- 
tures as F(ab')2 fragments bind IgM + B cells irrespective o f  
ant ibody specificity and the binding can be inhibited by 
ant i -CD5 antibodies. Thus CD5 is a potential selecting 
ligand that contributes to survival and expansion o f  B cells 
with VHa2 + surface IgM. 

Most  dark zone B cells in appendix germinal centers ex- 
press high levels of  CD5 (Fig. 1 b) and the majority o f  B 
cells in normal animals bear VHa2 framework regions en-  
coded by the VH1 gene (13, 15). The  presence o f  both 
CD5 and VHa2 on the same cell raises the possibility of  a 
relationship between the coexpression o f  these interacting 
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proteins and the self-renewing capacity o f  these cells. Fu- 
ture investigations must determine whether the expansion 
we observed is mediated through signals transmitted by 
VHa2 stimulating CD5, CD5 stimulating the Vrta2-associ- 
ated B cell receptor (BCR) or both. Selective expansion of  
VHa2 + B cells in the appendix could occur via C D 5 - V ,  in- 
teraction either on the same cell or through interactions 
with nearby cells in a developing cluster. 

A role for CD5 as a candidate selecting ligand is further 
suggested by its physical and functional coupling to the 
BCtL (25). Thus CD5 accessory molecules in the BC1L 
complex on CD5 + B cells may have a unique potential to 
modulate BC1L signals after interaction with antigens or su- 
perantigens (25, 26). A limited repertoire o f  V ,  genes has 
been observed in the CD5 + B cell populations o f  human 
and mouse (27, 28). This may also reflect selective B cell 
expansion during fetal and neonatal B cell development 
through interactions with autologous antigens or superanti- 
gens (10, 29). 

Studies o f  the phenotype o f  a CD5 knockout  mouse 
suggest that CD5 may play a role in positive selection o f  
developing thymocytes with specific antigen receptors (30). 

Similarly, the interaction between CD5 as a surface ligand 
and its receptor on the same or other B cells may generate 
distinct activation signals at different stages o f  B cell devel- 
opment  and selection. As B lymphocytic leukemia cells ex- 
press CD5 (31), and CD5 + (BI) B cells provide a source o f  
autoantibody-producing cells (25-27), the CD5-f rame-  
work region interaction might contribute to autostimula- 
tory growth o f  transformed cells as well as mediate selec- 
tion o f  autoreactive repertoires. CD5 may interact directly 
with a counterreceptor, such as CD72 (32, 33) or VH and 
transmit modulating signals to the B cell. The amount o f  
signaling and qualitative differences in signaling may deter- 
mine B cell negative or positive selection (34). CD5-VH 
interaction alone may induce a signal that is sufficient to 
promote expansion and/or  survival o f  B cells or may influ- 
ence the fate o f  B cell selection in combination with other 
signals. 

Our  data provide evidence for C D 5 - V ,  framework re- 
gion interaction and suggest it may affect maintenance and 
selective expansion of  particular B cells. After V ,  ligand 
recognition, CD5 stimulation may also be a promoting fac- 
tor in the evolution o fau to immune  or transformed cells. 
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