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Abstract

Machine learning for medical imaging not only requires sufficient amounts of data for training 

and testing but also that the data be independent. It is common to see highly interdependent 

data whenever there are inherent correlations between observations. This is especially to be 

expected for sequential imaging data taken from time series. In this study, we evaluate the use 

of statistical measures to test the independence of sequential ultrasound image data taken from 

the same case. A total of 1180 B-mode liver ultrasound images with 5903 regions of interests 

were analyzed. The ultrasound images were taken from two liver disease groups, fibrosis and 

steatosis, as well as normal cases. Computer-extracted texture features were then used to train a 

machine learning (ML) model for computer-aided diagnosis. The experiment resulted in high 

two-category diagnosis using logistic regression, with AUC of 0.928 and high performance 

of multicategory classification, using random forest ML, with AUC of 0.917. To evaluate the 

image region independence for machine learning, Jenson–Shannon (JS) divergence was used. JS 

distributions showed that images of normal liver were independent from each other, while the 
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images from the two disease pathologies were not independent. To guarantee the generalizability 

of machine learning models, and to prevent data leakage, multiple frames of image data acquired 

of the same object should be tested for independence before machine learning. Such tests can be 

applied to real-world medical image problems to determine if images from the same subject can be 

used for training.
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1. Introduction

Image data availability is vital for the implementation of machine learning (ML) methods 

in clinical settings [1,2]. Large datasets with high-quality images are essential for training, 

validation, and testing of algorithms for clinical applications. Typically, ML algorithm 

performance for predictive tasks increases with increased training data volume [3–5]. If 

numerous parameters are to be studied, there is a need to train ML models commensurately 

on abundant data to obtain a generalizable model. However, there is limited access to 

medical images, and the preparation of image data is a costly and time-intensive process [6]. 

Most health care systems are not adequately equipped to share large numbers of medical 

images [3]. Medical data are often stored in silos and are not available in enterprise-wide 

core clinical systems. These data silos prevent relevant data from being shared even between 

departments within the same institution due to the interoperability issues of the current 

institutional enterprise systems [7]. Image data therefore cannot be accessed easily by AI 

algorithm development for widespread clinical practice.

In addition to the data availability issues, in ML a common assumption is that the given 

data points are realizations of independent random variables [8]. However, this assumption 

is often violated when the data points are highly interdependent (e.g., when the data 

exhibit temporal or spatial correlations) [9]. Similar scenarios are typical situations in 

visual recognition and computational biology [10]. Dependent data arise whenever there 

are inherent correlations in between observations. This is to be expected for time series of 

imaging data, where we would intuitively expect that instances with similar time stamps 

have stronger dependencies than ones that are far away in time.

A common approach to bypass the problem of limited data is to use multiple images from 

the same subject as separate training instances for ML [11–14]. However, this approach 

raises the question of whether the data are independent. Depending on the independence 

assumptions of the learning algorithms, the performance of the resulting models trained 

and tested on the same patient(s) and same body region(s) might be inflated, and the 

models might not be generalizable to future images. In this situation, the predictive model 

developed using conventional ML algorithms could be biased, inaccurate, and tend to 

produce unsatisfactory classifiers. A common example where ML algorithms are well 

known to exhibit variations in prediction accuracy is when ML is provided with imbalanced 

training sets due to the imbalanced ratio of pathological and normal cases typically seen in 
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medical imaging [15]. Previous studies reported that a close-to-balanced training is required 

for best model performance, while data imbalance can have negative influence on the model 

performance.

In this study, we propose an approach to test the data independence for building a 

reliable diagnostic ML model using a liver disease data images set. For this purpose, 

we examined the independence of sequential ultrasound image frames acquired from the 

same cases of liver disease. We algorithmically extracted numerical liver texture features 

from the ultrasound images for machine learning. All these computer-generated features 

were used to train models. The independence between image region grayscale distributions 

were quantified by Jensen–Shannon (JS) divergence, a bounded symmetrization of the 

unbounded Kullback–Leibler (KL) divergence [16–19]. JS divergence was measured for 

B-mode ultrasound images acquired from images of three pathologies: normal cases, and 

then two groups of liver disease, namely steatosis (fatty liver) and fibrosis.

2. Methods

2.1. Image Acquisition and Computerized Analysis

1180 B-mode ultrasound images acquired in vivo from rat livers were used for analysis. The 

images were taken from 3 different rat groups as follows: 450 images from fibrosis cases 

(rats n = 6), 450 images from steatosis cases (rats n = 4), and 280 from normal (rats n = 4). 

Four video clips of B-mode images were acquired from each rat in standard transverse and 

sagittal imaging planes of the right and left lobes of the liver. Each clip consisted of average 

of 25–35 images. Imaging presets (gain = 18 dB, high sensitivity, 100% power, transmit 

frequency 21 MHz, and high line density) and time compensation gain were optimized and 

standardized.

Five to six identical rectangular regions of interest (ROI) were placed manually on each 

image to ensure comprehensive inclusion of multiple representative parts of the liver 

parenchyma and exclusion of imaging artifacts such as acoustic shadowing, enhancement, or 

reverberation. A total of 5903 regions of interest were placed on the images.

A number of texture features were extracted from the ROIs, which include:

1. First order histogram features: including echo intensity, heterogeneity (regional 

variance between ROIs, internal heterogeneity (local variance within ROIs) [20]. 

Echo intensity and heterogeneity represent the mean and standard deviation of 

intensity within an ROI. Heterogeneity is the standard deviation of the echo 

intensity between the ROIs in all the planes measured throughout the liver.

2. Run length features include gray-level nonuniformity (GLNU) and run length 

nonuniformity (RLNU). These features represent the length of the run, usually 

the number of pixels for the horizontal or vertical scan direction, or the number 

of pixels multiplied by a diagonal direction [21].

3. Entropy: a gray level connectivity texture feature was also studied [21].
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All image analysis was performed using a custom application written in the IDL (Inter-

active Data Language) programming language (version 8.5; Harris Geospatial, Broomfield, 

CO, USA) [21].

2.2. Feature Statistics and Machine Learning Diagnostic Models

The mean and standard error for the ultrasound texture features of the three different 

groups were compared by two-tailed paired Student’s t-tests. p < 0.05 was considered 

significant. One-way analysis of variance (ANOVA) was used to compare the difference 

between the three study arms. Statistical analysis was performed using MedCalc (version 

19.0.5, MedCalc Software Ltd., Ostend, Belgium).

Two classifiers were used for machine learning analysis. Random Forest [22] was used for 

multicategory classification, while logistic regression is used for the two groups’ separation. 

Leave-one-out cross-validation approach (round-robin) was used for training and testing the 

data with both classifiers. Training and testing of data were performed using Weka software 

(version 3.8.5, University of Waikato, Hamilton, New Zealand) [23].

2.3. Intra- and Inter-Case Divergence Analysis

Jenson–Shannon (JS) divergence [16–19] was used to quantify the difference in grayscale 

distribution between two regions, for both intracase and intercase sampling. JS divergence 

offers an information-theoretic set-similarity measure that works naturally for pair-wise 

comparisons. To evaluate intra- and inter-divergence, we compared intracase to intercase 

pairs, calculating JS divergence for every pair. Intracase pairs were sampled for every 

possible time shift, and their divergence distributions were then tested against the divergence 

distribution of the intercase region pairs. The goal was to find the minimum time difference 

between image regions of the same case such that their divergences were distributed 

similarly to regions sample from completely different subjects. For each test at each time 

shift, the null hypothesis was that the distributions were different, so we performed a 

t-test for significant similarity or equivalence (not the more common Student’s t-test for 

significant difference) [24].

For equivalence, to demonstrate a “lack of difference”: The t-test for equivalence, where δ 
depends on how much nonequivalence is acceptable in the research study. In our example, 

we were unwilling to accept more than 5% reduction in intra-divergence compared to 

inter-divergence, so we set δ equal to 0.05 M1 (where the 1 subscript indicates inter, and 2 

subscript indicates intra):

t(df) =
M1 − M2 − δ

(n1 − 1)σ1
2 − (n2 − 1)σ2

2

n1 + n2 − 2 × 1
n1

1
n2

The denominator is simply the standard error; df is degrees of freedom or n1 + n2 − 2; 

and the M is mean. This was a one-sided test in this study, because we wanted to prove 

that intrasampled cases do not have significantly lower divergence than intercases. It is a 
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noninferiority test because we wanted to prove that choosing our samples from intracases 

performed no worse than choosing from our intercases.

3. Histopathologic Validation

Liver disease was confirmed by histopathological examination. The liver lobes were 

assessed in a blind fashion by a vet pathologist for fibrosis and lipidosis on gross pathology. 

Portions of liver were preserved in 10% phosphate-buffered formalin and transferred to 

50% ethanol after 48 to 72 h and then embedded in paraffin and processed for histological 

examination with hematoxylin and eosin (H&E) and trichrome staining. Each histologic 

section was graded according to the METAVIR scoring system for fibrosis. Lipidosis was 

investigated in addition to presence of balloon cells, which is critical to finding fatty liver 

changes.

4. Results

4.1. The Classification Performance of Ultrasound Features

All features showed statistically significant differences between the three groups. Table 1 

shows the difference in mean values of liver texture ultrasound features between the three 

groups

Logistic regression two-class analysis showed high performance. First, the model was able 

to detect the disease from normal cases with AUC 0.917 (Figure 1). Then, differentiation of 

the two liver disease groups, namely steatosis and fibrosis, showed a very high diagnostic 

performance with AUC of 0.928.

Random forest learning for multicategory classification also showed high performance in 

differentiation of the three groups (Figure 2). The model showed that the features can 

differentiate all three groups from each other with high diagnostic performance ranging from 

0.854 to 0.917 with sensitivity up to 83.8 and specificity reaching 83.3.

4.2. Divergence Testing for Image Independence

Of the three tested liver pathologies, only normal cases demonstrated that intracase region 

divergence is statistically close to the intersampled case divergence (Table 2, Figure 3). In 

Figure 3C, we can observe that the mean divergence for intrasampling was almost the same 

as for intersampling.

On the other hand, steatosis and fibrosis cases failed the similarity test. Inter-divergence was 

significantly higher than intra-divergence (Table 2, Figures 4 and 5): regions sampled from 

different cases were more different than regions sampled from the same case on different 

frames within a video, at different time points.

The ultrasound images examples of the three liver pathologies, in Figures 3–5, demonstrate 

that although it is possible to visually distinguish between the images of the three groups, 

the differentiation of cases within a disease group is hard on different frames of the same 

cases or between cases.
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5. Discussion

For successful application of ML methods in medical imaging research and deployment of 

high-performance generalizable models, there is a need for a sufficient number of training 

samples from large images databases. We used the common training practice of adding 

samples by training on a large number of sequential image frames taken from the same 

case. The results of ML models showed high classification performance for the three studied 

disease groups. However, when we tested the independence of the sequential images that 

were taken from the same case using JS divergence, of the three tested liver pathologies, 

only normal cases demonstrated statistically that intracase region divergence is close to the 

intersampled case divergence. This means that the normal cases diverged similarly between 

patients and within a patient, but for fibrosis and steatosis, samples within a patient were 

more similar to each other than samples from different patients. Two regions sampled 

from the same normal case were just as different as two regions sampled from completely 

different cases according to the t-test for equivalence, within 5%. Therefore, for normal 

cases we can reject the null hypothesis that there is a significant difference between inter- 

and intrasampling. In general, intra-divergence for all the three groups was small, but 

different. Fibrosis showed the highest JS divergence in comparison to other groups. This 

finding is expected as fibrosis is often associated with heterogenous tissue changes between 

different regions of the liver in comparison to more uniform changes seen in steatosis 

[25,26]. Yet, inter- and intracase JS fibrosis divergence are not statistically close to each 

other; therefore, we cannot claim that the intracase image frames are independent enough to 

train on as separate cases.

The intuition that divergence should increase with time-shift between samples proved to be 

incorrect, because any gradual divergence trend was overpowered by the cyclical effects of 

breathing motion. Looking at the graphs of divergence with increasing time change, it is 

evident that divergence between pairs of sampled regions is periodic, with a period of 35 

frames or 4.5 s. This is believed to be due to breathing. A region sampled from a later frame 

will be most similar (less divergent) to a region sampled earlier at the same relative point 

in the respiratory cycle and least similar to a region sample out of phase in the cycle. For 

all three tested pathologies, but especially steatosis and fibrosis, divergence change within 

the breathing cycle was much stronger than divergence drift over the entire time-course of 

the study. In theory, if this divergence oscillated perfectly with constant-period and constant-

amplitude cycles, to maximize sampling differences, maximally out-of-phase time points 

could be chosen within or even crossing multiple periods. For instance, if the reference 

interdivergence was 1, and the respiratory period was 1 s (1 Hz), then the peak-to-valley 

maximum divergence between frames within a cycle would be at half a cycle, or 0.5 s. If 

the divergence difference over this half-cycle was at least equal to our reference threshold 

of 1, then exactly two samples that were this half-period apart, or some integer multiple of 

this half period, could be taken for the *entire* time of the study to ensure that they were as 

different from each other as two samples from entirely different cases. All of our data show 

that, over the time of the study, the amplitude of the divergence oscillation within a cycle 

increases over time: in a later breathing cycle after an earlier reference breathing cycle, a 

sampled region will diverge more from the earlier reference sample even when both are still 
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in phase; and if the two samples are taken out of phase, they will also diverge much more 

over time. The strongest guarantee of sufficient divergence would be if the lower bound 

connecting the out-of-phase valleys on the increasing-oscillating curve increased by at least 

the reference intersampling divergence, but none of these studies showed such an effect, 

possibly because they were not long enough.

In this paper, we proposed the use of a statistical preliminary analysis to assess the 

quality of the imaging data before constructing an ML model. To our knowledge, the JS 

divergence test has not been evaluated to test the independence of image data. However, 

similar preliminary exploratory data analyses have been reported in literature for assessing 

the quality of data before going to ML models. One example of the exploratory analysis 

reported includes the use of Dynamic Time Warping (DTW) [27,28]. DTE is a measure of 

how similar two temporal sequences are in a time series analysis. DTW looks for the optimal 

alignment between the two series as opposed to looking at the Euclidean distance between 

two points at each time series. DTW was evaluated as a distance metric of fMRI time series 

with repeated measurements of an individual subject and showed that DTW analysis results 

in more stable connectivity patterns by reducing the within-subject variability and increasing 

robustness for preprocessing strategies.

One limitation of this study is that we did not test each of our measured radiomics 

features in this way but presented a method to perform it and tested it on a fundamental 

image property. Since most features depend somewhat on grayscale distribution, if ROIs 

between frames were not independent enough in those distributions, we did not look 

further. Grayscale histograms and first-order statistics are perhaps the simplest ways of 

characterizing image regions, so if those distributions are significantly more similar within 

a case than they are between cases, and more similar at certain regular time intervals 

within the clip, then many derived features may behave similarly. An image, though, is 

a spatial distribution of grayscale values, and it is very true that engineered features may 

only partly depend on the grayscale *value* distribution or may not depend on it at all. 

The methodology we presented, though, with enough samples to compare distributions 

(i.e., a radiomics image that maps the feature value to each pixel location) could test any 

quantitative feature to see if it was independent enough between frames to allow those 

frames to count as sufficiently independent images for that measurement. A more in-depth 

analysis of sampling divergence behavior over time is, however, beyond the scope of this 

research and would not be generalizable to other organs or modalities. The important result 

is that different pathologies might have different dependencies when sampling frames from 

video, since in this research one of three pathologies passed the independence test: sample 

regions between video frames of a normal case are as different from each other as samples 

from completely different cases. Future studies will also evaluate the effects of inter- and 

intrauser variability in ROI selection on the model performance. The study results are 

specific to ultrasound imaging, and findings could have been impacted by factors related to 

the choice of animal, tissue, ROI, and analysis. Future studies on a large scale are required 

for the proposed approach to be generalized to other imaging modalities and to be applied in 

human studies.
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6. Conclusions

Whenever image frames taken from same case are used for training machine learning 

models, if that model assumes independence between images, an independence test should 

be performed. Not only might there be within-case image dependence, but that dependence 

also could be related to time separation of samples in a video study, so that enforcing a time 

interval between samples could meet the independence assumptions of the model. For our 

liver images, however, no such simple time interval could be found, because the periodic 

breathing motion was too strong an effect. However, for one of the three pathologies—the 

“normal” cases—image frames were as independent within a case as between cases. Such a 

result could be important for machine learning. In a clinical setting, it is not uncommon to 

acquire more disease images than normal controls, possibly creating an unbalanced imaging 

database. The result of this research on liver diseases suggests that it is acceptable to take 

many frames of the same normal case as independent training cases, demonstrating one 

possible application for thoroughly testing image frames for independence.
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Figure 1. 
The diagnostic performance of quantitative liver texture ultrasound features using logistic 

regression (LR) machine learning for two-step pathology differentiation. (A) shows the 

diagnostic performance of ultrasound texture features in differentiating normal from liver 

disease including both fibrosis and steatosis cases, while (B) demonstrates the diagnostic 

performance of ultrasound features in differentiating steatosis from fibrosis cases. AUC 

refers to area under the curve, Sn: sensitivity, and Sp: specificity.
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Figure 2. 
ROC curves of the diagnostic performance of quantitative liver texture ultrasound features 

using random forest machine learning for multicategory classification. (A) shows the 

diagnostic performance of ultrasound features in differentiating fibrosis from the two 

remaining groups: steatosis and normal. (B) demonstrates diagnostic performance in 

differentiating steatosis group from fibrosis and normal groups. (C) shows the performance 

of normal cases versus liver disease: fibrosis and steatosis. AUC refers to area under the 

curve, Sn: sensitivity, and Sp: specificity.
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Figure 3. 
Panels (A,B) show examples of B-mode ultrasound liver images taken from two normal 

cases. Panel (A) shows three sequential from the same case with region of interests (ROIs) 

for quantitative analysis. Panel (B) shows three sequential images from a second normal 

case. Panel (C) shows the intra- and intercase JS divergence for cases in general. Intra- and 

intercase divergence for normal cases are close to each other, indicating that intrasampled 

cases may be just as independent inter sampling. Five to six regions of interests are placed 

(red rectangular boxes) on each image for quantitative analysis.
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Figure 4. 
Panels (A,B) show examples of B-mode ultrasound liver images from two steatosis cases. 

Panel (A) shows three sequential images from the same case with region of interests (ROIs) 

for quantitative analysis. Panel (B) shows three sequential images from a second steatosis 

case. Panel (C) displays the intra- and intercase JS divergence for steatosis cases in general. 

Intra- and intercase divergence for steatosis cases is far apart, indicating that we cannot 

claim independence of intrasampling in these cases. Five to six regions of interests are 

placed (red rectangular boxes) on each image for quantitative analysis.
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Figure 5. 
Panels (A,B) show examples of B-mode ultrasound liver images from two fibrosis cases. 

Panel (A) shows three sequential images from the same case with region of interests (ROIs) 

for quantitative analysis. Panel (B) shows three sequential images from another steatosis 

case. Panel (C) shows the intra- and intercase JS divergence for fibrosis cases in general. 

Intra- and intercase divergence for fibrosis cases is far apart, indicating that we cannot claim 

independence of intrasampling in these cases. Five to six regions of interests are placed (red 

rectangular boxes) on each image for quantitative analysis.
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Table 1.

Mean ± standard errors of liver texture ultrasound features studied for the three liver pathologies. Two-sided 

t-test p-values are shown for each group against the other two groups. p < 0.05 is considered significant.

Quantitative 
Ultrasound Features Steatosis Fibrosis Normal p-Value: Fibrosis 

vs. Steatosis
p-Value: Fibrosis vs. 

Normal
p-Value: Steatosis vs. 

Normal

Echo intensity 34.7 ± 12.0 55.9 ± 16.3 25.4 ± 13.6 0.00 0.00 0.00

Heterogeneity 14.6 ± 3.7 20.5 ± 3.9 12.7 ± 4.7 0.00 0.00 0.0

Internal Heterogeneity 12.0 ± 1.2 16.3 ± 2.4 13.2 ± 1.8 0.00 0.00 00

GLNU 0.3 ± 0.1 0.3 ± 0.0 0.4 ± 0.2 0.00 4.37 × 10−52 0.00

RLNU 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.1 0.00 1.7 × 10−68 2.914 × 10−72

Entropy 3.5 ± 0.2 4.5 ± 0.18 3.1 ± 0.5 0.00 2.4 × 10−116 2.041 × 10−123
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Table 2.

Mean and standard deviation of intra- and inter-case JS divergence values for the three pathology groups.

JS Divergence Normal Fibrosis Steatosis

Intra 0.01 ± 0.03 0.05 ± 0.05 0.01 ± 0.05

Inter 0.01 ± 0.03 0.07 ± 0.08 0.03 ± 0.05
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