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Abstract: Ultrasonic gene transfer has advantages beyond other cell transfer techniques because
ultrasound does not directly act on cells, but rather pushes the gene fragments around the cells into
cells through an acoustic hole effect. Most examples reported were carried out in macro volumes
with conventional ultrasonic equipment. In the present study, a MEMS focused ultrasonic transducer
based on piezoelectric thin film with flexible substrate was integrated with microchannels to form a
microfluidic system of gene transfer. The core part of the system is a bowl-shaped curved piezoelectric
film structure that functions to focus ultrasonic waves automatically. Therefore, the low input voltage
and power can obtain the sound pressure exceeding the cavitation threshold in the local area of the
microchannel in order to reduce the damage to cells. The feasibility of the system is demonstrated by
finite element simulation and an integrated system of MEMS ultrasonic devices and microchannels
are developed to successfully carry out the ultrasonic gene transfection experiments for HeLa cells.
The results show that having more ultrasonic transducers leads a higher transfection rate. The system
is of great significance to the development of single-cell biochip platforms for early cancer diagnosis
and assessment of cancer treatment.

Keywords: cell delivery; ultrasound; microfluidic

1. Introduction

Gene transfer from exogenous sources to cells is a basic bioengineering technology
and a powerful tool for characterizing the structure and functions of genes [1]. Current
passive methods for naked gene transfer include the liposome mediated method [2], mi-
croinjection [3], and the virus vector transfection method [4], amongst others. The passive
methods for naked gene transfer have the advantages of having no external energy supply
and simple equipment, but the vector, especially the virus vector, has limitations and
safety defects. For example, retroviruses with viral vectors have the potential risks of
replication ability, insertion mutation, and activation of oncogenes; adenoviruses have the
side effects and potential risks of causing immune responses [5]. However, the application
of viral vectors is greatly limited due to limited DNA loading, difficult vector assembly,
low efficiency of in vivo introduction, and high costs. Although non-viral vectors such
as liposomes, polymer materials, and nano gene transporters have no defects, such as
viral toxicity or immunogenicity, their transmission efficiency is very low [6,7]. The active
methods for naked DNA transfer include: microinjection, particle bombardment/particle
gun, electroporation, and optical methods [8–10]. Microinjection and particle bombard-
ment are both interventional methods; that is, the cell membrane must be perforated to
introduce DNA into cells [9]. Electroporation gene transfer also requires cell membrane
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perforation, which uses high-voltage electric shocks (10–20 kV/cm) to transfer the DNA
plasmid into cells through the cell membrane. The cell membrane can naturally self-repair
because the pores can bridge automatically within a few seconds after the electric shock.
Currently, electroporation is the most commonly used method due to the advantage of high
transfection efficiency and suitability for large DNA plasmids, yet the operation requires
a low ionic level medium and high voltage, which can lead to high cell death [11]. In
addition, the highly focused laser can also be used to generate perforations of about 1
micron in diameter in the cell membrane, which is the principle of optical gene transfer [12].
The pores formed by the laser can bridge automatically within a few seconds as a result
of self-repair. However, the laser beam can easily damage the cells, which greatly limits
the application of this method. Optical gene transfer is particularly suitable for single-cell
transfection where only one cell is processed at a time.

Ultrasound-mediated gene delivery, also known as sonoporation, is a recently de-
veloped cell membrane permeation technology that has been applied for DNA and drug
delivery in cells [13–16]. The technology is based on the cavitation effect of ultrasonic
waves. When ultrasonic waves propagate in a liquid solution, the liquid in the path will
undergo alternative compression and expansion. If the ultrasonic intensity is large enough,
bubbles will be formed during the compression and expansion of the liquid and they can
expand to a certain extent before bursting. The period from bubble generation to burst is
generally very short, usually within 1 microsecond. This process is referred to as ultrasonic
cavitation [17]. The local high temperature and high pressure shock wave generated by
ultrasonic cavitation can perforate a cell membrane with tiny pores with an effective di-
ameter smaller than 100 nanometers. The pores can last for a few seconds [18], allowing
larger molecules to enter the cell from the medium [19]. Under optimized conditions, the
cells can survive the cavitation effect without obvious damage. Based on the self-repair
mechanism, the cell membrane can bridge on its own after gene transfection [20]. The
above is the general principle of ultrasound-mediated gene delivery. Figure 1 shows the
mechanism of ultrasound-mediated DNA delivery and the typical steps of DNA plasmid
delivery into a bacterial cell [10].

The technology is currently considered the ideal method for the transfection of DNA
plasmids or fragments into cells [10,21]. It has the following advantages: (a) theoretically,
DNA or RNA can be delivered to any type of cell, including bacterial cells [22], plant
cells [23], and mammalian cells [24]; (b) it does not require the medium to be ion-free and
can be used for cells that grow in the natural environment or the human body; (c) it is
non-invasive and does not require direct contact with the cells; (d) it is easy to control the
time and location of the transfer. The ultrasound can be restricted to a specific area or time
period to enhance the outcome of gene transfer [25].

Existing ultrasound-mediated gene transfer technologies are all carried out under
a macroscopic volume [26–28] using large-scale ultrasonic equipment, such as the horn-
shaped ultrasonic radiator or the ultrasonic bath. Relevant studies were only carried out on
a macro scale (105–107 cells), and resulted in averaged data. Due to the inhomogeneity of
cell responses and the different life or metabolic cycles, the averaged data are often difficult
to interpret. To solve this problem, it is necessary to develop new technologies and devices
for single-cell operation, high-precision analysis, and high sensitivity detection. Interest-
ingly, with microfluidic technology, the size of a biochip (lab-on-a-chip) is compatible with
cell size and is suitable for single-cell operation.

Compared with macroscopic and large-volume analysis technology, the integrated
biochip technology has the advantages of small reagent consumption, less residue, short re-
action time, high accuracy, cost effectiveness, and disposability [29]. The use of microfluidic
devices facilitates the separation, capture, location, and observation of cells. Moreover, the
surface physical and chemical parameters of devices attached to the cells can be controlled,
such as the local pH and temperature, in order to precisely control the local environment
around the cells [30]. In the present study, we proposed an integrated system of MEMS
ultrasonic devices and microchannels by enabling ultrasound-mediated cell delivery on a
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microfluidic scale and meeting the requirement of high-precision analysis and single-cell
operation. The system is of great significance to the development of single-cell biochip
platforms for early cancer diagnosis and assessment of cancer treatment.
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Figure 1. Illustration of proposed mechanism of ultrasound DNA transfer [10]. (A) A bacterial cell
and plasmid DNA are suspended in an aqueous solution. (B) 50 mM CaCl2 promotes transformation.
(C) Ultrasound generates pores in cell membranes through which plasmids enter the cell. (D) Pores
are closed and plasmids are retained in the cell. (E) Bacteria acquire new functions after taking up
plasmid DNA.

2. Materials and Methods
2.1. Microfluidic Ultrasound-Medicated Cell Delivery System Design

The microchannel was assembled to the transducer array to form the microfluidic
ultrasound-medicated delivery system, as shown in Figure 2. The core components of the
system included the MEMS piezoelectric ultrasonic transducers and the microchannels.
The microchannel was etched from silicon wafers, and the cover was made of polyimide
(PI). The piezoelectric ultrasonic transducer was located inside the PI cover and was
composed of a piezoelectric film deposited on a spherical structure. The spherical shape
could produce an excellent ultrasonic focusing effect. By applying an excitation voltage on
the piezoelectric film, a slight vibration was generated. The generated ultrasonic waves
entered the microchannel and acted on the flowing fluid in the tubing. The microchannel
was connected to a syringe pump, which provided the flow to carry the cells and DNA
plasmids through the area in the focus of the ultrasound. If the excitation voltage is not too
high and the intensity and frequency of the ultrasonic wave are appropriate, microbubbles
are generated in the fluid, i.e., cavitation. The cells in the area were subject to the shock
wave caused by the cavitation and the localized high temperature and high pressure, and
tiny pores were generated in the cell membrane, through which DNA could be delivered
to the cell. After the cell exited the ultrasonic irradiation area, the tiny pores in the cell
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membrane bridged automatically in a short time, and the DNA was kept inside. At this
point, the ultrasonic DNA transfer was completed.
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Figure 2. Schematic diagram of the microfluidic ultrasound gene transfer system MEMS (a) self-
focusing ultrasonic transducer; (b) microchannel.

2.2. Simulation

Although the focus of a spherical ultrasonic source has been a topic of fundamental
interest for many years, several of its aspects, such as non-linear performance, are still
not fully understood [31]. As there is no analytical solution for a spherical focusing field,
some approximation models have been derived [32–34]. For continuous waves, under
the assumptions of source piston movement and plane wave propagation, B.G.Lucas
derived an integral model. However, the model is obtained by converting the Helmholtz
equation into a parabola equation with the restriction of Fresnel approximation, and is
only applicable to shallow curved spherical sources with a feature size much larger than
the wavelength of the sound generated [31]. The MEMS ultrasonic transducer we propose
is heavily curved to achieve a strong focusing effect, and its feature size is similar to the
ultrasound wavelength; therefore, we cannot use Lucas’ model. the system consists of
several types of materials and interfaces, which renders it too complex for an analytical
solution. In addition, the interaction between the thin-film piezoelectric material and the
acoustic media cannot be omitted, as is the case in the analytical approach. To obtain an
accurate solution, Finite Element Analysis(FEA)based piezo-acoustic coupling Catalysis is
required. COMSOL Multiphysics® (version 5.2, COMSOL, Nanning, China)in combination
with its acoustics and MEMS modules provides the means to perform this simulation.

According to bubble dynamics, there is a minimum acoustic pressure amplitude
required to cause the cavitation, which is defined as the cavitation threshold. It is dependent
on many facts including liquid properties such as surface tension, viscosity, inertia, the
frequency of the ultrasound used, the initial nucleus radius, etc. According to an analytical
model [35], the cavitation threshold increases with decreasing nucleus size due to surface
tension, and increases with increasing nucleus size due to inertial and viscous effects.
Figure 3 shows the cavitation threshold in water as a function of initial nucleus radius for
three frequencies of ultrasound: 1, 5, and 10 MHz [35].

According to the analytical model, there is an optimal bubble size at a given frequency
for which the threshold is a minimum. This effect is shown in the computed threshold
curves in Figure 3. At higher frequencies, the optimal bubble size for cavitation nucleation
decreases because inertial and viscous effects increase with frequency. The minimum
pressure threshold from the theory of this optimal bubble size has been computed [36].
Table 1 shows the results for the ultrasound frequency between 1 to 5 MHz.
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Table 1. Minimum cavitation threshold Popt at different ultrasound frequency f.

f (MHz) Popt (MPa)

1 0.262
2 0.364
3 0.442
4 0.507
5 0.564

The application-case of the proposed device that the minimum bubble size is to be
collapsed is 1 µm, hence the maximum frequency required in operation is 6 MHz. The
piezo-acoustic coupling modelling of the system has been carried out with an actuation
voltage of 100 V AC and actuation frequencies between 1 MHz and 5 MHz. Figure 4 shows
the acoustic pressure distribution in the entire field when an actuation voltage of 100 V
AC at 1 MHz is applied. Figure 5 shows a comparison of the acoustic pressure in the
liquid along the normal axis for actuation frequencies between 1 MHz and 5 MHz and an
actuation voltage of 100 V AC.

Comparing Figure 5 and Table 1, it can be found that when the AC excitation voltage
was 100 volts, the maximum ultrasonic pressure of the fluid in the microchannel was
higher than the minimum cavitation threshold of water at the frequencies of 1, 2, and
5 MHz; while at 3 and 4 MHz, the maximum ultrasonic pressure was slightly lower than
the minimum cavitation threshold of the corresponding frequency. Furthermore, when
the AC excitation voltage increased to 120 V and 180 V at 3 and 4 MHz respectively,
the maximum ultrasonic pressure in the microchannel exceeded the minimum cavitation
threshold of water at the corresponding frequency. The findings suggested that it was
possible to generate microbubbles and form cavitation when the excitation voltage was not
too high. Comparing Figures 3 and 5, it can be seen that when the excitation frequency was
1–5 MHz, cavitation with a bubble diameter of 1–5 µm was formed in the microchannel.
The simulation results showed that the system proposed in this study was able to form
ultrasonic cavitation in the microfluid theoretically.
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3. Results
3.1. Spherical Self-Focusing MEMS Ultrasonic Transducer

The spherical self-focusing MEMS ultrasonic transducer was composed of a curved
piezoelectric film and a bowl-shaped structure for ultrasonic focusing. ZnO was used as the
material of the bowl-shaped piezoelectric film. The manufacturing process included soft
imprinting and magnetron sputtering coating. PI was used for the microchannel cover and
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the spherical cap. Polyimide solution was poured into a microstructure mold. After drying,
curing, and demolding, a solid (flexible) replica of the microstructure was obtained. This
technique was used to make the cover of the microchannel and the spherical cap. The mold
was made from the embossing of a high-precision steel ball. With the above technique, the
high-precision steel ball and PDMS soft imprinting were used to make the spherical MEMS
microstructure array on the PI substrate, and ZnO piezoelectric film with a thickness of
4 microns was sputtered, including the upper and lower electrodes. The specific steps are
shown in Figure 6a. After obtaining the spherical structure, the PI was put in the magnetron
sputtering apparatus and a stainless-steel plate was used as a baffle to define the shape of
the lower electrode. The A1 electrode was prepared using DC magnetron sputtering. The
final thickness of the lower electrode was ~500 nanometers. After the lower electrode was
deposited, the zinc oxide was produced by RF magnetron sputtering. Similarly, another
stainless-steel baffle was used to define the shape. The thickness of the deposited zinc oxide
was 4 microns. The Al upper electrode was prepared by DC magnetron sputtering, and a
stainless steel baffle was used to define the shape.

Micromachines 2022, 13, 1126 8 of 15 
 

 

 

Figure 6. (a) Flow chart of preparation of the self-focusing ultrasonic transducer array on a PI sub-

strate; (b) a picture of the microfluidic transfection biochip. 

SU-8 photoresist (negative photoresist) with a thickness of 100 microns was used. 

Through ultraviolet exposure and development, a convex microchannel mold was made. 

PDMS was poured into the mold. After curing and demolding, a PDMS microchannel 

with a height of 100 microns and a width of 200 microns was obtained. The ultrasonic 

transducer was assembled to the microchannel with screws. The screws generated a com-

pressive pressure between the two surfaces. Due to the large elasticity of PDMS, it de-

formed under the compression and sealed the microchannel. One advantage of the screws 

is simple assembly and disassembly. Since the microchannel and the transducer were not 

chemically bonded together, it was very convenient to disassemble and replace them if 

necessary. Figure 6b is the successfully prepared microfluidic gene transfection biochip. 

3.2. Performance Test of the Ultrasonic Transducer Array 

Surface roughness is a critical factor for the performance of MEMS ultrasonic trans-

ducers. If the roughness is too high, the deposition of the upper electrode and the ultra-

sonic wave emission can be affected. The prepared transducer was observed under a scan-

ning electron microscope (SEM). It can be observed that the convex spherical structure 

was a standard circle (Figure 7a); the ZnO film and the upper electrode were also observed 

(Figure 7b). Based on the SEM images, it can be observed that the ZnO film had good 

quality, and the thickness of the piezoelectric film reached 4 microns. The surface rough-

ness of the film was low, and it adhered well to the substrate. 

(a)                               (b) 

Figure 6. (a) Flow chart of preparation of the self-focusing ultrasonic transducer array on a PI
substrate; (b) a picture of the microfluidic transfection biochip.

SU-8 photoresist (negative photoresist) with a thickness of 100 microns was used.
Through ultraviolet exposure and development, a convex microchannel mold was made.
PDMS was poured into the mold. After curing and demolding, a PDMS microchannel with
a height of 100 microns and a width of 200 microns was obtained. The ultrasonic transducer
was assembled to the microchannel with screws. The screws generated a compressive
pressure between the two surfaces. Due to the large elasticity of PDMS, it deformed under
the compression and sealed the microchannel. One advantage of the screws is simple
assembly and disassembly. Since the microchannel and the transducer were not chemically
bonded together, it was very convenient to disassemble and replace them if necessary.
Figure 6b is the successfully prepared microfluidic gene transfection biochip.

3.2. Performance Test of the Ultrasonic Transducer Array

Surface roughness is a critical factor for the performance of MEMS ultrasonic transduc-
ers. If the roughness is too high, the deposition of the upper electrode and the ultrasonic
wave emission can be affected. The prepared transducer was observed under a scanning
electron microscope (SEM). It can be observed that the convex spherical structure was
a standard circle (Figure 7a); the ZnO film and the upper electrode were also observed
(Figure 7b). Based on the SEM images, it can be observed that the ZnO film had good
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quality, and the thickness of the piezoelectric film reached 4 microns. The surface roughness
of the film was low, and it adhered well to the substrate.
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cap and (b) ZnO film and electrode.

The frequency response of the ultrasonic transducer array was tested with a laser
Doppler vibrometer (Displacement Unit., MLD-821, NEOARK Corp, Tokyo, Japan), and the
result is shown in Figure 8a. It can be observed that the transducer had the most significant
displacement at 5 MHz. The phase angle was 0, which indicates that its resonant frequency
was around 5 MHz. Moreover, a finite element simulation of the transducer was carried
out, which showed that the resonant frequency was about 4.66 MHz (Figure 8b). This was
consistent with the result of the laser Doppler vibrometer. The resonant frequency met the
design requirements and could produce ultrasonic cavitation in a microfluid.
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In addition, we conducted experiments and numerical simulations on the factors of
the performance of the ultrasonic transducer. The results showed that the shape of the
transducer had a great impact on performance parameters such as the resonant frequency
and Q value. The effect of the thickness of the ZnO piezoelectric film on the performance
of the transducer was studied. By controlling the magnetron sputtering parameters, ZnO
piezoelectric films of different thicknesses (2–4 microns) were prepared, and the corre-
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sponding frequency response was tested. The results are shown in Figure 9. It can be
seen that: (1) with the increase of the thickness of the ZnO piezoelectric film, the resonant
frequency of the transducer increased slightly; (2) with the increase of the thickness, the
piezoelectric effect was more significant and the crystal orientation and uniformity were
better, leading to an increase in the Q value. Thus, it can be predicted that if the film
thickness was further increased to 10 microns or higher, the performance of the transducer
would be significantly improved.
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3.3. Cavitation Effect

The sonochemical method refers to the promotion of chemical reactions through
ultrasonic cavitation and the reflection of the generation and intensity of the ultrasonic
cavitation effect through sonochemical products [37]. An advantage of the method is that
it is not affected by the environment. Once the ultrasonic cavitation energy exceeds the
threshold required for the chemical reactions, which causes molecular bond destruction
and recombination, new products are generated that can then be used to characterize the
generation of ultrasonic cavitation. Based on the amount of the new products, the cavitation
intensity can be quantitatively analyzed. The sonochemical method is universal, simple,
economical, practical, and does not require complex equipment. In this study, the iodine
release method was used.

The main principle of the iodine release method is the oxidation-reduction reaction of
the KI solution under the ultrasound. The iodide ions in the solution will be oxidized into
essential iodine and precipitate. By putting starch into the solution, the mixture will turn
blue. Then, the amount of precipitated essential iodine is measured through the titration
of the sodium thiosulfate solution. From there, the intensity of the cavitation effect can be
characterized. The iodine release method is intuitive and reliable because the color change
process is visible.

Figure 10 shows the cavitation yield in KI solutions with different initial concentrations.
It can be seen that higher concentrations lead to larger rates of essential iodine generation.
For KI solutions with the same concentration, the ultrasonic irradiation time increased and
the rate of essential iodine generation decreased. This method can test the performance of
the ultrasonic transducer easily. If there is a fast rate of iodine generation, it means that the
transducer has a high energy conversion efficiency.
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3.4. Ultrasonic Gene Transfection Experiment

The microfluidic system in Figure 2 was used to carry out the ultrasonic gene transfec-
tion experiments for HeLa cells. The whole experiment process is shown in Figure 11. The
transducers were placed in an array at the bottom of the microchannel, in which the No. 1
transducer was the reagent inlet, No. 2–9 the ultrasonic irradiation area, and No. 10 the
reagent outlet. The plasmids and cells were mixed in a certain proportion into the injection
pump and sent into the microchannel at a speed of 50 nL/s. The cells would undergo
multiple rounds of ultrasonic irradiation in the picture, flowing through the channel and
then entering the liquid collection device. The resonant frequency of the 8 piezoelectric film
ultrasonic transducers is approximately 3 MHz, and the distance between each transducer
is 8 mm. One or more of the transducers can be selected to work according to the purpose
of cell transduction. In the microfluidic environment, flowing cells pass through the mi-
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crochannel and are subjected to the cavitation effect of ultrasonic transducer at the bottom
to generate temporary micropores, through which genes and other substances can enter
cells to realize gene transfection. Ultrasonic transducers generate heat when operating,
which is facilitated by microfluidic conditions. In the microchannel, a small number of
cells pass through the bottom transducer in turn with different flow rates, and the time
of ultrasonic cavitation of cells is also different, resulting in different transduction effects.
In the microfluidic environment, the transducers are arranged in array, and the cells can
be subjected to the ultrasonic action of multiple transducers, which is more conducive to
gene introduction.
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Figure 11. Schematic diagram of the ultrasonic gene transfection experiment.

The human renal epithelial cell line (293T cell) was used to prepare single cell sus-
pension, and the cells were irradiated with the No. 2 ultrasonic transducer. The effect
of ultrasound on cell membrane was evaluated by double staining with the fluorescein
diabetic acid (FDA) and propidium iodide (PI). The PI can penetrate the membrane of dam-
aged cells and emit red fluorescent light after combining with intracellular DNA. Moreover,
active cells emit green fluorescent light with the FDA.

As shown in Figure 12, cells only emitting green fluorescence indicate that their cell
membranes may not be perforated, while cells only emitting red fluorescence may fail to
maintain the integrity of cell membranes due to excessive ultrasonic irradiation, resulting in
cell death. If a certain cell emits green and red fluorescent lights after FDA and PI staining,
it means that the cell is perforated successfully by ultrasound and the membrane integrity
is repair.
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HeLa cells were transfected with green fluorescent protein granules (PGFP-N2), and
the cell activity was detected by MTT assay. 1.6µg plasmid was added to group A, group
B, group C, and group D. No ultrasonic transducer was turned on in group A, ultrasonic
transducer No. 2 was turned on in group B for 20 s, ultrasonic transducer No. 4 was turned
on in group C for 20 s, and ultrasonic transducers No. 2 and 4 were turned on in group D
for 20 s. The cells in each group were placed under a fluorescence microscope to observe
the expression of green fluorescent protein granules (PGFP-N2). The collected solution was
cultured in a 12 well plate at 37 ◦C in a 5% carbon dioxide incubator. After 6 h, the fresh
medium containing fetal bovine serum and double antibodies was replaced and continued
to culture for 24–48 h. The cells in each group were randomly selected from 6 visual fields
under a high-power microscope and the cells expressing green fluorescent protein in each
visual field were counted. Each group counted 3 holes. Transfection efficiency = cells with
green fluorescence/total cells × 100%.

Under a fluorescence microscope, the gene import effect is shown in Figure 13 and the
green cells indicate successful import. Figure 13a shows the control group with plasmids
added to the cell suspension without ultrasound. Figure 13b,c respectively represent the
results of acting with one transducer, and Figure 13d represents the results of acting with
two transducers simultaneously.
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Figure 13. Results of green fluorescent protein expression in HeLa cells (×200): (a) only plasmids
added; (b) plasmids added and sonicated with No.2 transducer for 20 s; (c) plasmids added and soni-
cated with No.4 transducer for 20 s; (d) plasmids added and sonicated with No.2 and 4 transducers
simultaneously for 20 s.

The transfection efficiency was improved with both transducers acting. It can be
speculated that if more transducers act simultaneously, their import efficiency will be
further improved. This suggests that cell import of MEMS ultrasound array is a potential
technology because MEMS transducers have the potential to make large-scale arrays, which
can greatly increase the import efficiency when multiple transducers act together.

4. Discussion

This study proposed an integrated system of a MEMS ultrasonic device and mi-
crochannel that enabled ultrasound-mediated gene delivery on a microfluidic scale, thus
meeting the needs of high-precision analysis and single-cell analysis. The combination of
microfluidic technology and MEMS technology in gene delivery is an innovation point
of this study. The developed transfection device is portable and the medium is transpar-
ent, which facilitates observation under the microscope. The use of a syringe pump can
achieve automated transfection. In the microfluidic system, the microfluidic tubing was
equipped with multiple ultrasonic transducers with different frequencies, thereby adjusting
the cavitation threshold or increasing gene transduction efficiency by adding an ultrasonic
contrast agent. Using the proposed method, we successfully achieved gene transfection
into HeLa cells. However, the current transfection effect is not ideal. Improvements to
the system are needed, such as the duration of ultrasound irradiation. In summary, the
microfluidic ultrasound-medicated cell delivery system accomplished gene transfection
in a microfluidic environment and laid a foundation for its application in targeted cells or



Micromachines 2022, 13, 1126 13 of 14

tissue-specific transduction. If the proposed method is combined with cell capture technol-
ogy, it is expected that single-cell specific-gene transduction can be accomplished, which
will be of great significance for the development of single-cell gene transfection devices.

5. Patents

The work reported in this manuscript has applied for the invention patent “microflu-
idic system for single cell ultrasonic gene delivery and its delivery method” in China, and
the patent number is CN105567562a.
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