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Abstract: Phthalate esters (PAEs) are ubiquitous in indoor environments as plasticizers in indoor
products. Residences are often exposed to indoor PAEs in the form of gas, particles, settled dust, and
surface phases. To reveal the mechanism behind the accumulation of PAEs in different tissues or
organs such as the liver and the lungs when a person exposed to indoor PAEs with different phases,
a whole-body physiologically based pharmacokinetic model for PAEs is employed to characterize
the dynamic process of phthalates by different intake pathways, including oral digestion, dermal
adsorption, and inhalation. Among three different intake pathways, dermal penetration distributed
the greatest accumulation of DEHP in most of the organs, while the accumulative concentration
through oral ingestion was an order of magnitude lower than the other two doses. Based on the
estimated parameters, the variation of di-ethylhexyl phthalate (DEHP) and mono (2-ethylhexyl)
phthalate (MEHP) concentration in the venous blood, urine, the liver, the thymus, the pancreas, the
spleen, the lungs, the brain, the heart, and the kidney for different intake scenarios was simulated.
The simulated results showed a different accumulation profile of DEHP and MEHP in different
organs and tissues and demonstrated that the different intake pathways will result in different
accumulation distributions of DEHP and MEHP in organs and tissues and may lead to different
detrimental health outcomes.

Keywords: exposure; indoor; metabolism; PBPK model; phthalate esters

1. Introduction

Phthalate esters (PAEs), a kind of semi-volatile organic compound, have been widely
used as plasticizers in household and industrial products for decades, primarily to increase
the flexibility and resilience of polyvinyl chloride (PVC) products. Since they are not
chemically bounded to a product matrix, PAEs will be gradually released from indoor
products into the air and tend to adhere to suspended particulate matter, dust, and indoor
surfaces because of their low vapor pressure. Thus, PAEs have been detected in almost
all indoor environments [1–6], and exposure to indoor PAEs seems especially severe in
China [7,8]. What is more, during the on-going COVID-19 pandemic, people have been
wearing masks for a long period of time during their daily lives, which may have increased
exposure to a certain number of phthalates of an average level of 1950 ng/g, determined in
mask samples [9].

Epidemiological and toxicological studies have shown that exposure to PAEs through
indoor sources may be related to carcinogenesis, the disruption of the endocrine system,
and other symptoms [2]. As a kind of endocrine disruption, PAEs have an impact on the
endocrine system and the genital system [10]. Animal [11], as well as human [12], sampling
tests indicated that PAEs will cause damage to the reproductive system and the testicular
function of males. In addition, epidemiology investigations suggested that early puberty
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in females is related to DEHP exposure [13,14], which may also raise the risk of breast
cancer and endometriosis [15]. Besides the adverse effects on the endocrine system and the
reproductive system, PAEs may even cause allergies, asthma [16], and cancer [17,18].

PAEs enter the human body through three kinds of intake ways: inhalation, oral
ingestion, and dermal penetration [19]. The mechanism of emission of PAEs from sources
and their transport fate indoors have been basically clarified by many studies [20–22]
so that the indoor concentration of PAEs can be predicted or estimated with accepted
accuracy by the models, together with numerous measured values in different countries
and regions [1,23]. At the same time, the indoor concentration of phthalate ester and its
metabolism in urine and blood in different countries and regions has also been measured
for health risk assessments [24–26]. However, the relationship between indoor exposure
to phthalate and metabolisms has been not established, and the prediction of internal
exposure based on the external exposure to PAEs is difficult. Recently, some researchers
have attempted to explore the issue of how PAEs entered human bodies based on some
PBPK (physiologically based pharmacokinetic) models cooperated with intakes of dermal
penetration and inhalation, as well as some experimental data [27–29]. However, the
detrimental health outcomes of different intake pathways still cannot be compared in the
mechanism. In addition, for linking external exposure to DEHP with internal exposure,
the distribution of PAEs in the body’s organs and tissues after entering the human body
through three pathways, including inhalation, oral ingestion, and dermal penetration,
still needs to be investigated. What is more, some important organs and tissues are not
specified in those models, so the internal exposure to PAEs and their substitutes in these
organs and tissues cannot be estimated. Therefore, the objective of this paper is to made a
preliminary study on this issue by using a whole-body PBPK model. This PBPK model can
simulate targeted organs and tissues through different intake pathways and therefore can
be beneficial to study how the accumulation of PAEs leads to detrimental health outcomes
in different organs in the human body.

2. Materials and Methods
2.1. Model Description

Generally, physiologically based pharmacokinetic (PBPK) models are used for deci-
sions in drug invention and developments and can simulate simultaneous concentrations
of drugs with time in different organs and tissues after a specified dosing. Recently, some
studies have employed PBPK models to investigate contaminants’ exposure and their
metabolism variation with time after exposure [29]. In this paper, we referred to the generic
14-compartments PBPK model in the Simbiology platform in Matlab [30]. As studies have
shown that DEHP might have the adverse effects on carcinogenesis, the disruption of the
endocrine system, asthma, and other symptoms [16,31], the simulation chose the liver, the
lungs, and the endocrine system (the spleen and the pancreas) as target organs to simulate
their accumulation time course. The original model assumes that drugs are well stirred
and absorption rates are determined merely by transcellular or paracellular permeability
and solubility to access the accuracy of the prediction. However, this model cannot be
applied well to predict the concentration-time profiles of PAEs in human organs in three
different ways (inhalation, oral ingestion, and dermal penetration). So as shown in Figure 1,
we divided the original model into numerous compartments: the lungs, the heart, the
brain, the muscles, the skin, the liver, the gut, the spleen, the pancreas, the bones, the
kidneys, urine, the thymus, arterial blood, venous blood, and the rest of the organs. The
blue lines represent the DEHP flow between organs, and the red ones represents the MEHP
towards the organs. Among the organs, urine, which represents the excretion of the human
body, was regarded as a compartment with a volume of 1 milligram. Additionally, the
compartment representing the rest of organs only presented the metabolism and delivery
of MEHP as the hydrolysis product of DEHP. DEHP entered the body through the gut, the
lungs, and the skin, representing the three pathways of ingestion intake, inhalation, and
dermal penetration, respectively.
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Figure 1. The framework of the PBPK model.

The reactions between the species in the PBPK model were referred to in Sharma’s mod-
eling approach’s modeling approach [27], which mainly discussed 5 metabolites: MEHP,
mono (2-ethyl-5-hydroxyhexyl) phthalate (5-OH MEHP), mono (2-ethyl-5-oxohexyl) phtha-
late (5oxo-MEHP), mono (2-ethyl-5-carboxypentyl) phthalate (5cx MEPP), and phthalic acid
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esters. It was only kinetic in the intestines and the liver [25], and only MEHP was concerned
with simplification. The main governing equations are shown in Supplementary File S1.

2.2. Model Parameter

As shown in Table 1, the parameters of the chemical and physical properties of DEHP
and MEHP in the reactions in the PBPK model were referred to in Sharma’s modeling
approach [27]. The basic human body parameters such as organ capacity in Table 2 refer to
the original PBPK model [30]. Due to the lack of a link between the parameters and MEHP
delivery, as well as the metabolism in the original model built by Peters, more related
parameters were referred to Sharma and applied in the improved model. According to
Sharma’s research, the model parameters are distributed log normally in the range of ±1
to ±1.5 standard deviations. By estimating uncertainty, the value was picked by selecting
a random value first and ran by the Monte Carlo simulations. After 20,000 iterations, the
collected output values formed a random sample. However, in this model, the parameters
simplify chose the mean value.

Table 1. The PBPK model parameter.

Parameters Symbol Unit Values/
Contribution Reference

Molecular weight (DEHP) MW g/mole 391 -
Molecular weight (D4-MEHP) MW g/mole 281 [28]
Molecular weight (MEHP-OH) MW g/mole 297 [28]

Molecular weight (D4-5-oxo MEHP) MW g/mole 295 [28]
Molecular weight (D4-5-cx MEPP) MW g/mole 311 [28]
Octanol: water partition coefficient LogKo:w N 7.6 -

Partition coefficients

Gut/plasma k_gut_plasma N LN a (12.86,1.1) -
Liver/plasma k_liver_plasma N LN a (10.16,1.1) -
Fat/plasma k_fat_plasma N LN a (188, 1.1) -

Rest of the body/plasma k_restbody_plasma N LN a (6.24, 1.1) -
Liver/plasma k_liver_plasmaM1 N LN a (1.7, 1.1) [32]
Fat/plasma k_fat_plasmaM1 N LN a (0.12, 1.1) [32]

Rest of the body/plasma k_restbody_plasmaM1 N LN a (0.38, 1.1) [33]
Uptake rate of 5-OHMEHP to blood KtM2 1/h LN a (0.07, 1.5) [34]

Uptake rate of 5-oxo MEHP to blood KtM4 cytosol maximum
reaction value 1/h LN a (0.08, 1.5) [34]

Absorption and elimination parameters

Unbound fraction in plasma for
MEHP fup N 0.007 [35]

Oral absorption rate kgut 1/h LN a (7, 1.5) [35]
Elimination constant kurine 1/h LN a (0.35, 1.1) [27]

Metabolic parameters for DEHP and its metabolites in the intestines and the liver

DEHP to MEHP in intestinal MSP b

maximum reaction value
vmaxgutM1 µg/min/mg MSP b LN a (0.11,1.1) c [36]

DEHP to MEHP in gut cytosol MSP b

maximum reaction value
vmaxgut_cytM1 µg/min/mg LN a (0.312,1.1) c [36]

MEHP to 5-OH MEHP maximum
reaction value vmaxgutM2 µg/min/mg MSP b LN a (0.0012,1.1) c [36]

MEHP to 5-carboxy MEPP maximum
reaction value vmaxgutM3 µg/min/mg MSP b 0 [36]

MEHP-OH to 5-oxo MEHP maximum
reaction value vmaxgutM4 µg/min/mg MSP b LN a (0.0012,1.5) c [36]

MEHP to phthalic acid esters
maximum reaction value vmaxgutM5 mg/min/mg MSP b LN a (0.285, 1.1) c [36]
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Table 1. Cont.

Parameters Symbol Unit Values/
Contribution Reference

Metabolic parameters for DEHP and its metabolites in the intestines and the liver

Conc. at half maximum value kmgutM1 µg/L 6956 [36]
Conc. at half maximum value kmgutM2 µg/L 22508 [36]
Conc. at half maximum value kmgutM3 µg/L 0 [36]
Conc. at half maximum value kmgutM4 µg/L 219076 [36]
Conc. at half maximum value kmgutM5 µg/L 187652 [36]
Conc. at half maximum value kmgut_cytM1 µg/L 7038 [36]
DEHP to MEHP in liver MSP

maximum reaction value vmaxliverM1 µg/min/mg MSP b LN a (0.112, 1.1) c [36]

DEHP to MEHP in liver cytosol
maximum reaction value vmaxliverM1_cyt µg/min/mg LN a (0.036, 1.1) c [36]

MEHP to 5-OH MEHP maximum
reaction value vmaxliverM2 µg/min/mg MSP b LN a (0.172, 1.1) c [36]

MEHP to 5-carboxy MEPP maximum
reaction value vmaxlivM3 µg/min/mg MSP b LN a (0.0023, 1.5) c [36]

MEHP-OH to 5-oxo MEHP maximum
reaction value vmaxlivM4 µg/min/mg MSP b LN a (0.003, 1.1) c [36]

MEHP to phthalic acid esters
maximum reaction value vmaxlivM5 µg/min/mg MSP b LN a (0.088, 1.1) c [36]

Conc. at half maximum value kmliver_cytM1 µg/L 2228.7 [36]
Conc. at half maximum value kmliverM2 µg/L 7980.4 [36]
Conc. at half maximum value kmliverM3 µg/L 1124 [36]
Conc. at half maximum value kmliverM4 µg/L 23117.7 [36]
Conc. at half maximum value kmliverM5 µg/L 141315 [36]

a LN represents that the model parameters are distributed log normally in the range of ±1 to ±1.5 standard
deviations. b MSP represents the macrophage stimulating protein. c The parameter value needs to be scaled to the
whole body weight prior to the model.

Table 2. The organs’ capacity [30].

Compartment Unit Value

Arterial Blood milliliter 1698
Bone milliliter 4579
Brain milliliter 1450
Gut milliliter 1650

Heart milliliter 310
Kidney milliliter 280
Liver milliliter 1690
Lungs milliliter 1172
Muscle milliliter 35,000

Pancreas milliliter 77
Rest other organs milliliter 49,579

Skin milliliter 7800
Spleen milliliter 192

Thymus milliliter 29
Urine milliliter 1

Venous Blood milliliter 3396

2.3. Dose in PBPK Model

In this paper, DEHP was chosen as the target compound due to its ubiquitous exis-
tence in indoor environments. Three different dosing scenarios, as shown in Figure 2, were
adopted to represent the process of DEHP entering the human body through inhalation,
oral ingestion, and dermal penetration. For dermal penetration, pertinent studies showed
that for those small-molecular-weight PAEs, dermal penetration contributes to a domi-
nant intake compared to inhalation [37,38]. Additionally, a later study also proved that,
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compared to inhalation, skin exposure has a greater impact on the human body through a
more detailed model and experimental studies [19,39]. For inhalation, due to the filtration
of nasal mucosa, some of the chemical compounds can be effectively blocked. For oral
ingestion, the model assumed that the intake amount of DEHP is correlated to the intake
amount of food.

Int. J. Environ. Res. Public Health 2022, 19, x  7 of 17 
 

 

intake of a person, the ratio for breakfast, lunch, and supper is 0.5:0.8:0.65 with regard to 
the different amounts of food. Other oral ingestion was neglected for the purposes of 
simplification. 

 
Figure 2. The amount of the three-dose set in the PBPK model. 

3. Results and Discussion 
3.1. Validation of PBPK Model 

The validation of the new PBPK model was tested by the experimental data of 
metabolites of DEHP in the human urine and serum after single oral doses of deuterium-
labelled DEHP [36]. According to Koch, the single dose was 48.1 mg (0.65 mg/kg body-
weight, a male volunteer weighting 75 kg). We set the oral dose of the same amount in the 
PBPK model, and the time profile of the absolute accumulative excretion of MEHP in 
urine was shown in Figure 3. According to the figure, the MEHP accumulation (mg) in 
the urine of the simulation and of the experiment ascended with a similar trend and 
gradually reached an equilibrium at the amounts of 3.000 mg and 2.475 mg, respectively. 
Figure 4 shows that the trend and the peak of the MEHP concentration in the plasma 
between the simulation of the model and of the reference coincided, which suggests that 
the result validated the rationality of the model. According to figures, the MEHP amount 
of the excretion, as well as the concentration in plasma of the simulation, were 
comparatively higher than those of the experiment. This may indicate that the simulated 
human body in the model has greater metabolic capacity than the volunteer in Koch 
experiment. Another potential reason for the bias is the uncertainty of the estimated 
parameters in the model. This needs to be studied further in the future to estimate the 
parameters more accurately. 

Figure 2. The amount of the three-dose set in the PBPK model.

Based on the studies above and a field investigation of health exposure to DEHP, we
set a new dosing amount of three kinds of intake.

According to the estimated data from studies [40,41], dermal penetration and in-
halation were both set as continuous doses with amounts of 0.68 mg/h and 0.53 mg/h,
respectively, because the human body was assumed to be exposed to an indoor contam-
inated environment all day. According to the research [42], the mean dietary intake of
DEHP in the general population was 2.34 µg/kg/day, and 97.5% of the intake in the general
population was 5.22 µg/kg/day. Therefore, the total intake amount of oral ingestion was
set as 1.95 mg (3.25 µg/kg/day, 60 kg). The oral ingestion was assumed as 3 times with
dinners at 8:00 am, 12:00 pm, and 18:00 pm, respectively, in one day (the duration of one
intake lasts for 30 min). Meanwhile, based on the average amount of food intake of a
person, the ratio for breakfast, lunch, and supper is 0.5:0.8:0.65 with regard to the different
amounts of food. Other oral ingestion was neglected for the purposes of simplification.

3. Results and Discussion
3.1. Validation of PBPK Model

The validation of the new PBPK model was tested by the experimental data of metabo-
lites of DEHP in the human urine and serum after single oral doses of deuterium-labelled
DEHP [36]. According to Koch, the single dose was 48.1 mg (0.65 mg/kg body-weight, a
male volunteer weighting 75 kg). We set the oral dose of the same amount in the PBPK
model, and the time profile of the absolute accumulative excretion of MEHP in urine was
shown in Figure 3. According to the figure, the MEHP accumulation (mg) in the urine of
the simulation and of the experiment ascended with a similar trend and gradually reached
an equilibrium at the amounts of 3.000 mg and 2.475 mg, respectively. Figure 4 shows that
the trend and the peak of the MEHP concentration in the plasma between the simulation
of the model and of the reference coincided, which suggests that the result validated the
rationality of the model. According to figures, the MEHP amount of the excretion, as well
as the concentration in plasma of the simulation, were comparatively higher than those of
the experiment. This may indicate that the simulated human body in the model has greater
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metabolic capacity than the volunteer in Koch experiment. Another potential reason for the
bias is the uncertainty of the estimated parameters in the model. This needs to be studied
further in the future to estimate the parameters more accurately.
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3.2. DEHP and MEHP Concentration in Different Organs and Tissues through Three Sifferent
Intake Pathways

According to Figure 5, a 24-h dose could not be metabolized and excreted adequately
until 48 h. This finding suggests that the leftover of DEHP the day before would affect the
DEHP accumulative concentration the next day, which, on the other hand, could be out of
consideration at the third day. Shown in Table 3, the error between 24 h and 48 h was in the
range of 1.7924% to 2.004%, which cannot be ignored, while the difference between 48 h
and 72 h was 0.0979% to 0.0674%, and the following error was getting smaller gradually.
Regarding the human intakes of different kinds of PAEs in their daily lives, to study the
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actual effect of accumulative DEHP and MEHP in the human body, simulation is needed
for at least 48 h.
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Table 3. The difference between each day.

δ (24 h–48h)
(%)

δ (48 h–72 h)
(%)

δ (72 h–96 h)
(%)

δ (96 h–120 h)
(%)

Oral ingestion 2.0044 0.0674 0.0023 0.0001
Inhalation 2.0869 0.0700 0.0024 0.0001

Dermal penetration 1.7294 0.0979 0.0032 0.0002

3.2.1. Oral Ingestion

Figure 6 shows that DEHP quickly accumulated in the organs after entering the human
body through scheduled oral doses (0.5 mg at 8 h, 0.8 mg at 12 h, 0.65 mg at 18 h, 0.5 mg
at 32 h, 0.8 mg at 36 h, and 0.65 mg at 42 h). Among the organs, the DEHP concentration
accumulated most in the liver and reached a maximum value (2.608 × 10−3 µg/mL at 33 h,
4.180 × 10−3 µg/mL at 37 h, and 3.404 × 10−3 µg/mL at 43 h) within an hour after the
intakes (at this time, each organ rapidly reached the cumulative peak). The highest DEHP
concentration in the lungs, the spleen, and the pancreas (ranging from 9.221 × 10−4 µg/mL
to 9.677 × 10−4 µg/mL at 33h, 1.512 × 10−3 µg/mL to 1.584 × 10−3 µg/mL at 37 h, and
1.275 × 10−3 µg/mL to 1.333 × 10−3 µg/mL at 43 h, respectively) was basically a half lower
than the DEHP concentration in the liver, indicating that the intake of oral ingestion has
the greatest adverse effect on liver. After reaching the peak, the DEHP in various organs
quickly metabolized. As shown in the figure, the concentration of DEHP dramatically
reduced in a short period of time. As the scheduled oral doses are constantly absorbed, the
fewest cumulative concentration of DEHP in human body still remained in the range of
10−5 µg/mL to 10−6 µg/mL.

Figure 7 indicates the change of MEHP concentration in the organs though oral
ingestion. Compared to the organs of the DEHP concentration simulation, the spleen
and pancreas combined to form a whole endocrine system. As the hydrolysis product of
DEHP, MEHP is gradually generated during the hydrolysis and metabolites at the same
time, causing a trend of a constant increase in the first hour and then a reduction at a
steady rate. According to Figure 7 compared to the time course of DEHP concentration,
the curves of MEHP concentration in different organs showed the same order of the
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accumulative amount. The greatest distribution of the MEHP concentration was still in the
liver (2.862 × 10−3 µg/mL at 33 h, 4.669 × 10−3 µg/mL at 37 h, and 3.759 × 10−3 µg/mL
at 43 h, respectively), which was nearly two times as many as the accumulation zenith in
the lungs and the endocrine system.
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3.2.2. Dermal Penetration

In the model, the dose through dermal penetration was continuously supplied. As
a result, the DEHP concentration through skin rises gradually at first and then reaches
equilibrium at a later stage. As the penetration through skin was a continuous dose, the
accumulative concentration of DEHP through dermal penetration was, on average, an
order of magnitude higher than the oral ingestion.

Figure 8 shows that the DEHP concentration among organs though dermal penetration
increased at a steady rate until it reached a peak within 30 h and then reached an equilibrium
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concentration. The greatest equilibrium accumulation through dermal penetration was in
the spleen and the pancreas (4.131 × 10−2 µg/mL). However, the DEHP concentration in
the liver was the lowest among the organs (7.316 × 10−3 µg/mL), indicating that the dose
through the skin may have had less of an impact on liver. What is more, the equilibrium
concentration of the lungs (4.004 × 10−2 µg/mL) was slightly lower than that in the spleen
and the pancreas.

Int. J. Environ. Res. Public Health 2022, 19, x  11 of 17 
 

 

In the model, the dose through dermal penetration was continuously supplied. As a 
result, the DEHP concentration through skin rises gradually at first and then reaches 
equilibrium at a later stage. As the penetration through skin was a continuous dose, the 
accumulative concentration of DEHP through dermal penetration was, on average, an 
order of magnitude higher than the oral ingestion. 

Figure 8 shows that the DEHP concentration among organs though dermal 
penetration increased at a steady rate until it reached a peak within 30 h and then reached 
an equilibrium concentration. The greatest equilibrium accumulation through dermal 
penetration was in the spleen and the pancreas (4.131 × 10−2 μg/mL). However, the DEHP 
concentration in the liver was the lowest among the organs (7.316 × 10−3 μg/mL), indicating 
that the dose through the skin may have had less of an impact on liver. What is more, the 
equilibrium concentration of the lungs (4.004 × 10−2 μg/mL) was slightly lower than that 
in the spleen and the pancreas. 

 
Figure 8. The DEHP concentration in the organs, through dermal penetration. 

Figure 9 shows the time-concentration profile of MEHP in various organs through 
dermal penetration. Compared to the curves of DEHP concentration in different organs, 
the time profile of MEHP showed a different order of the accumulative number of organs. 
The MEHP concentration in the liver (6.798 × 10−3 μg/mL) was markedly higher than the 
concentration in the endocrine system (4.383 × 10−3 μg/mL) and the lungs (4.248 × 10−3 
μg/mL). This phenomenon can be explained by the fact that the DEHP in the liver was 
mostly metabolized and decomposed to MEHP and its other hydrolysates. In the MEHP 
simulation, the concentration of liver was still the greatest; however, the accumulation in 
the lungs and the endocrine system cannot be ignored. This simulation further proves that 
phthalates exposure has great potential adverse detrimental health outcomes on the liver. 

Figure 8. The DEHP concentration in the organs, through dermal penetration.

Figure 9 shows the time-concentration profile of MEHP in various organs through
dermal penetration. Compared to the curves of DEHP concentration in different organs,
the time profile of MEHP showed a different order of the accumulative number of or-
gans. The MEHP concentration in the liver (6.798 × 10−3 µg/mL) was markedly higher
than the concentration in the endocrine system (4.383 × 10−3 µg/mL) and the lungs
(4.248 × 10−3 µg/mL). This phenomenon can be explained by the fact that the DEHP in
the liver was mostly metabolized and decomposed to MEHP and its other hydrolysates.
In the MEHP simulation, the concentration of liver was still the greatest; however, the
accumulation in the lungs and the endocrine system cannot be ignored. This simulation
further proves that phthalates exposure has great potential adverse detrimental health
outcomes on the liver.
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3.2.3. Inhalation

As a continuous dose, the method of inhalation distributes the lower intake amount
of DEHP than the dermal penetration. The trend of DEHP concentration was similar to
the dermal penetration but reached an equilibrium more rapidly, suggesting that DEHP in
the lungs might transfer and decompose faster. According to the Figure 10 the descending
order of the equilibrium peak of DEHP was the spleen and pancreas (3.221 × 10−2 µg/mL),
the lungs (3.122 × 10−3 µg/mL), and the liver (5.703 × 10−3 µg/mL).
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According to Figure 11 the MEHP concentration through inhalation shared a similar ris-
ing trend but a disparity in the order of the equilibrium amount in the organs. Among the or-
gans, the liver still had the highest MEHP equilibrium concentration (5.299 × 10−3 µg/mL).
However, the difference between the lungs (3,311 × 10−3 µg/mL) and the endocrine system
(3.416 × 10−3 µg/mL) was small. As the liver and the gut are the only organs that can
metabolize in the PBPK model, this result further proved that the DEHP in the liver was
mostly metabolized and hydrolyzed to MEHP and other small molecule compounds.
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3.3. Further Comparison and Health Care Assessment through Three Different Doses

The simulation showed that the constant and scheduled intake of phthalates cannot
be metabolized and excreted entirely. The majority of DEHP can be metabolized in the
first 48 h after intake. Few compounds (DEHP and its metabolites) remain in the body,
and those parts of the compounds will eventually lead to potential detrimental health
outcomes. This simulation result can be proved by Anderson et al., who suggest that the
metabolites of DEHP excreted 47.1 ± 8.5% on a molar basis within 48 h [33]. Through the
simulation, the intake of dermal penetration, as a repeated dose with a greater amount,
distributes the greatest accumulation in most of the organs, while the oral ingestion,
ignoring the breathing behavior via mouth, only intakes DEHP through dinners and
therefore accumulates medially an order of magnitude lower than other two doses.

Studies have proved that DEHP and its hydrolysis product, MEHP, can do damage to
human organs. According to Figures 12 and 13, among all the selected organs, the lung,
the pancreas, and the spleen accumulate more DEHP, while the liver accumulates smaller
molecule compounds, MEHP. This result shows the metabolic function of the liver and
further suggests the non-negligible accumulation of PAEs in different organs. The link with
actual pathological studies, and phthalates accumulation in the liver, might have an impact
on the pathways of some essential receptors in the liver that control not only xenobiotic
detoxification but also energy homeostasis and the circadian clock [43]. The excessive
accumulation of DEHP in liver might inhibit liver detoxifying enzymes and result in liver
dysfunction [44].
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What is more, DEHP might cause significant decreases in cell viability and impaired
antioxidant systems [45], which might cause endocrine system disorders. Research also
showed that particularly low molecular weight phthalates were associated with poorer
lung function [46]. After all, the simulation suggests that the DEHP might have toxicity
to human lung epithelial A549 cells and eventually cause DNA damage, oxidative stress,
apoptosis, and estrogenic effects [47].

4. Conclusions

From the results, the proposed whole-body PBPK model is able to predict the internal
exposure of DEHP and its metabolites through three pathways into the body: inhalation,
oral ingestion, and dermal penetration. Through the simulation, among three doses,
the intake of dermal penetration distributes the greatest accumulation in most of the
organs, indicating that the intake through the skin may be the main intake method of daily
exposure. The intake of dermal penetration and inhalation, as a continuous dose, leads to
the equilibrium concentration of DEHP and MEHP in different organs and tissues (ranging
from 10−2 to 10−3 µg/mL). While oral ingestion, distributing the lowest accumulation
through the three kinds of intake pathways, retains much less concentration at the end
of every day (ranging from 10−5 to 10−6 µg/mL). Additionally, the simulation result
demonstrates that the endocrine system and the lung accumulate more DEHP, but the
liver, as the main metabolizing organ, accumulate more small molecule compounds, MEHP.
Certainly, the model still has potential. The simulation result that the DEHP concentration
in the lungs through inhalation was less than the dermal penetration still needs to be
discussed. We suggest that the amount of DEHP will decrease through transportation due
to the adhesion or other mechanisms. However, the model assumes arterial blood and
venous blood as a single compartment, respectively. This flaw lacks detailed reactions to
account for the inevitable loss while the drug is flowing through vessels. What is more, as
the physical and chemical properties of the chemical compounds can be adjusted, the PBPK
model was believed to be compatible with other kinds of doses. To encourage reactions of
various molecule compounds, the model can also be simulated with a greater framework
of detailed profiles in the human body. This PBPK model can be beneficial if linked with
pathology and environmental science.
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