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ABSTRACT
Chronic stress is commonly associated with enhanced abdominal pain (visceral
hypersensitivity), but the cellular mechanisms underlying how chronic stress induces
visceral hypersensitivity are poorly understood. In this study, we examined changes
in gene expression in colon epithelial cells from a rat model using RNA-sequencing
to examine stress-induced changes to the transcriptome. Following chronic stress,
the most significantly up-regulated genes included Atg16l1, Coq10b, Dcaf13, Nat2,
Ptbp2,Rras2, Spink4 and down-regulated genes includingAbat,Cited2,Cnnm2, Dab2ip,
Plekhm1, Scd2, and Tab2. The primary altered biological processes revealed by network
enrichment analysis were inflammation/immune response, tissue morphogenesis and
development, and nucleosome/chromatin assembly. The most significantly down-
regulated process was the digestive system development/function, whereas themost sig-
nificantly up-regulated processes were inflammatory response, organismal injury, and
chromatin remodeling mediated by H3K9 methylation. Furthermore, a subpopulation
of stressed rats demonstrated very significantly altered gene expression and transcript
isoforms, enriched for the differential expression of genes involved in the inflammatory
response, including upregulation of cytokine and chemokine receptor gene expression
coupled with downregulation of epithelial adherens and tight junction mRNAs. In
summary, these findings support that chronic stress is associated with increased
levels of cytokines and chemokines, their downstream signaling pathways coupled
to dysregulation of intestinal cell development and function. Epigenetic regulation of
chromatin remodeling likely plays a prominent role in this process. Results also suggest
that super enhancers play a primary role in chronic stress-associated intestinal barrier
dysfunction.

Subjects Biochemistry, Bioinformatics, Cell Biology, Genomics, Molecular Biology
Keywords Chronic stress, Visceral hyperalgesia, Colon epithelial cells, RNA-sequencing, Tight
junctions, Cytokines, Epigenetic regulation, Chromatin remodeling

INTRODUCTION
Intestinal barrier dysfunction has been implicated in several common clinical disorders
including mood disorders, obesity and non-alcohol fatty-liver disease (NAFLD), diabetes
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mellitus, and enhanced abdominal pain (visceral hypersensitivity) associated with irritable
bowel syndrome (IBS). IBS is a common functional gastrointestinal disorder affecting
5–10% of the general population worldwide. Despite its relatively high prevalence, the
cellular pathophysiology of visceral hypersensitivity is poorly understood but most likely
multifactorial and involves both central and peripheralmechansims (Chey, Shah & DuPont,
2020; Mearin et al., 2016; Chang et al., 2018; Johnson et al., 2020). Recent evidence support
that chronic psychosocial stress likely plays a significant role in bowel dysmotility and
visceral hypersensitivity (Faresjö et al., 2007;Nicholl et al., 2008), which is influenced by the
type of stressor, its intensity and duration (Imbe, Iwai-Liao & Senba, 2006).

The central (CNS) and peripheral pathways through which chronic stress influences
gastrointestinal disorders have not been fully resolved, but intestinal epithelial barrier
dysfunction associated with increased paracellular passage of macromolecular species has
been proposed to be a mechanistic link. Intestinal barrier dysfunction has been observed
in a subset of patients with IBS and other functional gastrointestinal disorders (Martinez et
al., 2013; Vanheel et al., 2014; Stewart, Pratt-Phillips & Gonzalez, 2017). Emerging evidence
support that enhanced intestinal epithelial cell paracellular permeability correlates with
the severity of visceral pain in animal models following psychological stress (Creekmore et
al., 2018; Dunlop et al., 2006; Phua et al., 2015). Changes in permeability in gastrointestinal
disorders have been linked to decreased expression of adherens and tight junction proteins
including e-cadherin, claudin(s), zonula-occludens 1 (ZO-1), and occludin in intestinal
epithelial cells. However, the cellular and molecular pathways that regulate chronic
stress-induced down-regulation in epithelial cell junction gene expression are poorly
understood.

A variety of rodent models have been employed to assess the pathophysiology of visceral
pain and identify prospective biomarkers as potential diagnostic or therapeutic targets for
treatment of gastrointestinal disorders such as IBS. While no rodent model completely
recapitulates the complex pathophysiology of IBS in the human, several animal models
exhibit visceral hypersensitivity and have been employed for mechanistically-focused
studies and to screen potential novel therapeutics (Johnson et al., 2020). The psychosocial
chronic, intermittent water avoidance stress (WAS) model is one of the most commonly
used rodent models that displays down-regulation of intestinal epithelial tight junction
proteins, increased paracellular permeability, visceral hypersensitivity and increased fecal
output, and is thought to better represent the psychological stress and anxiety that triggers
IBS symptoms in humans (Bradesi et al., 2009; Hong et al., 2009; Larauche et al., 2010;
Tran et al., 2013; Zheng et al., 2013). Little is known about the cellular and molecular
pathophysiology underlying how chronic stress induces intestinal barrier dysfunction and
visceral hypersensitivity. In this study, we employed the chronic WAS rat model to profile
the transcriptomes of intestinal epithelial cells following chronic stress and screen the
molecular/cellular pathways underlying chronic stress-induced visceral hypersensitivity.
Our findings will help elucidate the molecular and cellular characterizations of chronic
stress-associated changes in intestinal epithelial cell transcriptome which is a significant
contributing factor to the pathophysiology of visceral hypersensitivity and IBS.
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MATERIALS AND METHODS
Animals and water avoidance stress
This study was approved by the University of Michigan Committee on Use and Care
of Animals according to National Institutes of Health guidelines (IACUC protocol
PRO00005713). All experiments were carried out in accordance with the guidelines of
the Institutional Animal Care and Use Committee. Male Sprague-Dawley rats weighting
160–180 g were obtained from Charles River Laboratories (Wilmington, MA, USA).
Animals were randomly grouped and housed in the animal facility that was maintained at
22 ◦C with an automatic 12-h light/dark cycle. The animals received a standard laboratory
diet andwere adapted for 7 days in the animal facility before subject to chronic psychological
water avoidance stress (WAS) procedure (Creekmore et al., 2018; Zheng et al., 2013). In the
morning the adapted rats were placed on a glass platform in the middle of a tank filled with
water (22 ◦C) to one cm below the height of the platform and maintained for 1 h daily for
10 consecutive days. Sham control animals were put into the same tank without water for
1 h every day for 10 days. Body weight and fecal output during the 1-h WAS or sham stress
for each rat were recorded. Total RNAs were extracted for sequencing and bioinformatics
analysis as shown in the scheme (Fig. S1).

Isolation of rat colon epithelial cells
On the following day after the completion of 10-day WAS or sham stress, rats were
sacrificed by CO2 inhalation and distal colon segments (2–6 cm from anus) were removed
and perfused with ice-cold DPBS (without Ca2+ and Mg2+). The lumen side was inverted
to the outside for incubation in DPBS containing 4 mM EDTA and 0.5 mM DTT for 15
min at 4 ◦C. Colon crypts and epithelial cells were detached and collected by centrifuge
at 50× g for 2 min at 4 ◦C. After a brief wash with ice-cold DPBS, the enriched colon
epithelial cells were frozen in liquid nitrogen until analysis.

RNA extraction
Total RNA was extracted from thecolon epithelial cells using the Trizol reagent (Life
Technologies, Carlsbad, CA, USA) following manufacturer’s protocol as previously
described (Hong, Zheng & Wiley, 2015). RNA integrity and quality were assessed by
Bioanalyzer 2100 and gel electrophoresis. The RNA concentration and purity were
determined at A260 nm and A280 nm wavelengths using a NanoDrop Spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). The quality of the total RNA that was
used for cDNA library preparation met the following standards: OD260/280 = 1.8∼2.2,
OD260/230 = 2.0∼2.2, RIN ≥ 8.0.

Library preparation and Illumina HiSeq Sequencing
Preparation of cDNA library was conducted using the Illumina library construction kit
and total RNA sequencing was performed on a HiSeq 4000 sequencing platform (Illumina,
San Diego, California, USA) at the University of Michigan Advanced Genomics Core.
Briefly, ribosomal RNA was removed using Epicentre Ribo-Zero Gold Kits (Epicentre,
Madison, WI, USA) according to the manufacturer’s protocol. The libraries were assessed
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for quality using Agilent High Sensitivity DNA kit and Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). cDNA libraries were single-end sequenced with read
length of 50 bases. The library reads of greater than 30 million were generated for each
individual library.

Analysis of differentially expressed genes
Sequencing raw reads were pre-processed for quality assessment, trimming, quality filtering
and size selection using the FASTQC toolkit to generate quality plots for all read libraries.
The sequencing data were thenmapped to the Rattus norvegicus reference genome (Ensembl
Rnor_6.0 version 99) using STAR (Dobin et al., 2013) v2.7 to generate sorted BAM and
unsorted transcriptome BAM files. The quality metrics of the mapped data were collected
using the Picard tools suite (v2.22). The raw read counts obtained directly by STAR
were quantified at the gene and exon-intron-junction levels. Annotation of genes were
based on the corresponding Ensembl annotation files of Rattus Norvegicus. In the present
study the pipeline employed Sleuth (Pimentel et al., 2017), DESeq2 (Love, Huber & Anders,
2014) and edgeR (Robinson, McCarthy & Smyth, 2010) statistical methods from the R
(v3.6) Bioconductor package to call differentially expressed genes (DEGs). Based on
a negative binomial data model (Love, Huber & Anders, 2014; Anders & Huber, 2010),
statistical comparisons were made using calculation of false discovery rate (FDR) with the
commonly used threshold in differential RNA-Seq analysis of FDR <0.01. To ensure data
normalization and removal of bias based on variables such as transcript length, several
methods were used, including conditional quantile normalization and preprocessing using
a low count filter.

Analysis of differential transcript usage (DTU) and differential exon
usage
Differential transcript usage was analyzed by Relative Abundance of Transcripts
(RATs) (Froussios et al., 2019) that identifies DTU at both gene and transcript levels.
For direct comparison with differential gene expression, the transcript abundance of each
sample was quantified by Salmon (Patro et al., 2017) v1.21 from the transcriptome BAM
file generated by STAR. DTU for each sample was then identified and analyzed by RATs.

Pathway analysis of differentially expressed transcripts
Different applications were used to determine enriched biological processes including
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set
enrichment analysis (GSEA) (Subramanian et al., 2005) and Reactome (Yu & He, 2016)
pathway databases. Identification of canonical pathways, upstream regulators, and network
reconstruction was performed using a bioinformatics workflow that included Ingenuity
Pathway Analysis (IPA) (Kramer et al., 2014) as described in a previous publication (Higgins
et al., 2017).

Wiley et al. (2022), PeerJ, DOI 10.7717/peerj.13287 4/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.13287


Annotation with disease risk SNPs from genome wide association
studies (GWAS) in humans
Human analogs of both the significantly up-regulated and down-regulated genes were
evaluated for significant associations of single nucleotide polymorphisms (SNPs) in the
NHGRI-EBI GWAS database (Buniello et al., 2019).

RESULTS
Changes in gene expression in rat colon epithelial cells following
chronic psychological stress
Transcriptomic analysis was performed using RNA-seq comparing differential gene
expression in the colon epithelial cells between chronic WAS rats and sham controls.
Alignment statistics showed that the percentage of mapping to the coding region was
significantly decreased in the WAS rats. The percentage of mapping to the untranslated
region (UTR) was significantly increased. No significant differences were observed for the
percentages of mapping to the intron and intergenic regions between control and WAS
groups (Table S1).

Principal component analysis (PCA) demonstrated differences between the control
samples and the WAS samples (Fig. 1A). Results of statistical analysis visualized by
a heatmap of inter-sample correlation showed high correlations of the samples with
only minor variation among the WAS group (Fig. 1B). Analysis of differential gene
expression (DEG) showed that 1826 genes were significantly up-regulated and 890 genes
were significantly down-regulated in WAS samples compared to controls (adj. P < 0.01).
Hierarchical clustering of the top 2000 DEGs (fold change > 1.5 and adj. P < 0.01 by FDR)
showed a significant change in the WAS samples compared to the controls, including
the emergence of a distinct subpopulation of transcripts following chronic psychological
stress (Fig. 1C). As shown in Fig. 1D, the top 10 most significantly up-regulated transcripts
were Spink4, Mirlet7d, Atg16l1, Nat2, Coq10b, Dcaf13, Fancb, Rpp40, Ptbp2 and Rras2,
while the top 10 most significantly down-regulated genes were Scd2, Abat, Alpk3, Dab2ip,
Tex2, Cnnm2, Tab2, Lrig3, Plekhm1 and Cited2 in WAS rats compared to controls using
the DESeq2 method (details shown in Table S2). In contrast, the D-GEX deep learning
method yielded two additional top upregulated genes (Scarna5 and Nod2). The magnitude
of WAS-induced changes in differential expression was larger for both the upregulated and
downregulated gene sets (Table S3), and at the extremes, were consistent with amplification
of gene transcription by super-enhancers. (Wei et al., 2020) The deep learning method that
we employed did not detect microRNAMirlet7d (Table S3).

DEGs annotated with disease risk SNPs from genome wide
association studies (GWAS)
To better characterize the functional genomics of these DEGs, we examined the human
analogs of both the significantly up-regulated and down-regulated genes for significant
associations of the single nucleotide polymorphisms (SNPs) contained within their human
counterparts in the NHGRI-EBI and UK Biobank GWAS databases. Emphasis was placed
on diseases and traits in humans that have previously been characterized as resulting from
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Figure 1 Chronic stress caused significant changes in gene expression profile in rat colon epithelial
cells. (A) PCA plot showed the similarity and difference between each sample and between control and
WAS rats. (B) Heatmap of gene expression correlation between each tested sample. (C) Hierarchical clus-
ter analysis of differently expressed mRNAs. The color scale indicates log2(CPM+1) and intensity increases
from blue to red, which indicates down- and up-regulation, respectively. (D) Top 10 upregulated (red)
and down-regulated (blue) genes in chronic WAS rats compared to controls. Adjusted (adj.) P values<
1.27E-06.

Full-size DOI: 10.7717/peerj.13287/fig-1

stress-related etiology, including depression, anorexia nervosa, anxiety and related traits,
inflammatory disorders, and gastrointestinal disease (Table S4). SNPs within 8 of the 23
top up-regulated and down-regulated genes harbor gene variants that are significantly
associated in humans with Crohn’s disease, chronic inflammatory disease, inflammatory
bowel disease, ulcerative colitis, depression, anxiety and related traits, anorexia nervosa,
asthma, mouth ulcers and related traits (Table S4).
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GSEA and GO enrichment analyses of DEGs in chronically stressed
rat epithelial cells
The top 2,000 DEGs were then processed for GSEA (preranked) and GO enrichment
analyses. GSEA analysis showed significantly down-regulated molecular functions such
as histone demethylase and lipids activities in WAS rats, while antigen binding, hormone
and chemokine activities were upregulated (Fig. 2). Go enrichment using K-means
clustering (Yu & He, 2016) also revealed gene clusters related to the immune system
process (adj. P < 6.20E-24), anatomical structural morphogenesis and tissue development
(adj. P < 1.69E-22), nucleosome assembly (adj. P < 7.00E-06), and lipid metabolic process
(adj. P < 4.1E-06) (Fig. S2).

Down-regulated and up-regulated transcripts for gastrointestinal
disease states
Ingenuity Pathway AnalysisTM (Qiagen, GmBH) was used to further analyze the RNA-seq
datasets. To understand the networks involved in gastrointestinal disease following chronic
psychological stress, we examined the output of the ‘‘diseases and functions’’ module.
As shown in Fig. 3A, the down-regulated set of RNA transcripts in the WAS rat samples
comprised two networks—a network that was labeled as ‘‘digestive system development
and function’’ (P-values ranged from 1.29E-03–1.30E-09). The other smaller network of
down-regulated genes, involved in gene expression and cell movement. Both networks
were annotated with similar upstream regulators including estrogen (P = 5.80E-12), IGF1
(P = 1.47E-10) and EGF (P = 3.70E-10) as indicated by IPA.

IPA analysis further revealed two distinct functional networks with up-regulated gene
sets. The first set included 3 functionally separated but interconnected pathways including
‘‘organismal injury and abnormalities’’ (P = 1E-65), ‘‘cellular movement, immune cell
trafficking and connective tissue disorders’’ (P = 1E-52) and ‘‘tissue development’’
(P = 1E-24) (Fig. 3B). This set of up-regulated networks was significantly controlled
by RELA (6.32E-17), TNF (2.68E-16) and IL4 (1.96E-15) as indicated by IPA. The most
significant disease or disorderwas ‘‘inflammation of organ’’ withP-value 6.36E-23 (Fig. 3B).
In addition, a second distinct and separate network contained up-regulated transcripts
that appeared to be involved in chromatin remodeling, based on trimethylation of histone
3 at lysine position 9 (H3K9me3) (Fig. 3C). This second significantly upregulated pathway
is part of the human silencing complex (HUSH), which is responsible for repression of
transcription.

Chronic stress induced highly differentially expressed genes in a
subpopulation of WAS rats
We previously demonstrated that a subset of WAS rats developed visceral hypersensitivity
which correlated with increased intestinal paracellular permeability (Creekmore et al.,
2018), supporting a heterogeneous response to chronic stress in rats. Assessment using
T-distributed stochastic neighbor embedding (t-SNE), a stochastic method to visualize
large high dimensional datasets, demonstrated two subpopulations of WAS rats: WAS_I
group (including WAS6, WAS7, WAS8) and WAS_II group (including WAS5, WAS9
and WAS10) (Fig. 4A). DEG analysis showed significantly higher numbers of upregulated
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Figure 2 Pathway view of significantly altered molecular functions in GO terms analyzed by
preranked GSEAmethod in chronicWAS rats compared to controls. Red: upregulated; blue: down-
regulated. Adj. P < 0.05 by FDR.

Full-size DOI: 10.7717/peerj.13287/fig-2

and down-regulated genes in WAS_II group than WAS_I group when compared to the
control group (Fig. 4B). Furthermore, the WAS_II group showed 778 upregulated gene
transcripts and 218 down-regulated gene transcripts when compared to the WAS_I group
(FDR < 0.01). Among the DEGs, 786 overlapping up-regulated and 326 overlapping
down-regulated transcripts were detected between WAS_I and WAS_II groups when
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Figure 3 IPA analysis for biological pathway enrichment in colon epithelial cells inWAS rats. (A) The
most significant down-regulated pathway as determined by IPA. (B) The most significant up-regulated
pathway as determined by IPA. (C) Reactome pathway analysis of the second significantly upregulated
gene transcripts.

Full-size DOI: 10.7717/peerj.13287/fig-3

compared to the controls. There were 234 overlapping up-regulated and 15 overlapping
down-regulated genes among the three comparisons (Figs. 4C & 4D).

GSEA analysis revealed significant upregulated pathways related to nucleosome
assembly/organization and immune response in the WAS_I group and immune response
and chemokine signaling in the WAS_II group when compared with controls, respectively.
The pathway related to immune response was also significantly upregulated in WAS_II
group compared to WAS_I group (Table S5). Analysis of DEGs in the WAS_II subgroup
rats showed a robust increase in the expression of pro-inflammatory cytokines and
chemokines (with a stringent adjusted P < 0.001) including IL1α, IL1β, IL7R, IL18, CCL2,
CCL6, CCL11, CCL20, CCL28, CCR1, CCR5 and CXCL10. Other inflammation-related
transcripts were also significantly up-regulated such as Tnfrsf11b and Tnfsf26 (Fig. 5).
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Figure 4 Subpopulation comparison of the differentially expressed genes (DEGs) in colon epithe-
lial cells ofWAS rats compared with controls. (A) t-SNE plot showed two distinct subpopulations of
DEGs in WAS rat group. (B) Bar graph depicted the up-regulated and down-regulated DEGs in three
comparisons: WAS_I vs Ctrl, WAS_II vs Ctrl, and WAS_II vsWAS_I. FDR< 0.01. (C) Venn diagram of
up-regulated DEGs in WAS_I and WAS_II rats compared to the controls. (D) Venn diagram of down-
regulated DEGs in WAS_I and WAS_II rats compared the controls.

Full-size DOI: 10.7717/peerj.13287/fig-4

Changes in intestinal epithelial junctions following chronic
psychological stress
To analyze the potential difference in ‘‘tight junctions’’ between theWAS rat subpopulations
in response to chronic stress, the fold changes and adjusted P-values (<0.05) of DEGs were
compared regarding the down-regulation of adherens and intestinal epithelial tight junction
genes. As shown in Fig. 6, the WAS_I subgroup rats showed significant decreases in Cdh1
(e-cadherin) and Tjp3 (tight junction protein 3 or ZO-3) compared to the control group.
These two gene transcripts were further decreased and showed a much higher significance
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Figure 5 Significantly upregulated pro-inflammatory cytokine and chemokine genes in theWAS_II
subpopulation compared to controls. Adj. P values< 0.01.

Full-size DOI: 10.7717/peerj.13287/fig-5

(adjusted P < 0.0001) in the WAS_II subgroup rats compared to the controls. Moreover,
Cdh3 (p-cadherin), Cdh15 (m-cadherin), Cldn2 (claudin-2), Cldn3 (claudin-3), Cldn7
(claudin-7) and Tjap1 (tight junction associated protein 1 or tight junction protein 4) were
also significantly decreased in WAS_II subgroup rats compared to the controls. These data
indicate significant down-regulation in the expression of genes associated with epithelial
cell barrier function (paracellular permeability) in the colon in the WAS_II subpopulation
compared to the WAS_I subpopulation.

Differential transcript usage in colon epithelial cells in chronic stress
Using salmon counted transcript abundance and RATs R package, 64 events of differential
transcript usage (DTU)were identified at the transcript-level in theWAS rat group, whereas
the gene-level DTU test identified only 11 DTU genes (Fig. 7A). The following 9 genes were
identified at the both transcript-level and gene-level: Gal3st1, Ext2, Dym, Cnksr3, Dcun1d4,
Eya3, Dennd1b, Elf1, Camsap2 and Ehmt2. Subpopulation analysis revealed a significant
difference between the WAS_I and WAS_II rat groups. The WAS_I subpopulation showed
44 transcript-level DTU and 7 gene-level DTU, while the WAS_II subpopulation had 184
transcript-level DTU and 31 gene-level DTU (Fig. 7B). Examination of DTU events further
showed isoform switches were more frequent in the WAS_II subpopulation than in the
WAS_I subpopulation (Figs. 7C & 7D). In theWAS_I subpopulation, only Ehmt2 exhibited
primary and non-primary switching at the gene-level test. On the other hand, the WAS_II
subpopulation exhibited 10 primary switching DTU and 14 non-primary switching DTU
at the transcript-level test, and nine primary switching DTU and 11 non-primary switching
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Figure 6 Differential alterations of down-regulated DEGs involving ‘‘tight junctions’’ inWAS sub-
populations following chronic psychological stress compared to control rats.Data were expressed as
mean± SEM. *, adjusted P < 0.05 vs control; **, adjusted P < 0.01 vs control; ***, adjusted P < 0.001 vs
control.

Full-size DOI: 10.7717/peerj.13287/fig-6

DTU at the gene-level test. The following DTU genes exhibited both primary and non-
primary switching in the WAS_II subpopulation in both tests: Bag6, Crem,Ddr1,Dennd1b,
Ehmt2, Eri3 andGk. Ehmt2, known as a writer forH3K9methylation, produces 4 transcripts
and was found to be one of the common isoform switches in the whole group (WAS vsCtrl)
and subpopulation (WAS_I vs Ctrl and WAS_II vs Ctrl) comparisons. In normal colon
epithelial cells, Ehmt2 transcripts ENSRNOT00000081456 and ENSRNOT00000085701
were abundant. In chronic stress, the proportion of transcript ENSRNOT00000081456 was
significantly lower and exhibited isoform switch in theWAS_I andWAS_II subpopulations
(Fig. 7E) with a more apparent reduction in the WAS_II subpopulation.

Super enhancers analysis in the colon epithelial cells
Super enhancers (SE), occupied by high densities of transcription factors and mediator
complexes, are an important class of regulatory regions that appear to play critical roles
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Figure 7 Differential transcript usage (DTU) in the stressed rats. (A) Transcript and gene-level tests re-
vealed DTU events in the epithelial cells in the WAS rats. (B) Numbers of DTU transcripts and DTU genes
in the WAS, WAS_I and WAS_II rat groups. (C) Numbers of isoform switch events in the WAS, WAS_I
and WAS_II rat groups. (D) Comparison of DTU genes between the WAS_I and WAS_II rat groups. Ar-
rows indicate DTU genes with identified isoform switching compared with the control group. (E) Ehmt2
exhibited significant proportional isoform changes in the WAS_I and WAS_II subpopulations. Blue bar
indicates the significantly changed Ehmt2 isoform.

Full-size DOI: 10.7717/peerj.13287/fig-7

in cell identity and regulation of cellular states in a variety of diseases (Lee & Young, 2013;
Whyte et al., 2013). Genomic coordinates of SEs in human samples were analyzed using
RefSeq (GRCh39/hg39) (Lee et al., 2022) and GeneHancer (Fishilevich et al., 2017) human
gene annotations. Table S6 demonstrated relevant cell type-specific human SE targeting
genes corresponding to the altered genes revealed by the RNA-seq using rat colon epithelial
cells, including Bag6, Ehmt2 and Ddr1. Although these three genes are located on different
chromosomes in rats and humans, they share the same location in the genome and most
likely are controlled by the same SE. In addition, the human homologs of the observed
Ehmt2 isoform switches (ENSRNOT00000081456 and ENSRNOT00000085701) in the rat
colon epithelial cells between WAS subpopulations are also likely controlled by the same
SE.
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DISCUSSION
In this study we used RNA-seq to assess transcriptional changes within colon epithelial cells
in rats following chronic intermittent water avoidance stress (WAS). Although DESeq2
and the D-GEX deep learning method yielded slightly different results, both methods
identified the top up-regulation of Atg16l1, Coq10b, Dcaf13, Nat2, Ptbp2, Rras2, Spink4,
and down-regulation of Abat, Cited2, Cnnm2, Dab2ip, Plekhm1, Scd2, and Tab2 genes.
Comparison of GWAS databases revealed that SNPs within the top up-regulated and
down-regulated genes harbor gene variants that are significantly associated in humans
with Crohn’s disease, chronic inflammatory disease, inflammatory bowel disease (IBD),
ulcerative colitis, and depression. As a result, the most significantly altered genes revealed
by bioinformatics methods may be used as potential biomarkers for chronic stress-induced
intestinal barrier dysfunction and visceral hypersensitivity, given they are validated by
other biochemical/molecular methodologies and in different chronic stress animal models.

Functional network enrichment analyses revealed that up-regulation of inflammato-
ry/immune response was the most significantly altered biological process enriched with up-
regulated genes including IL1α, IL1β, IL7R, IL18, etc. in the chronic WAS rat model. This
is consistent with observations reported recently using the WAS model (Hattay et al., 2017;
Xu et al., 2014) and in patients with IBS (Boyer et al., 2018; Bashashati, Moradi & Sarosiek,
2017; Chadwick et al., 2002). Patients suffering from post-traumatic stress disorder also
have higher circulating levels of IL1β, IL6 and TNF-α in the peripheral blood (Von Kanel
et al., 2007; Gill, Vythilingam & Page, 2008). Furthermore, our RNA-seq study revealed
significant increases in chemokines and chemokine receptors including CCL2, CCL6,
CCL11, CCL20, CCL28, CCR1, CCR5 and CXCL10. Increased chemokines such as CCL2
and CCL20 at mucosal has recently been reported in IBS patients (Hayatbakhsh et al.,
2019; Berg et al., 2020; Camilleri et al., 2014). The cytokine and chemokine expression has
distinguished profiles between patients with IBS and IBD, suggesting that inflammatory
mechanisms of the diseases are part of different spectrums (Moraes et al., 2020) yet may
overlap in certain circumstances such as increased immune response and increased
gut permeability (Spiller & Major, 2016). Elevation in cytokines is known to correlate
with increased intestinal epithelial permeability via impaired expression and function of
cell–cell tight junctions (Kakei et al., 2014; Amoozadeh et al., 2015), particularly in human
GI disorders (Krug, Schulzke & M, 2014; Li et al., 2013). Consistently, our RNA-seq data
demonstrated significant changes in the pathways related to digestive system development
and structure morphology, including down-regulation of epithelial tight junction genes in
WAS rats, especially in the WAS_II subpopulation. The loss of these paracellular junction
proteins leads to the increase in paracellular permeability, sensitizes nerve terminals of
afferent neurons and enhances visceral pain sensation. Our recent study supports the role
of pro-inflammatory cytokines such as IL6 in down-regulation of tight junction proteins
and increase in visceral hypersensitivity (Wiley et al., 2020).

Epigenetic regulation plays a significance role in numerous key physiological and
pathophysiological processes (Denk & McMahon, 2012). Recent data supports both
central and peripheral roles for epigenetic mechanisms in chronic stress-induced
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visceral hypersensitivity (Hong, Zheng & Wiley, 2015; Reul, 2014). In the current study,
pathway analysis revealed a significantly up-regulated, histone H3K9 methylation-
mediated nucleosome and chromatin remodeling in the colon epithelial cells in WAS
animals. Methylation of H3K9, catalyzed by writers such as Ehmt1/Ehmt2, Setdb1 and
Suv39h1/Suv39h2, is usually associated with silenced gene transcription and condensed
chromatin (Hyun et al., 2017). Densely packed and transcriptionally silent heterochromatin
is broadly enriched with stable H3K9me2/3 marks, which is also present at euchromatin to
suppress active genes (Ninova, Toth & Aravin, 2019;Mozzetta et al., 2015; Saha & Muntean,
2021). In theWAS rats, Ehmt2 and Suv39h2 significantly increased and concurrently H3K9
demethylases such as Kdm3b, Kdm4a and Kdm4b decreased in the rat colon epithelial
cells. Differential alterations of these enzymes can increase the H3K9 methylation status at
epithelial tight junction gene promoters, culminating in suppression of gene transcription
and increase in paracellular permeability (Wiley et al., 2020).

Heterogeneity is an important clinical feature of IBS symptoms (Linsalata et al.,
2018). Besides the central feature of visceral hypersensitivity, animal models for IBS
also demonstrate significant variability in reproducing the symptoms of IBS (Johnson et
al., 2020; Moloney et al., 2015). Sub-group analysis of our RNA-seq data demonstrated
two distinct subpopulations with significant differences in differentially expressed genes.
Compared to WAS_I subpopulation, the WAS_II subpopulation displayed significantly
higher number of altered genes and more significant changes in inflammatory response
genes and biological pathways involving chemokine signaling. Correspondingly, the
WAS_II subpopulation had a profoundpattern of down-regulation in epithelial paracellular
junction genes, suggesting that this subpopulation of animals were more vulnerable to
chronic stress. Individual variability in paracellular permeability and visceral pain has been
reported in the WAS rat model (Creekmore et al., 2018). The underlying mechanism(s)
are unknown. Pre-exposure to early life stress such as maternal separation is likely to
play a role, via epigenetic regulation, in the differential responses to chronic stress in the
subpopulations of WAS animals (Fuentes & Christianson, 2018).

Stress-induced animalmodels for IBS have beenwidely used due to the reproducible out-
come of increased intestinal paracellular permeability and visceral hypersensitivity (Zheng
et al., 2013; Santos et al., 2000; Santos et al., 2001; Soderholm et al., 2002; Zareie et al., 2006).
Corticotropin-releasing Factor (CRF), toll-like receptor 4 (TLR4) and serotonin 5-HT7
receptor (HTR7), associated with intestinal epithelial barrier dysfunction in the WAS
model (Tache & Perdue, 2004; Arie et al., 2019; Zhu et al., 2019), were identified by our
RNA-seq study although these genes were not among the list of the most significantly
changed. This observation is consistent with clinical management of IBS patients using
medicines that act peripherally on gut function targeting guanylate cyclase-c receptors,
serotonin receptors, chloride channels, etc (Drossman et al., 2018). Moreover, our RNA-
seq data revealed novel changes in genes responding to chronic stress. For example,
Atg16l1, a part of a large protein complex that is necessary for autophagy, was significantly
increased in the WAS rats. Alterations of Atg16l1 and its variants are associated with
disease susceptibility of IBD (Murthy et al., 2014; Massey & Parkes, 2007), which links to
psychological stress (Wang et al., 2019). Changes in Atg16l1 may regulate inflammatory
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cytokine response (Sorbara et al., 2013; Pott, Kabat & Maloy, 2018) to influence down-
stream pathways such as morphology of epithelium including epithelial tight junctions.
Another instance is the significantly down-regulated Stearoyl-CoA desaturase 2 (SCD2)
gene. SCD2 catalyzes the formation of monounsaturated fatty acids from saturated fatty
acids (Wang et al., 2005; Zhang, Yang & Shi, 2005). In IBD, translocation of gut microbial
components resulting from increased paracellular permeability attenuates SCD activity
and reduces fatty acid levels in red blood cells causing shortened life span (Kumar et
al., 2020). Deletion of SCD from the intestinal epithelium promotes inflammation and
tumorigenesis (Ducheix et al., 2018). In addition, the alterations of Mirlet7d (microRNA)
and Cited2 (p300/CBP transcriptional coactivator) observed inWAS rats are likely involved
in chromatin remodeling. Down-regulation of Cited2 can reduce histone acetylation and
change chromatin accessibility (Liu, Chang & Chao, 2015). Overexpression of Mirlet7d
inhibits H3K9 demethylation enzyme Kdm3a (Xu, Song & Lu, 2021), which subsequently
may increase H3K9 methylation and lead to chromatin condensation. Mirlet7d has also
been reported to inhibit anti-inflammatory cytokines such as IL10 and IL13 (Su et al.,
2021), and therefore may play a role in the upregulation of inflammatory response in the
WAS rats. Other top changed genes are mostly associated with cell progression and relevant
signal transduction, including Dcaf13, Rras2, Abat, Alpk3, Dab2ip, Tab2 and Lrig3.

Isoform switches are implicated in many disease conditions. For example, differential
exon usage (DTU) in ATPase is linked to major depression disorder (Pantazatos et
al., 2017). Specific isoforms of trypsin and serotonin receptors are detected in tissues
from IBS patients (Rolland-Fourcade et al., 2017; Wohlfarth et al., 2017). In the WAS rats,
we observed differential transcript usage (DTU) for 9 genes including Gal3st1, Ext2
and Ehmt2. Interestingly, the more vulnerable WAS_II subpopulation demonstrated
significantly more DTU at both transcript and gene levels. Enriched functional network
analysis revealed that DTU genes observed in the WAS_II subpopulation were identified
to connect to transcriptional regulation network (Ehmt2, Klf5, Ube2a, Elk4 and Nacc1),
Serine/threonine/tyrosine protein kinase family (Mark3, Cdc42bpb, Ephb2 and Sik2) and
other signaling cascade (Tab1, Ogt, and Ankrd17). These genes are associated with cellular
protein modification, regulation of cellular metabolic process, and regulation of cell
morphogenesis as revealed by GO enrichment analysis. In post-infectious IBS patients,
the expression of Ephb2 is increased which promotes the potentiation of myenteric nerves
and enhances pain perception (Zhang et al., 2019). Currently, understanding about the
functional differences in expressed isoforms is limited to a small portion of proteins. Our
findings of differential exon usage and isoform switches in colon epithelial cells in the WAS
model may contribute to the understanding of the complex phenotypes and heterogeneity
of IBS. The discovery of biomarkers based on differential exon usage has the potential to
predict phenotypes not accurately predicted by general gene expression profiles (Sadeque
et al., 2012).

Cell type-specific super enhancers embraces the master transcription factors and are
sensitive to extrinsic stimuli in the specific type of cells they are expressed. Super enhancers
enriched for disease-associated SNPs in genome wide association studies (GWAS) may
thus serve as genome substrates for cell- and tissue-specific disorders (Whyte et al., 2013;
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Grosveld, Van Staalduinen & Stadhouders, 2021;Hnisz et al., 2013). In humans, 16 different
single nucleotide variants (SNPs) located within the Atg16l1 gene and in an intergenic
region between the Atg16l1 and Scarna5 genes have been associated with inflammatory
bowel disease, ulcerative colitis, and Crohn’s disease (Buniello et al., 2019; Liu et al., 2015;
Franke et al., 2010; Julia et al., 2013). In humans these genes are regulated by 3 shared super-
enhancers (Table S6) (Khan & Zhang, 2016). It is tempting to speculate that increases in the
expression of these genes in the rat WAS model may be due to dysregulation of this control
system, providing a model for the genesis of stress-related bowel disorders. Similarly,
the DTU genes that exhibited both primary and non-primary switching in the WAS_II
subpopulation included the Bag6, Ddr1, and Ehmt2 genes located close together along with
the long non-coding regulatory RNAs ENSRNOT0000081456 and ENSRNOT0000085701
on chromosome 20 in the rat (Haeussler et al., 2019) and their human homologs are
located together on chromosome 6 and share enhancer and super-enhancer regulation in
Homo sapiens. This suggests that defects in the cis regulation of gene expression may be
responsible, in part, for some of the differences that we observed in this study.

The limitation of this study is the modest sample sizes. However, this does not diminish
the validity of the observations which are based on rigorous bioinformatics analyses.
We expect that large samples sizes of RNA-seq analysis followed by q-PCR and protein
quantitation in future studies will help confirm and validate the observations from the
WAS animal model. The colon crypt contained multiple type of cells and heterogeneity
information cannot be obtained by regular RNA-seq study. Single cell sequencing analysis
using the sorted epithelial cells (Zhang et al., 2020; Smillie et al., 2019; Chen et al., 2021)
will also help elucidate the distinct changes in expression and function of specific types
of cells along the crypt axis in regulation of intestinal barrier function and visceral pain
perception in chronic stress.

CONCLUSIONS
In summary, our RNA-seq analysis using the colon epithelial cells from the chronic
stress rat model revealed significantly altered gene transcripts and biological pathways
relevant to inflammation/immune response, tissue morphogenesis and development,
and nucleosome/chromatin assembly in the subpopulation of stressed rats. These
findings support that chronic stress is associated with increased levels of cytokines and
chemokines, their downstream signaling pathways coupled to dysregulation of intestinal
cell development and function. Epigenetic regulation of chromatin remodeling likely plays
a prominent role in this process. As ‘‘proof of concept’’, this study has certain limitations.
For example, due to the complexity of the colon epithelial cells profiled in this study, this
RNA-seq dataset cannot be used to classify the differential transcript changes in the specific
cell types in the colon crypt that include stem cells, proliferating cells and differentiated
cells along the crypt axis. Single-cell RNA-seq and single-nuclei RNA-seq will be the
complementary tool to decode the heterogeneity in this complex tissue by generating
transcriptomic profiles of the individual cell in future studies.
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Abbreviations

ChIP Chromatin Immunoprecipitation
DEG differentially expressed genes
DTU differential transcript usage
IBS Irritable Bowel Syndrome
IPA Ingenuity Pathway Analysis
SE super enhancer
WAS water avoidance stress
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