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Over the ages, fungi have associated with different parts of the human body and
established symbiotic associations with their host. They are mostly commensal unless
there are certain not so well-defined factors that trigger the conversion to a pathogenic
state. Some of the factors that induce such transition can be dependent on the fungal
species, environment, immunological status of the individual, and most importantly host
genetics. In this review, we discuss the different aspects of how host genetics play
a role in fungal infection since mutations in several genes make hosts susceptible to
such infections. We evaluate how mutations modulate the key recognition between
the pathogen associated molecular patterns (PAMP) and the host pattern recognition
receptor (PRR) molecules. We discuss the polymorphisms in the genes of the immune
system, the way it contributes toward some common fungal infections, and highlight
how the immunological status of the host determines fungal recognition and cross-
reactivity of some fungal antigens against human proteins that mimic them. We highlight
the importance of single nucleotide polymorphisms (SNPs) that are associated with
several of the receptor coding genes and discuss how it affects the signaling cascade
post-infection, immune evasion, and autoimmune disorders. As part of personalized
medicine, we need the application of next-generation techniques as a feasible option
to incorporate an individual’s susceptibility toward invasive fungal infections based on
predisposing factors. Finally, we discuss the importance of studying genomic ancestry
and reveal how genetic differences between the human race are linked to variation in
fungal disease susceptibility.

Keywords: genetic predisposition, disease susceptibility, invasive, fungal infection, host genetics, genetic
polymorphism, SNP, human ancestry

INTRODUCTION

Fungi are eukaryotic organisms that have a tremendous impact on human health. About 5.1 million
fungal species are present on the earth (Hawksworth and Rossman, 1997; Blackwell, 2011). They
reproduce asexually by sporulation, budding, and fragmentation. Sexual reproduction involves
three phases like plasmogamy, karyogamy, and meiosis. In fungi, hyphae are the main mode of
vegetative growth and are collectively called the mycelium. They are usually heterotrophic in nature
(Carris et al., 2012) and few are commensal, with the human body acting as a host (Ibrahim
and Voelz, 2017). Most of the fungi are adapted to the land environments, and during early
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episodes of terrestrialization, they had interacted with other
organisms having typical parasitic lifestyles (Naranjo-Ortiz and
Gabaldón, 2019). Under certain not so well-defined conditions,
fungi transform from the non-pathogenic budding yeast to
its pathogenic hyphal form, which invades the host tissue
(de Pauw, 2011; Underhill and Pearlman, 2015; Kruger et al.,
2019; Rai et al., 2021). The fungal species can grow anywhere
including plants, animals, and humans. Some enters into our
body by inhalation (e.g., Aspergillus) and some are commensal
(e.g., Candida, Malassezia) (Underhill and Pearlman, 2015).
Commensal like Malassezia is more abundant in sebaceous sites
of the host. Since they are lipid dependent, they obtain food
sources from the host without harming them and colonization
starts immediately after birth, when neonatal sebaceous glands
are active (Vijaya Chandra et al., 2021). Studies of the microbiome
have emerged to be an important area of research, and more
importantly, the spotlight is now to understand less studied fungi
that have a tremendous influence on the human microbiome
especially among immunocompromised individuals. A dysbiotic
microbial population is a general characteristic of any fungal
infection affecting the mammalian system (Iliev and Leonardi,
2017). Recent reports point toward the role of fungus in
pancreatic ductal adenocarcinoma (PDA), a form of human
pancreatic cancer caused directly by the presence of budding
yeast Malassezia, which colonizes the human gut (Aykut et al.,
2019). The severity of fungal infection depends on factors
such as inoculum load, magnitude of tissue destruction, ability
of the fungus to multiply in the tissue, ability to migrate
to nearby organs, microenvironment, and immunogenetic
status of the host. Resistance to fungi externally is based on
cutaneous and mucosal physical barriers and internally by the

Abbreviations: PRR, Pattern Recognition Receptor; PAMP, Pathogen Associated
Molecular Patterns; TLR, Toll-like Receptor; CLR, C-type Lectin Receptor;
NLR, Nod-like Receptor; RLR, Rig-like Receptor; Th cells, Helper T cells; Tc
cells, Cytotoxic T cells; Treg cells, Regulatory T cells; ILs, Interleukins; Igs,
Immunoglobulins; MBL, Mannose Binding Lectin; CARD9, Caspase Recruitment
Domain-containing protein 9; CD, Cluster of Differentiation; NET, Neutrophil
Extracellular Trap; IFI, Invasive Fungal Infection; PTX3, Pentraxin3; CX3CR1,
C-X3-C Motif Chemokine Receptor 1; Act1, Actin 1; SNPs, Single Nucleotide
Polymorphisms; CYP2C19, Cytochrome P450 2C19; ARNT2, Aryl hydrocarbon
Receptor Nuclear Translocator 2; TNFα, Tumor Necrosis Factor-alpha; IFNγ,
Interferon-gamma; MyD88, Myeloid differentiation primary response 88; STAT1,
Signal Transducer and Activator of Transcription 1; STAT3, Signal Transducer
and Activator of Transcription 3; AMP, Anti-Microbial Peptide; APC, Antigen
Processing Cell; GWAS, Genome-Wide Association Studies; VNTR, Variable
Number Tandem Repeat; Indel, Insertions Deletions; CNV, Copy Number
Variation; LOH, Loss of Heterozygosity; MPO, Myeloperoxidase; ROS, Reactive
Oxygen Species; CGD, Chronic Granulomatous Disease; CYBB, Cytochrome
B beta chain; CYBA, Cytochrome B alpha chain; MASP-2, Mannose-binding
lectin-associated serine protease-2; NADPH, Nicotinamide Adenine Dinucleotide
Phosphate; NCF, Neutrophil Cytosolic Factor; CLEC7A, C-Type Lectin Domain
Containing 7A; NOD2, Nucleotide-binding Oligomerization Domain containing
2; RAG, Recombination Activating Genes; GATA2,GATA-binding factor 2;
ZNF341, Zinc Finger Protein 341; IL-12RB1,Interleukin 12 Receptor subunit
Beta 1; AIRE, Autoimmune Regulator; RORC, RAR-related Orphan Receptor C;
DOCK8, Dedicator of Cytokinesis 8; Tyk2, Tyrosine Kinase 2; CMC, Chronic
Mucocutaneous Candidiasis; NLRP3, NOD-, LRR- and Pyrin domain-containing
protein 3; PCP, Pneumocystis pneumonia; IPA, Invasive Pulmonary Aspergillosis;
HLA-B22, Human Leukocyte Antigen–B22; Nox2, NADPH oxidase 2; PDA,
Pancreatic Ductal Adenocarcinoma; IA, Invasive Aspergillosis; HIES, Hyper–
Immunoglobulin E Syndrome; RVVC, Recurrent Vulvovaginal Candidiasis; IBD,
Inflammatory bowel disease; PIDD, Primary Immunodeficiency disease.

body’s immune molecules and the defensins (Aristizabal and
González, 2013; Coates et al., 2018; Salazar and Brown, 2018).
Immunosuppression and breakdown of anatomical barriers such
as the skin are the major factors behind fungal infections
(Kobayashi, 1996). In addition to this, malnutrition, poor
hygiene, use of antibiotics, genetic predisposition, environmental
factors, and host physiological factors (e.g., oily skin) contribute
toward disease progression (Figure 1).

Genetic variations play an important role in fungal infection
(Pana et al., 2014; Maskarinec et al., 2016; Duxbury et al., 2019;
Table 1). Recent studies have shown the importance of host
genetic variation in influencing the severity and susceptibility
to invasive fungal infections (IFIs) (Maskarinec et al., 2016).
Increased incidence of opportunistic fungal diseases has been
implicated due to gene polymorphism, and genetic errors are
frequently observed in immunodeficient phenotypes (Pana et al.,
2014). Along with genetic and environmental factors, lifestyle
also contributes toward the variation in the genome, as the
presence of toxic chemicals and immunosuppressive drugs in
an organism’s environment leads to altered immune status and
inherited deficiencies, which result in susceptibility toward fungal
infection (Kumar et al., 2018; Figure 1). At the molecular
level, epigenetic events like alteration of DNA methylation (a
key feature that controls gene expression) (Martin and Fry,
2018), modification in the histones (involved in altered gene
expression) (Dolinoy and Jirtle, 2008), and interaction between
microbes, genotypes, and environment play a key role in disease
progression (Goodrich et al., 2017). Now, challenge for biologists
is to identify genetic components that predispose individuals
to fungal infection. The study of genes will help to understand
the relationship between genetic polymorphism and the cellular
phenotype of host and pathogen (Sardinha et al., 2011). Recent
research outcomes aided by genomic sequencing point toward
an interesting link between genetic predisposition to fungal
infections and human ancestry. Single nucleotide polymorphism
(SNP) in key immune genes plays an important role in fungal
infection affecting particular ancestral populations (Hughes et al.,
2008; Dominguez-Andres and Netea, 2019). Thus, with the
availability of genetic information, we can study the mechanism
behind host defense against the pathogen, susceptibility toward
infection (Sardinha et al., 2011), and also have an idea of how
the pathogens are evolving and trying to adapt to their host
environment through host-pathogen interactions.

GENETIC PREDISPOSITION AND
HOST-PATHOGEN INTERACTION

An opportunistic fungus causes diseases mostly in
immunocompromised individuals, though normal individuals
are also affected (Low and Rotstein, 2011; Eades and Armstrong-
James, 2019). Host-pathogen communication initiates through
the interactions of the fungal ligands and receptors present
on the skin and internal organs (Richmond and Harris, 2014).
The better fit of the ligand present on the microbes (against
the receptors present on the host), the stronger the interaction
(Goyal et al., 2018; Patin et al., 2019). Fungal ligands are a
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FIGURE 1 | Host susceptibility to invasive fungal infection: predisposing factors and treatment approach. Schematic diagram represents predisposition of the host to
certain factors that make them susceptible to fungal infections. Such factors can be genetic as well as non-genetic. Apart from genetic mutations in the host ligand,
fungal receptors, and immune genes, human ancestry plays an important role in susceptibility toward invasive fungal infections. The future approaches would be
geared toward the investigation (as part of preventive medicine) of the genetic mutations that predispose individuals to fungal infections and offer personalized
medicine compared to the more traditional approach that is practiced in the form of antifungal medication.
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TABLE 1 | Genetic mutations, human ancestry, and fungal infections.

Immune response Genes Ancestry link** Fungal pathogen Diseases

Innate immunity Cell mediated DOCK8, MyD88**,
CARD9**, NCF1, TLR1,
MPO, CYBB, CYBA,
NADPH oxidase

Chinese (Han)
African

Candida Chronic mucocutaneous
candidiasis (CMC), chronic
granulomatous disease (CGD),
candidemia

PTX3, NCF1, NCF2, NCF4,
DOCK8, TLR4, NADPH
oxidase, MPO

Aspergillus Invasive aspergillosis (IA)

CARD9, DOCK8 Malassezia Pityriasis versicolor

MBL, MASP-2** Chinese Sporothrix Sporotrichosis

MBL** Chinese Pneumocystis jirovecii Pneumocystis pneumonia
(PCP)

Candida Recurrent vulvovaginal
candidiasis (RVVC)

Ferroxidase Mucorales Mucormycosis

HLA-B22** Mexican Histoplasma capsulatum Histoplasmosis

Humoral IL-17F, Act1, IL-12RB1,
IL-17R, IL-17A, IL-17RA,
IL-4, IL-12, TyK2, IL-17RC
ZNF341, IL-17, IL-22,
Y238X, CLEC7A, IL-10

Candida, Histoplasma
capsulatum

Chronic mucocutaneous
candidiasis (CMC), recurrent
vulvovaginal candidiasis
(RVVC), histoplasmosis,
hyper–immunoglobulin E
syndrome (HIES)

Dectin 1**, IL-10 Chinese (Han)
Dutch

Coccidioides immitis Coccidioidomycosis

Y238X**, IL-10**, TNFα**,
IFN-γ**, CLEC7A,
CX3CR1**, ARNT2**
Asp299Gly, Thr39lle

European (Dutch,
Caucasian)

Aspergillus Invasive pulmonary aspergillosis
(IPA)

rs2243250(IL-4) Pneumocystis jirovecii Pneumocystis pneumonia
(PCP)

IL-6 Blastomyces Blastomycosis

IL-2 Histoplasma Histoplasmosis

Adaptive immunity Cell mediated STAT1 Histoplasma Histoplasmosis

Coccidiodes Coccidioidomycosis

STAT1, STAT3, AIRE,
GATA2, RORC,
CYP2C19**, RAG1, RAG2

Chinese (Han)
Chilean

Candida Candidiasis

NOD2, STAT3, CYP2C19** Chinese (Han) Aspergillus Aspergillosis

CD40L ** CD50, CD80 Chinese mainland Pneumocystis jirovecii,
Trichophyton

Invasive fungal infection (IFI)

Humoral IgG, IgA, IgE, IgM, defect in
MHC class II molecule

Pneumocystis jirovecii
Candida, Aspergillus,
Blastomyces, Coccidioides,
Cryptococcus,
Histoplasma,
Paracoccidioides

Pneumocystis pneumonia
(PCP), candidiasis,
aspergillosis, blastomycosis,
coccidioidomycosis,
cryptococcosis,
histoplasmosis,
paracoccidioidomycosis.

The symbol ** is used for the genes having the ancestry link.

class of evolutionarily conserved structures called the pathogen
associated molecular patterns (PAMPs) and are recognized by
receptors present on the host surface called pattern recognition
receptors (PRRs). Post internalization, fungi are primarily
recognized by the innate cells (e.g., macrophages and dendritic
cells) of the immune system (Mogensen, 2009). The main
receptors that recognize the fungal-derived PAMPs are Toll-like
receptor (TLR like TLR2, TLR4, and TLR9), C-type lectin
receptor (CLR like Dectin1 and Dectin2), Nod-like receptor
(NLR), Rig-like receptor (RLR), complement receptor, and

mannose binding lectin (MBL) (Akira et al., 2006; van de
Veerdonk et al., 2008; Hatinguais et al., 2020). These receptors
are a crucial component of fungal recognition and trigger an
innate immune response.

The host immune response mainly consists of two types,
innate and adaptive immunity (Chaplin, 2010; Aristizabal and
González, 2013; Netea et al., 2019). Cell-mediated innate
immunity is through antigen-presenting cells (APC), which
recognize the fungal antigen and process and present it to the T
cells. The T cells that participate in antifungal immunity involve
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Th (helper T cells) cells, Tc cells (cytotoxic T cells), and Treg
(regulatory T cells) cells (Hamad et al., 2018). As soon as the
body’s immune cells see the foreign fungus, a chain reaction is
initiated. Phagocytosis of the fungal pathogen is mediated by
neutrophils, macrophages, and dendritic cells, and the oxidative
burst kills fungal pathogen by the activity of NADPH oxidase
(Rosales and Uribe-Querol, 2017; Warris and Ballou, 2019). The
deficiency of this enzyme disrupts the formation of reactive
oxygen species (ROS) and makes an individual more susceptible
to fungal infection (Hamad et al., 2018). The non-oxidative
killing of the fungal pathogen is enhanced by antimicrobial
peptides (AMPs) that disrupt the fungal cell wall and also
produce neutrophil extracellular traps (NETs) consisting of
calprotectin, which induces antifungal activity (Pathakumari
et al., 2020; Ulfig and Leichert, 2021). Calprotectin released
from NET is an antimicrobial heterodimer that helps in clearing
fungus like Candida, and its deficiency leads to increased fungal
burden (Urban et al., 2009). Innate immune response activates
adaptive immunity, which is enhanced by both humoral and cell-
mediated immune response, aiding in recognizing fungal antigen,
generating inflammation, activating the complement cascade,
and further leading to opsonization and neutralization of fungal
pathogen (Drummond et al., 2014).

Characterization of single gene defects that predispose
individuals to fungal infections needs urgent attention.
Monogenic causes for susceptibility of invasive fungal infections
have unmasked novel molecules and key signaling pathways
in defense against mucosal and systemic antifungal threats
(Lionakis et al., 2014; Constantine and Lionakis, 2020).
Genetic changes in some key genes play a crucial role in
host-pathogen recognition (Kumar et al., 2018; Cunha and
Carvalho, 2019; Merkhofer and Klein, 2020). Fungal β-glucan
(PAMP) activity can be masked through a change in cell wall
components and thus prevent target recognition (Plato et al.,
2015). A genetic defect in the different types of PRR families
makes the host susceptible to fungal infection (Netea et al.,
2012). Defect in the CLR Dectin1, encoded by CLEC7A (C-
type lectin domain containing 7A) predisposes humans to
invasive aspergillosis (IA), chronic mucocutaneous candidiasis
(CMC), and recurrent vulvovaginal candidiasis (RVVC) (Reid
et al., 2009; Plantinga et al., 2012; Cunha et al., 2018). The
CLEC7A intronic SNPs rs3901533 and rs7309123 are associated
with susceptibility to invasive pulmonary aspergillosis (IPA)
in patients with hematologic diseases (Taylor et al., 2007;
Sainz et al., 2012). Dectin-1 Y238X polymorphism leading to
diminished Dectin-1 receptor activity plays a role in RVVC
and IA (Plantinga et al., 2009; Cunha et al., 2010; Zahedi et al.,
2016). Dectin-1 gene variant also contributes susceptibility
to coccidioidomycosis (del Pilar Jiménez-A et al., 2008).
Another receptor MBL interacts with pathogens, helps in
triggering an immune response, and plays an important
role in innate immunity. Deficiency in MBL expression is
associated with susceptibility to RVVC (Carvalho et al.,
2010) and pneumocystis pneumonia (PCP) (Yanagisawa
et al., 2020). Polymorphism in MBL is also associated with
chronic cavitary pulmonary aspergillosis and Candida infection
(Vaid et al., 2007).

SNPs in TLR lead to genetic variation that results in
susceptibility to Candida and Aspergillus infections (Cunha
et al., 2010; Table 1). Mutation in TLR1 is associated with
candidemia (Ferwerda et al., 2009; Plantinga et al., 2009, 2012).
Genetic variation in the PRR TLR4 can also make an individual
susceptible to diseases like IPA (Cunha and Carvalho, 2019).
Polymorphism in Asp299Gly and Thr399lle present in the TLR4
impacts hyporesponsiveness to lipopolysaccharide signaling in
epithelial cells or alveolar macrophages and results in chronic
cavitary pulmonary aspergillosis (Arbour et al., 2000; Carvalho
et al., 2008). In addition, polymorphism in immune response
NOD2 (nucleotide binding oligomerization domain containing
2) gene results in IPA. Variation in another receptor type RLR
is also associated with Candida infection (Gresnigt et al., 2018;
Jaeger et al., 2019). Thus, a mutation in the gene coding for a
receptor is an important susceptibility factor for CMC and plays
a central role in host immune response (Glocker et al., 2009).

GENETIC POLYMORPHISM OF THE
IMMUNE SYSTEM LINKED TO FUNGAL
INFECTIONS

Genetic variants leading to immunological susceptibility
have long been recognized with a few immunodeficiencies
characterized by their vulnerability to IFIs (Pana et al., 2014;
Maskarinec et al., 2016; Merkhofer and Klein, 2020). Deficiency
in PTX3 (Pentraxin 3), which is involved in innate immunity,
leads to susceptibility toward IA (Garlanda et al., 2002). Recently,
downregulation of cluster of differentiation molecules CD50
and CD80 has been shown to make an individual susceptible
to Trichophyton infection (Hamad et al., 2018). Polymorphism
in the CX3CR1 gene (C-X3-C motif chemokine receptor 1,
encoding chemokine receptor) is associated with fungal infection
in the gut, and it plays an important role in antifungal activity
through activation of Th17 cells and IgG antibody response
(Kumar et al., 2018). Candida infections (ranging from mucosal
to bloodstream, including deep-seated infections) are influenced
by genetic variants in the human genomes like polymorphism in
signal transducer and activator of transcription protein-coding
genes STAT1 and STAT3 (Plantinga et al., 2012; Smeekens
et al., 2013). The important adaptor protein CARD9 (caspase
recruitment domain-containing protein 9) is involved in
signal transduction from a variety of receptors, and mutation
in this gene not only leads to mucosal infection but also is
associated with IFIs, development of autoimmune diseases,
inflammatory bowel disease (IBD), and cancer (Glocker et al.,
2009; Drummond et al., 2018). CARD9 plays an important
role in Th17 cell differentiation and helps in the release of
cytokines (Vautier et al., 2010; Speakman et al., 2020; Vornholz
and Ruland, 2020). Recently, defects in CARD9 and STAT3 have
been found to cause IFI with gastrointestinal manifestations
(Vinh, 2019) and mutation in STAT3 results in reduced Th17
cells causing candidiasis (Engelhardt and Grimbacher, 2012).
A heterozygous missense mutation in STAT1 is associated with
coccidioidomycosis and histoplasmosis (Sampaio et al., 2013).
Mutation in another transcription factor GATA2 (GATA-binding
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factor 2) makes patients vulnerable to myeloid malignancy
who have a high risk for treatment-associated IFIs involving
aspergillosis and candidiasis (Spinner et al., 2014; Donadieu et al.,
2018; Vedula et al., 2021). ZNF341 (zinc finger protein 341) is a
transcription factor that resides in the nucleus and regulates the
activity of STAT1 and STAT3 genes. ZNF341-deficient patients
lack Th17 cells and have an excess of Th2 cells and low memory B
cells. Upon Candida infection, individuals with STAT3 mutation
result in hyper–immunoglobulin E syndrome (HIES) associated
with defective Th17 cell differentiation and characterized by
elevated serum IgE (Béziat et al., 2018; Frey-Jakobs et al., 2018;
Egri et al., 2021). Patients with AIRE (autoimmune regulator)
gene mutations are also susceptible to Candida albicans infection
and present themselves with autoimmune disorders (Pedroza
et al., 2012; de Albuquerque et al., 2018). Genes encoding
immune molecules of the adaptive immune system play an
important role in controlling fungal invasion (Kawai and Akira,
2007). Immunoglobulins (Igs) IgG, IgA, IgE, and IgM as part
of the humoral adaptive immunity mediate protection through
direct actions on fungal cells, and classical mechanisms such
as phagocytosis and complement activation are affected in
case of mutations in genes coding for those Igs (Kaufman,
1985; Lionakis et al., 2014; Table 1). MHC class II defects lead to
primary immunodeficiency disease (PIDD) and make individuals
susceptible to a high rate of fungal infection like Candidiasis
and PCP (Lanternier et al., 2013; Abd Elaziz et al., 2020).
Mutation in CARD9 and DOCK8 (dedicator of cytokinesis 8)
among PIDD individuals makes them susceptible to Malassezia
infection, and deficiency in STAT3 leads to IPA (Abd Elaziz et al.,
2020). Summary of the immune-related genes responsible for
susceptibility to fungal infection is highlighted in Table 1.

Interleukins (ILs) play a crucial role during fungal
infection and help in the maturation of B cells and
antibody secretion, which helps fight fungal infections
(Antachopoulos and Roilides, 2005; Verma et al., 2015;
Sparber and LeibundGut-Landmann, 2019; Griffiths et al., 2021).
Mutations in genes encoding for members of the IL-1 family
are associated with acute and chronic inflammation and are
essential for the innate response to infection (Caffrey et al.,
2015; Griffiths et al., 2021). Genetic variation in IL-6 results
in blastomycosis (Merkhofer et al., 2019), and defect in IL-10
and IL-6 signaling affects STAT3, a key immune response
molecule. Genetic variation in IL-10 has also been found to be
the underlying cause of susceptibility toward fungal infections
like IA (Zaas, 2006). IL-10 mutation makes an individual
susceptible to Candida and Coccidiodes immitis infection (Fierer,
2006), and IL-4 polymorphism resulted in susceptibility toward
Candida infection (Babula et al., 2005; Choi et al., 2005). SNP
in rs2243250, known to influence IL-4 production, is associated
with susceptibility to PCP in HIV-positive patients (Wójtowicz
et al., 2019). In addition, deficiency of interleukin IL-17 and IL-22
production as a result of genetic mutation has been reported to be
the cause of RVVC (Sobel, 2016). IL-2 mutation too predisposes
individuals to invasive fungal infection like histoplasmosis by
affecting T cell functions (Smeekens et al., 2013; Lionakis et al.,
2014; Kumaresan et al., 2017; Pathakumari et al., 2020). The
emerging role of the IL-12 family of cytokines in the fight against

candidiasis has been reported (Ashman et al., 2011; Thompson
and Orr, 2018). IL-12RB1 (interleukin 12 receptor subunit
beta 1) impairs the development of human IL-17 producing T
cells (Huppler et al., 2012; Johnson et al., 2012; Thompson and
Orr, 2018), and mutations inherited might be responsible for
histoplasmosis (León-Lara et al., 2020). RAR-related orphan
receptor C (RORC) encoding transcription factors play an
integral role in both IL-17 and IFNγ pathways in CMC (De
Luca et al., 2007; Constantine and Lionakis, 2020). Deficiency of
tyrosine kinase 2 (Tyk2) that participates in signal transduction
for various cytokine receptors leads to impaired helper T cell type
1 (Th1) differentiation and accelerated helper T cell type 2 (Th2)
differentiation in candidiasis (Minegishi et al., 2006). Mutation
in the main inflammasome NLRP3 (NOD-, LRR-, and pyrin
domain-containing protein 3), associated with fungal infection,
leads to susceptibility toward RVVC or IPA (Kasper et al., 2018;
Wang et al., 2020; Briard et al., 2021). Also, mutations in key
recombination activating genes (RAG1 and RAG2) lead to loss
of T and B cells, making individuals susceptible to CMC and a
broad spectrum of pathogens (Schuetz et al., 2008; Delmonte
et al., 2018). Genetic polymorphism in the IL-17 family genes,
which encode for the Th17 cellular differentiation, results in an
individual’s susceptibility toward fungal infection (Hamad et al.,
2018). One of the key signaling molecule pathways, the IL-17R
signaling is dependent on Act1 (Actin1—a conserved protein that
helps in key cellular processes), and mutation in the gene coding
for Actin1 leads to defect in IL-17R signaling pathway, which
ultimately fails to provide immunity against CMC (Boisson et al.,
2013). IL-17RA binds to homo- and heterodimers of IL-17A and
IL-17F, and its deficiency or genetic mutation in any of the gene
coding for receptors IL-17RA or IL-17RC leads to CMC (Puel
et al., 2011; Sawada et al., 2021).

Mutation in DOCK8 characterized by elevated IgE level is
also known to be responsible for recurrent fungal infections
like IA and mucocutaneous candidiasis (Biggs et al., 2017;
Nahum, 2017). During Aspergillus infection, tumor necrosis
factor-alpha (TNFα) enhances the phagocytic activity and the
polymorphic site in TNF promotor predisposes individuals to
IA (Roilides et al., 1998; Sainz et al., 2007). Neutrophil cytosolic
factors (NCFs) are part of the group of proteins that form the
enzyme complex called NADPH oxidase, and mutation in any of
the key genes NCF1, NCF2, and NCF4 leads to impaired fungal
eradication (as in aspergillosis) due to non-functional NADPH
oxidase (Panday et al., 2015; Giardino et al., 2017; Dinauer, 2019;
Wu et al., 2019). Decreased myeloperoxidase (MPO) activity
(inability to produce hypochlorous acid) in neutrophils leads to
delayed killing of pathogen and makes an individual susceptible
to invasive Candida infection (Aratani et al., 1999; Merkhofer
and Klein, 2020). Myeloperoxidase mutants lead to impaired ROS
production, making the host susceptible to infection, and thus,
both MPO and NADPH oxidase mutants are unable to eradicate
fungal threats like chronic granulomatous disease (CGD) and
IA (Lehrer and Cline, 1969; Aratani et al., 2004; Segal and
Romani, 2009; Ren et al., 2012). Cytochrome b -245 is a primary
component of the microbicidal oxidase system of phagocytes
encoded by the alpha and beta chains CYBA and CYBB/Nox2
(NADPH oxidase 2), respectively (Stasia, 2016), and cytochrome
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b deficiency is also linked to CGD (Clark, 1999; Stasia et al.,
2003; Kutukculer et al., 2019). Recently, it has been reported
that mutants in the ferroxidase gene make individuals susceptible
to mucormycosis (Navarro-Mendoza et al., 2018), an infection
that has been affecting COVID-19 patients (Raut and Huy,
2021). Thus, mutations of key genes of the immune system
play an important role in fungal resistance, and interestingly,
genetic polymorphisms in these genes have revealed some links
with human ancestry.

HUMAN ANCESTRY AND GENETIC
PREDISPOSITION TO FUNGAL
INFECTIONS

There is limited research investigating the link between genetic
polymorphism in key immune genes, human ancestry, and
susceptibility toward fungal infection (Figure 1). But recent
research outcomes aided by genomic sequencing point toward
an interesting fact. Infection with the fungus Coccidioides
immitis among Filipino ancestry was found to be common
among men and non-white persons causing coccidioidomycosis
(van Burik and Magee, 2001). Studies on DNA, which
provides genetic information transferred from ancestors to
their family members and relatives, indicate that the Hmong
ancestry are more susceptible to fungal infection (Xiong et al.,
2013). In another report, genetic differentiation among the
Hmong ancestry originating from Wisconsin makes them more
susceptible to blastomycosis. The Chinese Han population
was found to suffer due to poor metabolism as a result of
the CYP2C19 gene (cytochrome P450 2C19) polymorphism
involved in the metabolism of xenobiotics. This is one of
the direct evidence to prove the role played by genetic
polymorphisms in IFIs among a particular human race.
Interestingly, polymorphism in the CYP2C19 allele (because
of the presence of variant rs12248560) has been reported to
cause aspergillosis among the Chileans (Espinoza et al., 2019).
Similarly, deficiency as a result of a mutation in the gene
coding for CD40L (binds to CD40 cells and plays role in
B cell proliferation) influences susceptibility to PCP among
people belonging to the Chinese mainland (Du et al., 2019).
It was also reported that genetic variation in CARD9 led to
increased susceptibility toward Candida infections in the African
population (Rosentul et al., 2012).

SNP plays an important role in fungal infection affecting
particular ancestral populations (Hughes et al., 2008;
Dominguez-Andres and Netea, 2019). SNPs in genes like ARNT2
(aryl hydrocarbon receptor nuclear translocator 2) and CX3CR1
are responsible for cytokine activation, and polymorphism in
these genes has been found to play an important role in the
invasiveness of aspergillosis infection among European ancestry
(Lupiañez et al., 2020). Variations in the PRR MBL and mannose-
binding lectin-associated serine protease-2 (MASP-2) proteins
were shown to be responsible for sporotrichosis in the Chinese
population. It was observed that individuals with elevated levels
of the protein are more susceptible to Sporothrix infection (Bao
et al., 2019). Another importance of SNP is associated with the

varying protein expression levels associated with autoimmune
diseases (Lionakis, 2012; Jonkers and Wijmenga, 2017). SNPs in
cytokine coding genes influence the low production of TNFα,
IFNγ, and IL-10, and it was observed that these variations
make the Caucasian population susceptible to fungal infections
(Larcombe et al., 2005). In a recent study, genetic variant
of the key immune adapter MyD88 (myeloid differentiation
factor 88) in the Chinese Han population was found to be
associated with higher fungal infection and it was shown that
the defect in Dectin1 was the primary cause (Chen et al.,
2019). Susceptibility to candidiasis and IPA as a result of a
defect in Dectin1 was observed in the Dutch family (Ferwerda
et al., 2009; Chai et al., 2011). In addition, susceptibility to
histoplasmosis as a result of the human leukocyte antigen B22
(HLA-B22) variant was reported in the Mexican population
(Taylor et al., 1997). The human race thus plays a crucial role
in fungal invasion as seen among white transplant recipients
who are more susceptible compared to black recipients due to
differences in their pharmacogenetics (Boehme et al., 2014).
All the above studies show direct links of human ancestry to
fungal diseases and indicate how genetic mutations among
the human race make them predisposed to certain fungal
infections (Table 1).

DISCUSSION

Fungi play an important role in the human microbiome
(Huseyin et al., 2017; Perez et al., 2021; Tiew et al., 2021).
In this review, we have focused on genetic predisposition to
human fungal infections and discussed the link that exists
between ancestry and susceptibility to IFIs. Among those
fungi that are commensal with the warm-blooded host, few
turn pathogenic under not so well-defined conditions (Hall
and Noverr, 2017; Jacobsen, 2019; Limon et al., 2017). Such
conversion to pathogenic forms is aided by external factors
like environment, immunological status, and most importantly
host genetics (Kobayashi, 1996; Kumar et al., 2018; Figure 1).
As we learn more about fungal biology, we also understand
genetic signatures in the host that make them prone to fungal
infections. This is explained by the term genetic predisposition,
and external players like the environment also play a role in
triggering an autoimmune, inflammatory, or allergic reaction to
fungal infections (Figure 1). Identification of fungal allergens
has become challenging because most of the allergens mimic
immune molecules (Pfavayi et al., 2020). We have seen how
mutations in key recognition molecules (Table 1) play a
trigger for several fungal infections. We looked into variations
introduced by SNPs that are present in the immune response
genes (Table 1) critical for fungal infections. The polymorphism
in the immune genes (PTX3, CX3CR1, CARD9, STAT3, and
others, Figure 1) make the host susceptible (Garlanda et al.,
2002; Kumar et al., 2018; Vinh, 2019), and defect in interleukins
(e.g., IL-4, IL-10) leads to genetic predisposition toward fungal
infection (Babula et al., 2005; Choi et al., 2005; Zaas, 2006;
Table 1). The study of these genes helps us to understand
the relationship between genetic polymorphism and the cellular
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phenotype of host, pathogen, and associated defense mechanisms
(Sardinha et al., 2011). Thus, the composition of both host
and pathogen plays important role in disease progression, and
the challenge is to identify the genetic components involved
in pathogenesis.

A few studies point toward a link between human ancestry
and genetic predisposition to fungal infections (van Burik and
Magee, 2001; Ferwerda et al., 2009; Xiong et al., 2013; Chen
et al., 2019; Du et al., 2019; Espinoza et al., 2019; Table 1).
Mutations in several components of the immune system make
certain human ancestral descendants more prone to fungal
infections. Few studies have looked into genetic associations
and human ancestry. This aspect is an important and emerging
research area in terms of population genetics (Hirschhorn et al.,
2002; Gnat et al., 2021). Mutation in key genes relating to the
immune system of the host makes certain ancestral descendants
susceptible to fungal infections as we observe in the case of certain
European, African, and Caucasian individuals (Larcombe et al.,
2005; Kwizera et al., 2019; Pfavayi et al., 2020), making them
more susceptible to emerging fungal pathogens (Figure 1). Such
fungi are a threat to global public health and can colonize the
skin, spread from person to person, and cause many high-risk
diseases (Lamoth and Kontoyiannis, 2018). To deal with such
organisms, we require better surveillance methods, rapid and
accurate diagnostics, and decolonization protocols that include
administration of antimicrobial or antiseptic agents and new
antifungal drugs (Jeffery-Smith et al., 2018; Jackson et al., 2019;
Chowdhary et al., 2020; Fisher et al., 2020; Steenwyk et al.,
2020). Genome-wide association studies (GWAS) would help us
to evaluate the difference in the DNA sequences and understand
heritability, disease risk, and susceptibility to antifungals (Bloom
et al., 2019; Guo et al., 2020; Figure 1). From genome sequencing,
genomic variations like SNPs, variable number tandem repeats
(VNTRs), and insertion/deletions (Indels) can be identified.
Structural genome variations like aneuploidy and copy number
variations (CNVs) also provide important clues to fungal

virulence (Tsai and Nelliat, 2019). During fungal microevolution,
many of these events like insertion/deletion of genes, loss of
heterozygosity (LOH), and genome plasticity help fungus to
adapt against antifungal drugs and harsh host environment
(Beekman and Ene, 2020). Thus, as part of preventive medicine,
a better understanding of host genetics behind fungal infection
will help us to study infectious diseases through modern genomic
approaches and offer personalized therapy against invasive
fungal diseases.
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