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Abstract: Hepatitis Delta virus (HDV) lies in between satellite viruses and viroids, as its unique
molecular characteristics and life cycle cannot categorize it according to the standard taxonomy
norms for viruses. Being a satellite virus of hepatitis B virus (HBV), HDV requires HBV envelope
glycoproteins for its infection cycle and its transmission. HDV pathogenesis varies and depends on
the mode of HDV and HBV infection; a simultaneous HDV and HBV infection will lead to an acute
hepatitis that will resolve spontaneously in the majority of patients, whereas an HDV super-infection
of a chronic HBV carrier will mainly result in the establishment of a chronic HDV infection that may
progress towards cirrhosis, liver decompensation, and hepatocellular carcinoma (HCC). With this
review, we aim to unravel Ariadne’s thread into the labyrinth of acute and chronic HDV infection
pathogenesis and will provide insights into the complexity of this exciting topic by detailing the
different players and mechanisms that shape the clinical outcome.

Keywords: hepatitis Delta virus; HDV; hepatitis B virus HBV; HDV pathogenesis; co-infection;
super-infection; acute HDV infection; chronic HDV infection

1. Introduction

Hepatitis Delta virus (HDV) is a defective virus and an obligate satellite of hepatitis
B virus (HBV), necessitating its helper virus envelope proteins (HBsAg) to form its viral
particles. Humans are the only natural reservoir of HDV, but other mammalian hosts have
been identified capable of supporting the HDV life cycle, including chimpanzees and tree
shrews (with the HBV as a helper virus), as well as woodchucks (with the woodchuck
hepatitis virus as helper virus) (reviewed in [1]). While its genome replication and ribonu-
cleoprotein (RNP) formation are independent of HBV, HDV egress requires HBV envelope
proteins [2,3].

Despite forty years of epidemiological studies, the global number of HDV patients
still remains elusive. The widespread implementation of HBV vaccination in high-income
countries has limited the number of HBsAg susceptible persons, and subsequently, the
number of HDV patients. In these countries, the epidemiology of HDV is dual, with an
ageing cohort of local patients with advanced liver fibrosis and a younger generation from
endemic countries that represents the incoming new infections [4]. Based on the literature
published during the decade of 1980–1990, a recent meta-analysis estimated that the global
number of HDV patients should reach 12 million in 2020 [5]. However, selection biases,
technical limitations, inadequate screenings for anti-HDV in HBsAg-positive patients that
represent the sole reliable source of HDV infection [6], and lack of HDV RNA testing to
confirm ongoing viral replication can flaw the appraisal of the prevalence and health burden
of HDV (reviewed in [4]). Contrary to HBV, HDV transmission from mother to offspring,
and among homosexuals, has been rarely reported [6]. Therefore, epidemiological data of
HDV prevalence and disease progression are not available in these groups and especially
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in babies, where the infection of HBV at birth will lead to chronic hepatitis B development.
Of note, in Europe, up to 40% of anti-HDV-positive persons do not harbour detectable
HDV replication [7].

The available antiviral therapies against chronic hepatitis D (CHD) lies on the admin-
istration of the pegylated (PEG) form of IFN-α with, however, low response rate and high
frequency of adverse effects (reviewed in [1]). The administration of an entry inhibitor
(Bulevirtide) has recently been the object of a conditional authorization by the European
Medicines Agency (but not by other regulatory authorities) for chronically HDV infected
patients with compensated liver disease [8]. The future role of combination therapies is still
elusive and requires further investigation, as the therapeutic management of HDV remains
unsatisfactory [4].

HDV pathogenesis can vary from asymptomatic cases to acute liver failure and CHD,
which is associated with a faster progression towards cirrhosis, liver decompensation, and
hepatocellular carcinoma (HCC) compared to HBV monoinfection. CHD is considered
as the most aggressive form of chronic viral hepatitis posing major clinical challenges,
especially in high endemic countries [9]. In the following chapter, we will describe the
three different modalities of HDV infection and their respective pathogenesis.

2. The Three Moirai of HDV Infection and Their Clinical Outcome: From HDV-HBV
Co- or Super-Infection to HDV Mono-Infection

Given its obligatory dependence on HBV to sustain its life cycle, HDV infection occurs
via two modalities, i.e., as a simultaneous infection or co-infection with both HBV and
HDV, or as an HDV super-infection of a chronic HBV carrier (Figure 1). The third modality
of HDV infection refers to HDV monoinfection of the hepatocytes in the absence of HBV
infection, which is non-productive but can be rescued by the helper virus at a later stage.
All the pathologic changes of HDV infection are limited to the liver, as the virus requires the
expression of the sodium taurocholate co-transporting polypeptide (NTCP) entry receptor,
which is located at the basolateral membrane of differentiated hepatocytes [10].
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Figure 1. HDV-HBV co-infection or HDV super-infection of a chronically infected HBV patient can progress towards viral
clearance or chronic infection. Solid arrows demonstrate the major clinical outcome upon co-or super-infection. Created
with Servier Medical ART (SMART).

2.1. HDV-HBV Co-Infection

Co-infection of HDV and HBV leads to acute hepatitis, whose symptoms are indis-
tinguishable from a typical acute hepatitis B and can range from mild to severe and even
acute liver failure, which is characterized by a massive hepatocyte necrosis. A study from
Yurdaydin and colleagues demonstrated that 17% of the HBV-HDV co-infected patients
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developed severe hepatitis [11]. A minority of co-infected patients may progress even to
acute liver failure [11,12]. Without liver transplantation, the mortality of these patients
may reach 80% [13]. However, when patients with acute liver failure associated with HBV
monoinfection are age-matched to patients with HBV/HDV co-infection, the difference in
mortality cannot be observed anymore [14].

Acute hepatitis occurs after an incubation period of 3–7 weeks with a preicteric
and icteric phase that is not always observed [15]. During the preicteric phase, several
nonspecific symptoms including fatigue, lethargy, anorexia or nausea, and biochemical
markers, such as elevated serum ALT and AST levels are observed. Acute HDV-HBV
co-infection can present either with a single peak, or with two distinct peaks, of liver
enzyme elevations, mostly separated by 2–5 weeks [16] (Figure 2). This re-increase of
serum ALT and AST levels, also called biphasic hepatitis, emerges after a first period
of improvement and is thought to be caused by sequential spreading of HBV followed
by HDV [17]. Typically, HBV-related peak is associated with markers of primary HBV
infection, e.g., HBsAg, HBV DNA and anti-HBc IgM, and precedes HDV-related peak,
where increasing titers of anti-HDV IgM and IgG are detected. An inverse pattern has been
reported, especially in animal models [18], and attributed to the relative titers of HBV and
HDV infection.

The majority of the co-infected and immunocompetent patients (90–95%) will resolve
both viral infections. HDV RNA, an early and sensitive marker of HDV replication in acute
HDV infection [19], and the presence of anti-HDV IgM and IgG will disappear during early
convalescence [6]. HDV diagnosis relies almost exclusively in the detection of total levels
of anti-HDV antibodies, and is subsequently confirmed by the detection of HDV RNA by
polymerase chain reaction (PCR) [20]. Serum HDV antigen (HDAg) appears early upon
HDV-HBV co-infection, but it disappears quickly, therefore requiring repeated testing [21].
Serum HDAg is not a suitable tool for HDV diagnosis, as it cannot be directly detected
by enzyme immunoassay or radioimmunoassay, due to antigen sequestration in immune
complexes with high tittered circulating antibodies [22], and requires the application of
immunoblot assay under denaturating conditions, a technique which is difficult to apply
for routine detection [22]. The appearance of anti-HBs antibodies will indicate HBV viral
clearance (Figure 2).

A small proportion of HDV-HBV co-infected patients (less than 5%) will progress to
chronic infection [16] with the risk of developing liver cirrhosis and HCC (Figure 1). Explicit
information about CHD and its clinical outcomes are detailed in the following section.

2.2. HDV-HBV Super-Infection

Alternatively, HDV can super-infect a chronic HBV carrier and progress to an acute
or a chronic HDV infection [23] with various clinical outcomes, including patients with
unspecific symptoms [15]. The pre-existing HBV infection provides the ultimate virologic
background for a rapid HDV spread that will exacerbate the pre-existing liver disease [24].
Acute hepatitis D due to super-infection can be mistakenly considered either as a hepatitis B
reactivation or an acute HBV hepatitis in a previously non-diagnosed HBsAg carrier [11,25].
In HDV super-infected patients, the risk of severe hepatitis is higher than in HBV mono-
infected patients [12], with frequent evolution towards an acute liver failure requiring
liver transplantation. The original multicentre report from 7 European centres included
532 patients with acute benign hepatitis B from Italy, 111 patients with acute liver failure
from Italy, France and England, and 18 patients with acute hepatitis D that lacked anti-HBc
IgM [12]. The investigators suggested that, in these patients, the associated liver failure
was most likely associated with an HDV super-infection event [12]. In an Italian series,
70% of patients with CHD recalled an episode of acute hepatitis in their history [26].
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of viral incubation, acute disease, convalescence, and viral resolution. The presence of different
serological and biochemical markers characterizes each period. The evolution towards chronic
hepatitis is rather rare. Adapted from [15].

In the course of HDV super-infection, HBsAg positivity precedes the detection of
HDV RNA, due to the already pre-established HBV chronic infection characterized by
the absence of anti-HBc IgM antibodies (Figure 3). Upon the appearance of HDV RNA,
HBsAg levels will fluctuate in patients’ serum. During the acute phase of HDV super-
infection, HBV DNA level decreases to rebound after HDV clearance, although this is not
always systematic [27] (Figure 3A). The resolution of HDV infection coincides with the
decline of anti-HDV IgM and IgG immunoglobulins, and the normalization of ALT levels
(Figure 3A).
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While a low rate (less than 5–10%) of HBsAg super-infected carriers may undergo a
self-limited hepatitis leading to HBV clearance [28,29] (Figure 1), the vast majority of HDV
super-infected patients (more than 90%) will progress to chronic infection with both HBV
and HDV viruses [11,13,16]. Active replication of HBV and/or HDV remains a threatening
factor towards liver decompensation during chronic HDV infection [30]. The evolution
towards chronic infection is associated with the persistence of HDV RNA and IgM and
IgG anti-HDV (Figure 3B) [15]. ALT and AST levels are persistently elevated in most of
the patients [15]. IgM antibodies are also detectable in primary infection and persist with
progression to chronicity, although they may be absent in some patients from Africa [31].

CHD is considered the most severe form of chronic viral hepatitis, burdened with
major clinical outcomes [32]. Like all immune-mediated disorders, a wide variability in
the severity has been reported. A particularly aggressive course was observed among
intravenous drug users since early studies [26]. The rapid spread from one to the next
susceptible patient may have favoured the selection of more virulent strains, similarly
to what was suggested by a chimpanzee study, where the severity of serially passaged
HDV was associated with shortened incubation time and increased severity of acute hep-
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atitis, irrespective of HDV replication levels [33]. Histological analysis demonstrates a
severe hepatitis with advanced fibrosis in super-infected HDV patients [26,34,35], that
undergo accelerated progression to cirrhosis [26,36–38], an increased risk of hepatic de-
compensation, and HCC leading to death [9,13,39], when compared to HBV monoinfected
patients. Progression towards cirrhosis can be rapid [26,38] but also indolent [23]. In an
early study of 75 patients with chronic hepatitis (HBsAg carriers with intrahepatic delta
antigen) at enrolment, 39% developed cirrhosis or liver failure after a follow up (FU) of
up to 6 years [26]. The same cohort was later followed for an average of 12 years [40],
and the proportion of cirrhosis increased with the duration of follow-up, i.e., 23%, 41%,
and 77% in the first, second, and third decade of disease, respectively. The progression
to cirrhosis after an average 20-year follow-up was somehow less (42%) in another more
recent, retrospective, large series from Italy [39]. Overall, the risk of developing cirrhosis
in patients co-infected with HBV and HDV seems two-fold higher compared to patients
infected with HBV alone [41]. In a small series from Turin [30], 85 chronic HBsAg and
anti-HDV carriers were followed for an average time of 10 years. Unfavourable clinical
outcomes (HCC, ascites, or liver failure) occurred in 77% of the patients with detectable
levels of both HDV RNA and HBV DNA in their serum, whereas 21% of patients with
HDV RNA and undetectable HBV RNA were diagnosed with ascites [30]. These results
were echoed by a larger study from Taiwan, where the simultaneous presence of serum
HBV DNA and HDV RNA was associated with a lower remission rate vs. those negative
for both viruses (21.7% vs. 69.2%; p < 0.001), whereas the difference was only numerically
lower than that observed among patients positive only for HBV DNA (26.4%) or HDV
RNA (24.3%). However, the cumulative survival rate at 15 years was 57.6% among patients
with HBV DNA vs. 78.3% among HBV negative patients [42].

The impact of HDV infection on the rate of HCC development in HBV-positive patients
has been a subject of controversy, as despite the high rate of progression to cirrhosis, not all
the studies demonstrate an increased rate of HCC [30]. Some studies suggest that the major
complication of CHD is decompensated cirrhosis, rather than HCC [43,44], implying that
liver failure and liver-related death precede HCC development. In a landmark retrospective
European study enrolling 200 patients with compensated cirrhosis [9], the presence of
anti-HDV antibodies induced a 3-fold increase of HCC and a two-fold increase of mortality
compared to HBV monoinfection. Several adjustments and stratification, according to
the presence of anti-HDV and HBeAg, highlighted that the patients who were anti-HDV
positive/HBeAg negative had an estimated 5-year risk of HCC of 13%, compared to
4 and 2% among anti-HDV negative/HBeAg negative and anti-HDV negative/HBeAg
positive patients, respectively. No difference in terms of mortality was reported. In a large
study from the Swiss HIV Cohort, where HBV replication was presumably suppressed
by antiretrovirals, HDV infection was independently associated with mortality and liver-
related events, including HCC [7]. HDV replication is a major determinant of HCC
development relatively to HBV [45,46]. A recent systematic review of the literature and
meta-analysis of the available data from our group highlighted an association of CHD with
an increased risk of developing HCC, compared to HBV monoinfection [47]. This analysis
of 93 studies, despite an important study heterogeneity, showed a significantly increased
risk of HCC in patients with CHD, with pooled OR of 1.28; 95% CI 1.05–1.57; I2 = 67.0%.
The association was stronger considering only prospective cohort studies (pooled OR 2.77;
95% CI 1.79–4.28), those with HIV-infected patients (pooled OR 7.13; 95% CI 2.83–17.92)
where heterogeneity was less, and in general, in studies with well-defined inclusion
criteria and adjustments for confounders, hinting at the importance of a robust study
design. This was also evident considering that the strength of the association decreased, or
became insignificant, in studies with high risk of bias, or in studies carried out before 2010.
Regarding the geographical origin of patients, interestingly, the association was confirmed
in Asian studies, but not in studies originating elsewhere. Lack of data prevented the
analysis of the respective contribution of HBV and HDV genotypes.
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2.3. HDV Replication in the Absence of HBV

The third modality of HDV infection refers to the monoinfection of susceptible hep-
atocytes by HDV in the absence of a helper Hepadnavirus, and has been the apple of
discord over the years for its potential impact on liver transplantation. In this case, a
“helper independent HDV infection” or “latent” HDV infection has been suggested as
markers of HDV replication have been identified in the liver and serum of the patients
in the absence of HBV markers [48]. In an early series of patients undergoing liver trans-
plantation and receiving robust anti-HBV immunoprophylaxis [48], HDV infection of the
grafted liver recurred early without signs of liver damage or HBV reactivation. As soon
as HBV recurred, hepatitis flared associated with serological markers of both HDV and
HBV. A similar finding was reported in at least one patient transplanted in a series from
Paris [49]. In an attempt to reproduce this model in susceptible animals, woodchucks never
exposed to the WHV were infected with serum from an acutely infected animal, where the
HDV titer was about 1700-fold higher that of WHV. This led to the expression of HDAg
in scattered (~1%) hepatocytes in the absence of a productive infection, implying a very
infrequent, if not absent, co-infection of hepatocytes by HDV and WHV [50]. A second
challenge, this time with WHV, resulted in a productive HDV infection up to 33 days after
HDV monoinfection. The persistence of HDV in the absence of HBV was also tested in the
chimpanzee [51], but here, among the two animals first inoculated with HDV alone, only
the one exposed to HBV one week later developed a dual HDV/HBV infection, whereas
HDV infection could not be rescued when the HBV was inoculated 4 weeks later. The same
authors analysed, in detail, the dynamic of HDV infection early after liver transplanta-
tion in humans, showing that, using sensitive PCR-based assays for HDV and HBV, both
viruses were invariably detected in serum, albeit with very low levels of HBV replication,
following the early post-liver transplantation incubation period, suggesting that some
degree of co-infection was occurring despite the absence of detectable HBsAg in serum
due to the effective immunoprophylaxis. The above re-evaluation of viral titers ruled out
the possibility of an isolated HDV infection [51]. Thus, these findings showed that HDV
does not seem to undergo a bona fide latent infection early after liver transplantation.

However, in a subsequent retrospective analysis of patients transplanted at Han-
nover [52], HDAg was detectable in transplanted livers of 6/26 patients in the complete
absence of liver HBV DNA, cccDNA, serum HBsAg, and HDV RNA for up to 19 months
from transplant. The intrahepatic HDV replication in the complete absence of HBV was
also elegantly proven in a humanized mice model infected with cell culture-derived HDV
particles or with a serum sample from an entecavir-treated HBV/HDV co-infected patient
with undetectable HBV viremia [53]. This so-called latent HDV infection, occurring in a
small minority of hepatocytes (~1.5%), was not associated with liver damage (assessed by
detection of hepatocyte apoptosis by a TUNEL assay) but was rescued by a super-infection
with HBV 3 and 6 weeks later. The question about whether this model of infection may
have relevance in transplanted patients remains debated.

The persistence of HDV in the liver for at least 6 weeks in the absence of HBV [53]
raised the question of whether hepatic viruses, other than HBV, could trigger its propa-
gation. A recent study from Vargas et al., [54] demonstrated the ability of HDV to use
glycoproteins from other viruses, such as vesiculovirus, flavivirus and hepacivirus by
applying an in vitro expression system, or by co-infecting the cells with hepatitis C virus
(HCV) or dengue virus. The formation of infectious HDV particles with unconventional
glycoproteins could occur as an efficient packaging of HDV RNPs and viral egress was
reported in the extracellular medium of the co-infected cells. Those particles were able
to efficiently enter into cells expressing the relevant receptors. Importantly enough, the
researchers demonstrated that HDV propagation could be mediated by HCV in the liver of
experimentally co-infected humanized mice for several months.

A recent analysis of serum from 160 HCV infected patients that were under treatment
with a combination of PEG-IFN-α and ribavirin, revealed the presence of anti-HDV anti-
bodies in the sera from two patients. Interestingly enough, these patients were negative for
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all serological or molecular markers of HBV infection, such as HBsAg, anti-HBc antibodies
and HBV DNA, as assessed by two different types of PCR (qPCR and droplet digital
PCR-ddPCR). This is the first study in patients that describes the presence of HDV infec-
tion, as shown by the detection of HDV antibodies, in chronically HCV infected patients
without the evidence of ongoing or past HBV infection [55]. The above studies suggest the
in vivo ability of HCV to act as a helper virus of HDV in the absence of HBV. Additional
studies including larger cohorts, with no previous HBV exposure, are required to explicitly
investigate the aforementioned observations.

3. Mechanisms of HDV Induced Pathogenesis

HDV hepatotropism limits its pathologic changes to the liver with the clinical sequelae
to be extremely variable, ranging from acute liver failure to asymptomatic carrier state
and chronic infection. The exact mechanisms of HDV induced liver damage are still barely
identified, and the severity of the clinical course is influenced by several factors. Some
studies suggest that HDV can cause direct cytopathic damage during acute infection,
whereas immune-mediated damage predominates during chronic infection [56]. Other
studies claim that HDV, like other hepatic viruses, is not directly cytopathic to infected
hepatocytes, and it is mostly the innate and adaptive immune responses that contribute to
the liver immunopathogenesis [57].

HDV pathogenesis is orchestrated by a breadth of different factors including HDV
and/or HBV and/or host-associated factors (Figure 4). Some of these factors possess a
clear causality effect with HDV pathogenesis, whereas, for others, a more correlative effect
is proposed, therefore necessitating additional investigations. In the following sections, we
will discuss in detail their role on HDV pathogenesis.
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3.1. HDV Associated Factors
3.1.1. HDV Genotype

The role of HDV genotypes has been associated with HDV pathogenesis as specific
clinical features seem to cluster in different geographical areas [58–60]. However, since the
8 genotypes of HDV are largely distributed in well-defined areas of the world, it is difficult
to disentangle the effect due to genotypes from that potentially linked to ethnicity.

Most natural history studies have been carried out in the Western world, where
genotype 1 prevails [61,62] and has been associated with a more severe course of HDV
pathogenesis. Genotype 1 is also predominant in low-to middle-income countries, such as
Mongolia, which is highly endemic for HDV infection [63,64]. Genotype 2 is prevalent in
the Far East, where acute liver failure due to HDV seems less frequent, and progression to
end-stage liver disease appears slower [42,59,65,66], although a genotype 2 variant isolated
from Japanese patients (the Miyako strain) [67] has been reported to be associated with a
faster progression towards cirrhosis. Genotype 3 is mostly found in South America and
has been associated with a severe form of hepatitis. Here, acute liver failure has been,
consistently and frequently, reported in severe outbreaks of acute hepatitis D affecting
isolated communities of the Yukpa people of Venezuela [68,69], the Sierra Nevada de Santa
Marta in Colombia [70], and the Western Amazon basin [58,71].

Five additional HDV genotypes have been described upon the classification of the
previously assigned genotype 2b as genotype 4, and the classification of African sequences
into the genotypes 5 to 8 [62,72]. The disease features of these genotypes remain poorly
characterized so far.

In their recent paper, Le Gal et al. highlighted the classification of HDV genotypes to
one or four subgenotypes per genotype according to their intersubgenotype similarity over
the whole genome sequence [73]. HDV-1a and HDV-1b subgenotypes were restricted to
Africa and Madagascar, HDV-1c to the Oceania islands and HDV-1d to the Middle East,
eastern and western Europe, Asia, and North America. HDV-2a circulated to Taiwan and
Japan, and HDV-2b to Siberia. HDV-4a and HDV-4b circulated in the Far East, and HDV-
7a and HDV-7b were detected in Cameroonian patients. HDV-5 and HDV-8 genotypes
segregated into at least two subgenotypes without well-defined geographical specificity
and no distinct information about HDV-3 subgenotypes are available so far [73]. Further
studies are required to identify the association between HDV subgenotypes and viral
pathogenesis.

Mixed infection with different genotypes, and even super-infection, have been re-
ported, especially in patients with high risk for multiple exposures to HDV. In this case,
there is a sole dominant genotype, whereas the minor one represents approximately 10
percent of the total viral population [74].

3.1.2. HDAg Expression

HDAg expression coincides with HDV replication, is quite robust within an infected
hepatocyte, and was demonstrated to be barely influenced by mutations that have been
identified in several HDV isolates. In 1986, the CAR HDV isolate was linked with an
acute liver failure outbreak in the region of Central African Republic (CAR) [75]. The CAR
HDV isolate, which was successfully transmitted and isolated from the liver of woodchuck
upon their inoculation with sera from patients with acute liver failure, showed a highly
specific liver pathogenicity, including spongiocytic hepatitis in both woodchucks and
humans. This isolate bared a mutation (T to A) at nucleotide 1013 of the antigenomic
RNA, which converted the amber stop codon (TAG) to a codon for lysine (AAG) that
produced a unique HDAg species of 28kDa size [76], which was identified in the livers
and sera of the infected hosts [77]. Of note, the reference HDV isolate bears a U to C
modification on the genomic RNA at nucleotide 1012 and will give rise to the small
(24kDa) and large (27kDa) HDAg [78]. Sequencing analysis of the CAR HDV isolate and
its comparison with the American, Japanese, Taiwanese, French, Italian, and Nauru HDV
isolates, revealed a variability of 1.7 to 21.5% at the nucleic acid level and of 1.9 to 28.7% at
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the amino acid level [76]. CAR HDV isolate was most closely related to the Italian HDV
isolate, demonstrated an extremely low genome replication, and its HDAg shared common
biological functions with the prototype L-HDAg, including the replication inhibition of
HDV RNA [79]. There is no additional information about the prevalence of this isolate and
no recent data are available so far.

The liver pathology hallmark, based on initial animal studies, is an eosinophilic
degeneration of hepatocytes [80]. Additionally, early in vitro studies suggested a direct
cytopathic effect of HDV [81,82]. However, these observations failed to be reproduced in
transgenic mice expressing either L-HDAg or S-HDAg, therefore suggesting no association
between HDAg expression and liver damage [83].

No correlation between HDV replication levels and any histological feature was
identified in an international study with 80 HDV chronically infected patients at different
stages of fibrosis [84]. However, in the same study, Zachou et al. demonstrated a weak
correlation between the serum levels of HBsAg and the histological activity of the liver. In
another clinical study, Negro et al. demonstrated a significant positive correlation between
the number of HDAg-positive cells and the extent of portal inflammation, upon analysis
of the intrahepatic expression of HDAg, the morphologic features of HDV hepatitis, and
the outcome of liver disease in 101 patients. HDV elimination reduced the degree of
inflammation and intrahepatic HDAg expression, while the initial morphologic lesion of
the liver did not impact on HDV disease. The results of this study suggested that the
immune response plays a crucial role in the pathogenesis of HDV hepatitis [40].

3.1.3. HDV Persistent Replication

Persistent HDV replication, as assessed by HDV RNA detection in the serum, has a
major impact on the progression towards CHD and was suggested to be the only predictor
of liver related mortality [39]. HDV RNA levels were independently associated with
progression to cirrhosis (OR = 1.60, 95% CI 1.20–2.12, p = 0.007) and development of HCC
(OR = 1.88, 95% CI 1.11–3.19, p = 0.019) in a FU study on 105 non-cirrhotic patients [45].
These results are consistent with early observations from the Turin cohort, where, despite
the initial rapid progression to cirrhosis, some patients may experience a reduction of HDV
replication with time, which is associated with a pattern of inactive cirrhosis, characterized
by reduced necroinflammation, stable for years [40,66,85]. A relative stability—even at the
cirrhotic stage—has been also reported in children [86]. Roulot et al. recently highlighted
that persistent HDV replication was one of the critical determinants of HDV severity, as it
was associated with significantly increased risk of hepatic complications, including liver
decompensation, HCC, and death in a large French cohort [87].

3.2. Host-Associated Factors
3.2.1. Interaction with the Cell Machinery

Previous studies demonstrated an interaction of HDV RNA, and its proteins S and
L-HDAg, with the cell machinery [88,89]. Only a part of these interactions has been
elucidated. HDV proteins interact with numerous cell factors that are involved in HDV
transcription, replication and even pathogenesis [3]. A cell proteome analysis in human
embryonic kidney HEK-293 identified that HDV replication altered the expression of
89 out of 3000 proteins that were quantified [90]. The majority of these proteins was
associated with pyruvate metabolism (Figure 5C1) and cell cycle regulation (Figure 5A).
The expression of p53 was downregulated, and the G2/M DNA damage checkpoint was
highly affected, therefore implicating a potential role of these pathways in HDV associated
HCC. Additional experimentations demonstrated that HDV can induce cell cycle arrest [91],
cell death [81], and impair cell proliferation [92].
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HDV was shown to increase histone H3 acetylation within the clusterin promoter that
enhanced its expression (Figure 5B) [93]. The above epigenetic regulation along with the
fact that clusterin was overexpressed in 89% of human HCC cases [94], strongly suggests
that HDV can induce carcinogenesis.

HDV can also promote oxidative stress in the endoplasmic reticulum (ER) of hepatic
cell lines by interacting with the NADPH oxidase (Nox) family (Figure 5C2). L-HDAg
interacts with NOX-4 inducing the release of reactive oxygen species (ROS) which in turn
activate the signal transducer and activator of transcription-3 (STAT-3) and the nuclear
factor kappa B (NF-κB) pathway (Figure 5C2) [95]. This effect was dramatically decreased
in the presence of antioxidants or calcium inhibitors.
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HDV may induce intrahepatic inflammation via the activation of NF-kB signalling.
In vitro studies revealed that only L-HDAg can activate the tumour necrosis factor alpha
(TNF-α) induced NF-κB signalling, despite the fact that both HDAg isoforms can interact
with the TNF receptor-associated factor 2 (TRAF2). NF-κB activation by L-HDAg is
independent of L-HDAg farnesylation, is mediated through the death receptor TNFR1
(tumour necrosis factor receptor 1) signalling cascade and induces the expression levels of
Cyclooxygenase-2 (COX-2) (Figure 5C4) [96]. L-HDAg farnesylation is a post-translational
modification, where a farnesyl lipid group (C211XXQ box) is covalently linked by a cellular
farnesyltransferase to the cysteine at position 211 of L-HDAg [97]. ER stress and NF-κB
activation was shown to be activated by the translocation of L-HDAg to the ER, during the
viral assembly with the residing HBV glycoproteins [98].

L-HDAg interacts with various signalling pathways implicated in epithelial to mes-
enchymal transition (EMT) [99], wound healing, and fibrosis [100]. The transforming
growth factor β (TGF-β) pathway is involved in liver regeneration and in the fibrotic to
cirrhotic transformation upon viral infection. Choi et al. demonstrated that only L-HDAg,
induced the signal cascades of TGF-β, c-Jun-induced pathway and enhanced the protein
expression level of TGF-β–induced plasminogen activator inhibitor-1 (Figure 5C3) [100].
L-HDAg farnesylation, had a critical role in the activation of these signaling cascades.
Additionally, the synergistic interaction of L-HDAg and HBx (HBV X protein) activated
TGF-β and the activator protein-1 (AP-1) pathway of transcription factors by binding to
Smad3, STAT3 and inducing c-Jun pathway (Figure 4) [100]. Therefore, TGF-β signalling
regulation via L-HDAg farnesylation might represent an alternative mechanism of HDV
pathogenesis [100].

Goto et al. showed that only L-HDAg could activate the serum response factor (SRF)-
associated transcription pathway, as opposed to the small isoform S-HDAg (Figure 5) [101].
SRF is a transcription factor that binds to the serum response element (SRE) and me-
diates serum and growth factor induced transcription from the c-Fos proto-oncogene
(Figure 5C4) [102]. The same group later demonstrated the synergistic activation of the
SRE-dependent pathway upon the interaction of L-HDAg with the HBx protein [103].
Further experimental studies are required to elucidate the implication of this pathway on
HDV pathogenesis.

The expression of glutathione S-transferase P1 (GSTP1), a tumour suppressor gene, is
typically downregulated in liver samples from patients infected with hepatotropic viruses.
The inhibition of GSTP1 expression has been well studied in HCC tumorigenesis [104].
S-HDAg was shown to bind directly and downregulate GSTP1 in a human foetal hepa-
tocyte cell line in vitro. This led to accumulation of cellular ROS, induction of apoptosis
and selective pressure for malignant transformation (Figure 5C5) [105]. Therefore, the
inhibition of GSTP1 expression by S-HDAg represents a novel potential mechanism of
HDV pathogenesis.

3.2.2. Innate Immune Response

Immune-mediated liver damage upon HDV infection is an important factor of HDV
pathogenesis. A strong or a dysregulated innate immune response to a viral infection
can lead to severe immunopathogenesis [106]. Up to date, the factors that mediate the
interaction between HDV and host innate immune system have not been explicitly charac-
terized. While HBV has been classically considered to be poorly recognized by the innate
immune system [107], HDV can induce the expression of interferon (IFN)-β and IFN-λ,
of pro-inflammatory cytokines and interferon stimulated genes (ISGs) in vitro [108–111]
and in vivo [112,113] (Figure 6). IFN-λs or type III interferons are endogenous antiviral
cytokines, functionally similar to type I interferons, that activate the intracellular JAK-STAT
pathway and regulate the transcription of ISGs. In vitro, L-HDAg was shown to inhibit
HBV replication by trans-activating the IFN-inducible MxA (myxovirus resistance protein
A) gene [109] and HDV RNA accumulation induced a strong type I IFN response by stimu-
lating the expression of RSAD2 (Radical S-Adenosyl Methionine Domain Containing 2)
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and MxA genes [108]. Finally, the misfolded HDV ribozyme sequence was found to induce
protein kinase R [110]. HDV is sensed by the RIG-I-like receptor (RLR) group and more
precisely by MDA5 [114]. Zhang et al. demonstrated that active replication is required for
innate sensing, without, however, pointing out the pathogen-associated molecular pattern
(PAMP) of HDV which is recognised by the MDA5 [114].
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Despite the intact innate immune response mediated by HDV, IFN-α failed to inhibit
HDV in vitro [110]. A previous in vitro study demonstrated that HDV replication inhibited
the tyrosine phosphorylation of JAK kinase Tyk2, thereby impairing the activation and
translocation of STAT1 and STAT2 to the hepatocyte nucleus and inhibiting the antiviral
cell response to IFN-α [115].

Natural killer (NK) cells are innate effector cells representing 30–40% of all intrahepatic
lymphocytes [116,117] with a crucial role in antiviral defence against HBV and HCV
infection [118–120]. Importantly enough, NK cells drive liver pathology in chronic HBV
infection [121]. The role of NK cells in the peripheral blood of chronically infected HDV
patients was recently investigated [122]. The researchers assessed the frequency and
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differentiation phenotype of NK cells prior to and upon IFN-α treatment in chronically
infected HDV, or HBV patients and healthy controls. While untreated HDV patients
showed an increased frequency of NK cells with unaltered phenotypic differentiation
status, those that have been long-term treated with IFN-α demonstrated a loss of terminally
differentiated NK cells and an enrichment in immature NK cell subsets (Figure 6). The
NK cell differentiation profile has not been so far associated with HDV liver pathogenesis
progression and therefore more studies are required to fully elucidate their role.

3.2.3. Adaptive Immune Response

HDV adaptive immune response has been highlighted by the presence of specific T
cell response to HDAg in the peripheral blood of chronically infected HDV patients. The
presence of specific anti-HDV T cells is inversely correlated with HDV-induced liver disease
activity [123]. A comparative study of 76 patients chronically infected with hepatitis B,
C, or D viruses demonstrated that patients with CHD had the highest frequency of CD4+

cytotoxic T lymphocytes (p = 0.04 vs. HBV and HCV patients) [124]. These cytotoxic CD4+

T cells differ from the helper CD4+ T cells as they are perforin positive and share common
features with CD8+ T cells, therefore being able to kill virus-infected cells (no information
about the expression of granzymes in these cells was provided). The increased number of
cytotoxic CD4+ T cells in patients with more advanced liver disease is considered as one
important factor for the more severe course of viral hepatitis in the elderly (Figure 7) [124].
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induce the production of HDV specific CD8+ CD57- cytotoxic T cells that contribute to disease progression and memory,
such as CD8+ T cells, that seem unable to clear viral infection. The role of MAIT cells in HDV pathogenesis needs to be
further elucidated, although, it was shown that chronic HDV infection impairs their function. Created with BioRender.com.
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The role of CD8+ T cells in chronic HDV infection was only recently studied following
the identification of an extensive set of CD8+ T cell epitopes [125,126]. HDV-specific CD8+

T cells against HDV peptides were detected upon the administration of an HDV DNA
vaccine to mice and were also reported in two patients that cleared HDV infection. The
above suggests that appropriate T cell response seems to be tightly correlated with HDV
clearance [127].

In another study, Kefalakes et al. isolated peripheral blood mononuclear cells from 28
patients chronically infected with HDV and HBV and identified HDV specific CD8+ T cell
epitopes, underlining the high immunogenicity of HDV, despite its small size and physic-
ochemical properties (hydrophobic amino acid sequence) [126]. They also demonstrated
that HDV specific CD8+ T cells were as frequent as HBV CD8+ T cells, less frequent than
those of Epstein–Barr Virus, cytomegalovirus, or influenza virus and the least exhausted as
they were not expressing the terminally differentiated CD57 marker [126]. This subset of
activated HDV-specific CD8+ T cells could target HDV conserved epitopes and contribute
to disease progression. On the other hand, the subset of memory-like HDV-specific CD8+

T cells was associated with escape variants with less human leukocyte antigen (HLA)
binding and less T cell activation, therefore being unable to clear HDV infection (Figure 7).
This study requires more investigations to unravel the exact role of HDV-specific CD8+ T
cells, as the researchers did not study the role of CD8+ tissue-resident memory T cells and
therefore conclusions must be drawn with caution.

The role of mucosa-associated invariant T (MAIT) cells on HDV infection has not been
extensively studied so far [128]. MAIT cells are unique innate-like T cells that comprise
up to 50% of the intrahepatic immune cell population (even in the healthy liver), secrete
inflammatory cytokines (IFN-γ and TNF) and can act cytotoxically against infected cells.
In the liver, MAIT cell function is regulated by interleukin-7 (IL-7), which is secreted from
the hepatocytes under inflammatory conditions [129]. MAIT cells can promote mitogenic
and proinflammatory functions of fibrogenic cells [130] and contribute to tissue remod-
elling [131]. In vivo, MAIT cell deficient mice were resistant to liver fibrosis, whereas MAIT
cell enriched mice demonstrated increased liver fibrosis [130]. MAIT cell activation in
the liver was also correlated with tumour growth, as they produced IL-17 that promoted
macrophage differentiation into the inflammatory M2 subtype and stimulated the vas-
cular endothelial growth factor (VEGF)-mediated angiogenesis (reviewed in [132]). In
chronically infected HDV patients, the population of circulating and liver resident MAIT
cells was dramatically decreased, as opposed to the population of MAIT cells in HBV
monoinfected patients. The remaining population of MAIT cells exhibited a functionally
impaired responsiveness in chronically infected HDV patients. Increased levels of the
proinflammatory cytokines IL-12 and IL-18 that could promote MAIT cell death, as well as
monocyte activation, were reported in HDV patients, suggesting that upon HDV infection,
the normally abundant MAIT cells in the peripheral blood and the liver are activated,
become functionally impaired, and at a later stage, are depleted (Figure 7) [128]. The
above studies do not show any potential contribution of MAIT cells on HDV pathogenesis.
However, additional studies highlighting the causality behind the severe depletion of this
cell population during chronic HDV infection might unravel other properties of these cells
that could be associated with HDV liver disease pathogenesis.

The adaptive immune response against chronically infected HDV patients seems to be
insufficient to resolve HDV infection, therefore suggesting that the innate immunity may
have a more critical role to limit HDV infection [133–135].

3.2.4. Patients’ Risk Profile

The usual predictive factors that define the patients’ risk profile and their correlation
with the adverse clinical outcome apply to CHD as well. Male sex [136], older age [137,138],
and co-infection with HIV [139] have been reported to correlate with liver disease progres-
sion and clinical outcomes.
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The presence of genetic polymorphisms in the gene of IL28B (Interleukin 28B) is also
implicated in HDV infection and pathogenesis. IL28B gene encodes for IFN-λ3. Poly-
morphisms in the IL28B gene were initially associated with the spontaneous or treatment
induced clearance of HCV [140–143]. Up to date, the SNP rs12979860 represents the
strongest genetic association with any chronic viral infection and its treatment response.
The same polymorphisms in the IL28B gene were reported for both HBV and/or HDV
persistence [144].

3.3. Helper Virus Associated Factors
3.3.1. HBV Genotype

HBV genotypes also appear to affect the clinical outcomes of CHD, although data is
scarce. A prospective study analysed 194 dually infected patients from Taiwan (mostly
infected with genotypes B and C of HBV) [42]. Although, at enrolment, there were no
differences in the relative proportion of chronic hepatitis, cirrhosis, HCC, or remission cases
among those with genotypes B vs. C, after a median FU of 135 months, HBV genotype C
was associated with a significantly lower remission rate (0 vs. 32.1%), higher incidence
of cirrhosis (34.8% vs. 8.9%) and adverse clinical outcomes (including cirrhosis, HCC,
and mortality due to hepatic failure; 70.0% vs. 33.9%) than genotype B. By multivariate
analysis, age, HBV genotype C (besides HDV genotype 1) were independent factors for
unfavourable clinical outcome [42]. In a smaller, cross-sectional study from Brazil, HDV
viral load was lower in HBV genotype A patients compared to patients with genotype D
or F, although this difference did not match the clinical outcome, probably affected by the
low number of HDV patients [145]. These data require further studies to confirm their
clinical significance.

3.3.2. HBV Replication

Active HBV replication has a critical role in deteriorating liver damage in patients with
chronic HDV infection, an observation that is in line with HDV dependency on its helper
virus [146]. However, the typical consequence upon HDV super-infection and the acute
phase of HDV replication is the suppression of HBV DNA [24], that has been reported in
both liver and serum of humans, animal, and in vitro models [146–148]. The mechanisms
of HDV and HBV interference still remain poorly characterized, although in vitro studies
demonstrated that S-HDAg strongly inhibits HBV mRNA synthesis or stability [148], while
both isoforms of HDAg can activate the innate immune response (IFN-α inducible MxA
gene) and repress HBV enhancers 1 and 2 [109]. In the above cases, with minimum HBV
replication, the liver damage of chronically infected HDV patients, is mostly attributed
to HDV rather than HBV. HBV replication suppression, might also be a cause of multiple
co-infections with viruses other than HDV, that are present in the patients [3]. Interestingly,
in a Chinese study, a late HBV DNA reactivation was reported, which, according to the
researchers, may impact the progression to end-stage liver disease [149].

4. Conclusions

HDV, the satellite virus of HBV, with million carriers worldwide, remains a fascinating
and unique virus with many unravelled steps of its life cycle. HDV infection can only be
achieved in the presence of its helper virus, HBV. An HBV-HDV simultaneous infection (or
co-infection) will, in the vast majority, be self-limited and lead to viral clearance, while an
HDV super-infection of chronically infected HBV carriers will almost universally lead to
chronic HDV infection. Chronic HDV infection is considered as the most severe form of
viral hepatitis that is associated with faster progression towards end stage liver diseases,
including cirrhosis, liver decompensation and HCC. More than one factors seem to be
involved in the pathogenesis of HDV hepatitis and end stage liver diseases, implicating
HDV, HBV, and host associated factors, underlining the complexity of this multifaceted
disease. A more explicit and in-depth knowledge of the HDV life cycle will provide critical
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information to better understand the mechanisms of HDV pathogenesis and give new
insights in the development of new therapies with improved tolerance and efficiency.
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