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Molecular biomarkers in cardiac hypertrophy
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Abstract

Cardiac hypertrophy is characterized by an increase in myocyte size in the absence

of cell division. This condition is thought to be an adaptive response to cardiac wall

stress resulting from the enhanced cardiac afterload. The pathogenesis of heart dys-

function, which is one of the primary causes of morbidity and mortality in elderly

people, is often associated with myocardial remodelling caused by cardiac hypertro-

phy. In order to well understand the potential mechanisms, we described the mole-

cules involved in the development and progression of myocardial hypertrophy.

Increasing evidence has indicated that micro‐RNAs are involved in the pathogenesis

of cardiac hypertrophy. In addition, molecular biomarkers including vascular

endothelial growth factor B, NAD‐dependent deacetylase sirtuin‐3, growth/differen-

tiation factor 15 and glycoprotein 130, also play important roles in the development

of myocardial hypertrophy. Knowing the regulatory mechanisms of these biomarkers

in the heart may help identify new molecular targets for the treatment of cardiac

hypertrophy.
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1 | INTRODUCTION

Myocardial hypertrophy is characterized by the thickening of heart

muscles without an obvious cause and found to be involved in sev-

eral pathological conditions, including hypertension, vascular disease

and chronic heart failure.1 Myocardial hypertrophy was first

described by Donald Teare in 1958.2,3 The results of epidemiological

studies indicate that the increased incidence and prevalence of heart

dysfunction is one of the primary causes of morbidity and mortality

in elderly people. The pathogenesis of heart dysfunction is multifac-

torial and often associated with cardiac remodelling as a result of

cardiac myocyte hypertrophy.4–6 Myocardial hypertrophy is a

response to pressure or volume overload whereas chronic left

ventricle hypertrophy is primarily associated with chronic heart dys-

function. In addition, myocardial hypertrophy is thought to be a mal-

adaptive process that leads to the fatal gene program and pro‐
hypertrophic signalling pathways.7–9 In the adult heart, the progres-

sion of myocardial hypertrophy follows the signals which are stimu-

lated on the cell surface and then transmitted through channels or

receptors.10 Therefore, we describe molecules involved in the devel-

opment and progression of myocardial hypertrophy to well under-

stand underlying mechanisms.

2 | MICRO ‐RNAS

Micro‐RNAs are non‐coding post‐transcriptional regulatory RNAs

that play a key role in regulating mRNA expression and heart dis-

eases.11 Recent studies indicated that changes in the expressionLiu Zhu and Chao Li equally contributed to this work.
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levels of micro‐RNAs may contribute to the development of cardiac

hypertrophy.12

2.1 | MiR‐96

MiR‐96 is a micro‐RNA involved in many diseases caused by

impaired cell proliferation.13‐16 It has been confirmed that the mam-

malian target of rapamycin (mTOR) signalling pathway promotes the

onset and progression of cardiac growth.17‐20MiR‐96 is negatively

correlated with mTOR and may prevent myocardial hypertrophy by

inhibiting mTOR.20 On the other hand, miR‐96 was found to inhibit

cardiac hypertrophy by targeting growth factor receptor‐bound 2

which is a negative regulator of cardiac hypertrophy.21 Whether it

may offer a new therapeutic strategy for cardiac hypertrophy is still

controversial.

2.2 | MiR‐30

Several studies have demonstrated that the miR‐30 family micro‐
RNAs are involved in the development and progression of tumours

and other diseases, including those in the circulatory, genital, respira-

tory, nervous, alimentary and genital systems. MiR‐30 members play

a vital role in cell differentiation, cellular senescence, adipogenesis

and drug metabolism.22–30 Duister et al. found that miR‐30 could

trigger myocardial matrix remodelling by regulating the connective

tissue growth factor, and the expression of miR‐30 was significantly

decreased in mice with hypertrophic cardiomyopathy.31 Reversely

associated with p53 up‐regulation, miR‐30 family members are found

to inhibit mitochondrial fission and the consequent cardiac hypertro-

phy related apoptosis.32 Furthermore, cardiac hypertrophy due to

chronic alcohol intake in mice was correlated with a lower expres-

sion of miR‐30a.33 Another study demonstrated that the expression

of beclin‐1 was up‐regulated in cardiomyocytes treated with miR‐
30a inhibitor, and the up‐regulation was reversed in cardiomyocytes

treated with miR‐30a mimic.34 This study further suggested that the

activation of autophagy was enhanced by treating angiotensin II

(Ang II)‐induced hypertrophic cardiomyocytes with miR‐30a inhibitor,

and this activation was reversed in cells treated with miR‐30a mimic.

These results suggest that beclin‐1 can be bound to miR‐30a as a

target gene for miR‐30a. Therefore, miR‐30a is a potential diagnostic

and therapeutic marker for hypertrophic cardiomyopathy.

2.3 | MiR‐34

In mammals, the miR‐34 miRNA precursor can produce three major

mature miRNAs. In contrast to other members of this family, the miR‐
34 was identified in silico and later confirmed by experiment. In the

cell cytoplasm, the precursor miRNA stem‐loop is excised, and the pri-

mary miR‐34 mature sequence is removed from the 5′ arm of the hair-

pin.35–37 MiR‐34a is a multifunctional regulatory factor that

participates in apoptosis,38 cell senescence,39 cell proliferation40 and

cell division41 by enhancing or reducing the expression of its target

genes. Studies demonstrated that miR‐34a is a component of the p53

tumour suppressor network, suggesting that this mRNA participates in

cancer development and progression.42 The expression of miR‐34a
varies according to the pathological condition. In myocardial infarc-

tion43 and ageing heart,44 the expression of miR‐34a is increased,

whereas in most cancers, including bladder and lung cancer, miR‐34a
expression is usually decreased.45,46 Moreover, as a result of trans-

verse aortic constriction, pressure overload leads to changes in miR‐
34a expression in different pathological stages of cardiac remod-

elling,47 such that the expression is decreased in the hypertrophic

stage of myocardial remodelling but increased in the heart failure

stage. Another study found that miR‐34a extended Caenorhabditis ele-

gans lifespan by inhibiting the activation of ATG9A‐mediated autop-

hagy.48 It is known that Ang II can regulate cardiac hypertrophy and

cardiomyocyte autophagy.49 MiR‐34a also can regulate Ang II‐induced
cardiomyocyte hypertrophy by directly inhibiting ATG9A expression

and autophagic activity.47 It has been found that therapeutic inhibition

of the miR‐34 family attenuates pathological cardiac remodelling and

improves heart function in mice.50 Therefore, the results of these

studies may help identify prospective therapeutic targets for control-

ling cardiac hypertrophy.

2.4 | MiR‐181

The miR‐181 miRNA precursor is a small non‐coding RNA molecule

that can generate four mature products: miR‐181a, miR‐181b, miR‐
181c and miR‐181d. These products can regulate post‐transcriptional
gene expression by binding to target mRNAs. MiR‐181 has been

found in a large number of species, including humans, zebrafish and

rats. Human miR‐181 has been found in bone marrow, retina and

vascular development.51‐53 Furthermore, the expression of miR‐181b
was up‐regulated in the blood of patients with myocardial hypertro-

phy, suggesting that miR‐181b might play a role in both disease

pathology and progression.54 Myocardial hypertrophy triggered by

stimulation of primary myocardial cells with PE presented a negative

correlation between miR‐181b and PKG 1.54 The results suggest that

miR‐181b is a promising molecular marker for the clinical diagnosis

and treatment of cardiac hypertrophy.

2.5 | Other micro‐RNAs

MiR‐378 inhibited caspase‐3 expression in cardiomyocytes and

attenuated ischaemic injury, and miR‐199a might be a potential ther-

apeutic target for cardiac hypertrophy or heart failure. It has demon-

strated that miR‐185 can suppress the progression of cardiac

hypertrophy by reducing ET‐1‐induced hypertrophic responses55

whereas miR‐19a/b positively regulates cardiac hypertrophy by

enhancing these responses.56 Lee et al. found that miR‐374 inhibited

the cardiac hypertrophy regression pathway by targeting vascular

endothelial growth factor receptor 1 (VEGFR‐1) and PKG‐1.57 It is

also reported that miR‐9 and miR‐98 were closely related to the

development of myocardial hypertrophy.58 Furthermore, the

decrease in miR‐133 might reduce endothelin‐1‐ and norepinephrine‐
induced myocardial hypertrophy.59
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3 | VEGF ‐B

VEGF‐B is a secretory protein from the VEGF family. VEGF‐A is the

best known member of this family, and other members include

VEGF‐C and PIGF.60,61 In humans, VEGF‐B is highly expressed in

metabolically active tissues, including fat, heart and skeletal muscle.

VEGF‐B has two isoforms produced by alternative splicing, VEGF‐
B167 and VEGF‐B186, and both isoforms bind to VEGFR‐1 and neu-

ropilin‐1.62,63 In contrast to other members of the family, VEGF‐B is

not a major angiogenesis‐inducing factor; however, it can enhance

neovascularization under pathological conditions.63 It has been

reported that VEGF‐B helps maintain newly formed blood vessels

during pathological conditions.64 Furthermore, VEGF‐B regulates the

uptake and transport of fatty acids in the endothelium of heart and

skeletal muscle.65,66 Karpanen et al. found that up‐regulating the

expression of VEGF‐B in mouse heart changed lipid metabolism in

myocardial cells and led to myocardial hypertrophy.67 Therefore,

VEGF‐B is a potential target for the diagnosis and treatment of

myocardial hypertrophy.

4 | SIRT3

NAD‐dependent deacetylase sirtuin‐3 (SIRT3) is a member of the

mammalian sirtuin family.68 Evidence indicates that SIRT3, as a sol-

uble protein, is located in the mitochondrial matrix and contains a

mitochondrial processing peptide at the N‐terminus. Up‐regulating
the expression of SIRT3 in vitro inhibits the production of reactive

oxygen species and promotes respiration. In white and brown adi-

pose tissue, fasting increases the expression of SIRT3, and the

increased expression of SIRT3 in brown adipocytes enhances the

expression of UCP1 and PGC‐1α, demonstrating that SIRT3 has a

role in adaptive thermogenesis in brown adipose tissue. Furthermore,

SIRT3 reduces cardiac hypertrophy by decreasing ROS produc-

tion.69–71 SIRT3 augments Foxo3a‐dependent antioxidant defense

and further blocks the cardiac hypertrophic response.72

5 | GDF15

The growth/differentiation factor 15 (GDF15) was first identified as

macrophage inhibitory cytokine‐1.73 It is a member of the transform-

ing growth factor‐beta superfamily. The expression of GDF‐15 in

humans is low in most organs and increased by injury to different

organs, including heart, kidney, liver and lung.74–76 GDF‐15 regulates

inflammatory pathways and participates in several biological pro-

cesses, including cellular repair and regulation of apoptosis and cell

growth, as well as in cardiovascular and neoplastic disorders.74,77,78

GDF‐15 is a powerful prognostic marker in patients with heart dis-

ease and cancer.79 Recently, a growing number of studies have

focused on the association between GDF‐15 and cardiovascular dis-

eases. It has been proven that GDF‐15 is a good prognostic marker

for coronary heart disease and heart failure,80–89 and participates in

cardiac remodelling caused by primary hypertension, hypertrophic

cardiomyopathy and ischaemic heart diseases.89–93 Furthermore, the

increased expression of GDF‐15 inhibits norepinephrine‐induced
myocardial hypertrophy by decreasing EGF receptor transactivation

after norepinephrine stimulation.93 These results indicate that GDF‐
15 may be a new target for treating myocardial hypertrophy.

6 | GP130

The transmembrane protein glycoprotein 130 (Gp130) is one of the

first cytokine receptors to be identified. Gp130 is a signal‐transdu-
cing receptor element that binds to the interleukin 6 receptor. More-

over, this molecule is present in several receptors, including IL‐6,
IL‐11, ciliary neurotrophic factor and leukaemia inhibitory factor

receptors.94–96 Gp130 is strongly expressed in almost all tissues.96

Nonetheless, the physiological functions of gp130 are not completed

explained. A previous study has shown that gp130 has a physiologi-

cal role in cardiomyocyte regulation, whereas a pathological conse-

quence leading to cardiac hypertrophy will happen after being

overstimulated of gp130.97

7 | CAMK II

Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is a serine/

threonine‐specific protein kinase regulated by the Ca2+/calmodulin

complex. CaMKII participates in many signalling pathways and is

considered a key mediator of learning and memory.98 In addition,

TABLE 1 Molecular biomarkers involved in cardiac hypertrophy

Biomarkers Characteristics

micro‐RNAs

MiR‐96 Inhibit mTOR1 and reduce growth factor receptor‐bound
2 expression20,21

MiR‐30 Inhibit cardiac hypertrophy related apoptosis32

MiR‐34 Up‐regulated in the heart in response to stress;

improve cardiac function50

MiR‐181 Up‐regulated in myocardial hypertrophy54

VEGF‐B Up‐regulated in lipid metabolism in myocardial cells65,66;

lead to myocardial hypertrophy67

SIRT3 Block cardiac hypertrophic response by augmenting

Foxo3a‐dependent antioxidant defense72

GDF15 Inhibit norepinephrine‐induced myocardial hypertrophy93

GP130 Lead to cardiac hypertrophy by activating its

expression97

CaMK II Increased in hypertrophied myocardium and related to

cardiac hypertrophy105–111

CIC‐3 Associated with myocardial hypertrophy and heart

failure114

CaMK II, calmodulin‐dependent protein kinase II; ClC‐3, chloride channel‐
3; GDF15, growth/differentiation factor 15; GP130, glycoprotein 130;

SIRT3, NAD‐dependent deacetylase sirtuin‐3; VEGF‐B, vascular endothe-
lial growth factor B; mTOR1, mammalian target of rapamycin 1.
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CaMKII contributes to Ca2+ reuptake and homeostasis in cardiomy-

ocytes,99 CD8 T‐cell activation,100 positive T‐cell selection101 and

epithelial transport of chloride.102 CaMKII consists of four different

isoforms: CaMKIIα, CaMKIIβ, CaMKIIδ and CaMKIIγ. CaMKIIδ is the

main cardiac CaMKII isoform, and CaMKIIγ is also expressed in the

heart. The expression and activity of CaMKII are enhanced in

patients having heart failure.103,104 Furthermore, the transgenic over-

expression of CaMKII induced cardiac hypertrophy and dilated car-

diomyopathy.105,106 Structural heart disease may be prevented by

CaMKII inhibitors.107,108 Moreover, cardiac remodelling was attenu-

ated in mice with global deletion of CaMKIIδ.109,110 Backs et al.

demonstrated that CaMKII could inhibit cardiac hypertrophy via

crosstalk with calcineurin.110 Calcineurin has no function in maladap-

tive cardiac remodelling in the absence of CaMKII signals.111

8 | CIC ‐3

Chloride channel‐3 (ClC‐3) is a member of the ClC gene family and

has been suggested to be a molecular candidate of native volume‐
sensitive outwardly rectifying anion channels (VSOAC) in certain

mammalian cell types, such as vascular smooth muscle cells and car-

diac myocytes.112,113 In ClC‐3 global knockout mice, the rest of

VSOAC in cardiac myocytes caused extensive compensatory changes

and altered properties in membrane protein expression.114 It is found

that inactivation of ClC‐3 gene produced myocardial hypertrophy

and heart failure.114 Furthermore, ClC‐3 is a key molecular of native

VSOAC in mammalian heart and plays a crucial role in preventing

myocardial hypertrophy.114

9 | OTHER MOLECULES

The expression of adhesion molecules including CD11a, CD11b and

CD11c was increased in rats with myocardial hypertrophy.115 Walsh

reported that the inhibition of stress‐induced activin A/Smad2 sig-

nalling triggered the expression of follistatin‐like in hypertrophied

cardiac myocytes.116 Follistatin‐like 3 is a stress‐induced regulator of

cardiac hypertrophy and may regulate myocyte size via Smad sig-

nalling.116 Moreover, the expression of N‐cadherin was up‐regulated
in myocardial tissues in rats. Although these findings are based on

animal experimentation, it provides additional motivation for

researchers to explore the functions of these biomarkers in regulat-

ing myocardial hypertrophy in human beings, either in modulating

physiological environment or developing molecular target drugs.

10 | CONCLUSIONS

Myocardial hypertrophy is adaptive response to cardiac wall stress

resulting from the enhanced cardiac load. The main feature of myocar-

dial hypertrophy is the embryonic genes up‐regulation, protein synthesis

increases and cell volume expansion. The predominant histopathological

characteristics are expanded cell space, increased intercellular muscle

fibres and myocardial fibrosis and dysfunction. In this review, we list

several micro‐RNAs and other molecular biomarkers involved in the

pathogenesis of cardiac hypertrophy (Table 1). Knowing the regulatory

mechanisms of these biomarkers may help identify new molecular tar-

gets for the treatment of cardiac hypertrophy.
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