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We consider inferences in a one-way ANOVAmodel with equicorrelation error structures. Hypotheses of the equality of the means
are discussed. A generalized𝐹-test has been proposed by in the literature to compare themeans of all populations.However, they did
not discuss the performance of that test. We propose twomethods, a generalized pivotal quantities-based method and a parametric
bootstrap method, to test the hypotheses of equality of the means. We compare the empirical performance of the proposed tests
with the generalized 𝐹-test. It can be seen from the simulation results that the generalized 𝐹-test does not perform well in terms of
Type I error rate, and the proposed tests perform much better. We also provide corresponding simultaneous confidence intervals
for all pair-wise differences of the means, whose coverage probabilities are close to the confidence level.

1. Introduction

The generalized 𝑝 value approach and the generalized piv-
otal quantities introduced by Tsui and Weerahandi [1] and
Weerahandi [2], respectively, have proven to be useful tools
to study repeated measures models when the error variances
are unequal. Inferences for many important linear models
with unequal error variances have been discussed by these
approaches (see Weerahandi [3] and references therein). For
the problem of comparing the means of several populations
with unequal variances, Weerahandi [4] introduced a gener-
alized 𝐹-test using the notion of generalized 𝑝 values. Since
then the generalized 𝐹-test has been widely used to test the
equality of the means or the fixed effects of ANOVA models
(Ananda and Weerahandi [5], Gamage and Weerahandi
[6], Bao and Ananda [7], and Mu et al. [8]) and other
repeated measures models under heteroscedasticity (Chi and
Weerahandi [9], Weerahandi and Berger [10], Lin and Lee
[11], Ho and Weerahandi [12], and Mu and Xu [13]).

The ANOVA models are basic but important among lin-
ear models. Extensive studies have been done on the ANOVA
models with usual independent error structure, even under
heteroscedasticity (see, for example, Krishnamoorthy et al.
[14] and references therein). However, it is often seen that the
error variance varies over time in practical work.Therefore, it

is required to assume more complicated error structures for
investigating such situations. Lin and Lee [11] considered an
ANOVA model with equicorrelation error structure under
heteroscedasticity which is described as follows. Suppose a
random sample of size 𝑛

𝑖
is available from the 𝑖th population,

𝑖 = 1, . . . , 𝐼. Let 𝑌
𝑖𝑗
, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝑛

𝑖
, be the random

vectors of order 𝑇 representing the observations taken from
the 𝐼 populations. We assume that the random vectors are
all mutually independent and that we have a complete data
set from all subjects in each group. Then, the model can be
formulated as

𝑌
𝑖𝑗
= 𝜇
𝑖
1
𝑇
+ 𝛼
𝑖
1
𝑇
+ 𝜀
𝑖𝑗
, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝑛

𝑖
, (1)

where the error term 𝜀
𝑖𝑗
∼ 𝑁(0, Σ

𝑒𝑖
) with Σ

𝑒𝑖
= 𝜎
2

𝑖
[(1 − 𝜌)𝐼

𝑇
+

𝜌1
𝑇
1


𝑇
], and the random effects 𝛼

𝑖
∼ 𝑁(0, 𝜎

2

𝛼
).

Lin and Lee [11] provided the generalized 𝐹-test to test
the equality of the means of the 𝐼 populations. However,
this generalized 𝐹-test was not evaluated by simulation in
their article. Note that the generalized 𝐹-test for the model
with independent error structure has poor size performance
when the group number is large (Krishnamoorthy et al.
[14]). Based on the generalized pivotal quantities derived
from a general method provided by Hannig et al. [15], we
provide a new standardization-based 𝑝 value for testing
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the equality of themeans. A parametric bootstrap test follow-
ingKrishnamoorthy et al. [14] is also presented. Furthermore,
simultaneous confidence intervals of all pair-wise difference
of the means are often important in practical work. We also
present such simultaneous confidence intervals. Simulation
results are reported in this paper and show that the Type
I errors of the generalized 𝐹-test exceed the nominal level
in many cases (similar to the case of independent error
structure shown in Krishnamoorthy et a.l [14]), while the
proposed tests and simultaneous confidence intervals have
good frequentist properties under various sample size and
parameter combinations.

The rest of the paper is organized as follows. Section 2 dis-
cusses testing the equality of the means of the 𝐼 populations.
The generalized 𝐹-test, the standardization-based 𝑝 value
test, and the parametric bootstrap test for the hypotheses
of the equality of the means are described in this section.
Section 3 provides the simultaneous confidence intervals for
all pair-wise differences of the means. Simulation results
for the Type I error probabilities of these three tests and
the coverage probabilities of the simultaneous confidence
intervals are provided in Section 4. Section 5 shows an illus-
trative example and some concluding remarks are presented
in Section 6.

2. Tests of the Means in One-Way ANOVA

In this section, we consider the problemof testing the equality
of means:

𝐻
0
: 𝜇
1
= 𝜇
2
= ⋅ ⋅ ⋅ = 𝜇

𝐼
←→ 𝐻

1
: not all 𝜇

𝑖
are equal.

(2)

Lin and Lee [11] gave the generalized 𝐹-test to deal with this
problem. In the following, we describe the generalized 𝐹-test
and two new tests.

2.1. The Generalized 𝐹-Test. We now describe the generalized
𝐹-test. From (1), Cov(𝑌

𝑖𝑗
) = Σ
𝑖
with

Σ
−1

𝑖
= [𝜎
2

𝑖
(1 − 𝜌)]

−1

[𝐼
𝑇
−

𝜙
2

𝑖
− 𝜎
2

𝑖
(1 − 𝜌)

𝑇𝜙
2

𝑖

1
𝑇
1


𝑇
] , (3)

and 𝜙
2

𝑖
= 𝜎
2

𝑖
(1 − 𝜌) + 𝑇(𝜌𝜎

2

𝑖
+ 𝜎
2

𝛼
). Consequently, it can be

obtained that the residual sum of squares

𝑆
2

𝑖
= 𝑇

𝑛𝑖

∑

𝑗=1

(𝑌
𝑖𝑗⋅
− 𝑌
𝑖⋅⋅
)
2

, 𝑖 = 1, . . . , 𝐼, (4)

is distributed as

𝑉
𝑖
=

𝑆
2

𝑖

𝜙
2

𝑖

∼ 𝜒
2

𝑛𝑖−1
, (5)

where 𝑌
𝑖𝑗⋅

= ∑
𝑇

𝑡=1
1


𝑇
𝑌
𝑖𝑗𝑡
/(𝑇𝑛
𝑖
), and 𝑌

𝑖⋅⋅
= ∑
𝑛𝑖

𝑗=1
𝑌
𝑖𝑗⋅
/𝑛
𝑖
. Write

𝑁 = ∑
𝐼

𝑖=1
𝑛
𝑖
and then

𝑉 =

𝐼

∑

𝑖=1

𝑉
𝑖
∼ 𝜒
2

𝑁−𝐼
. (6)

Denote the standardized between-group sum of squares by

𝑆
2

𝐵
= 𝑆
2

𝐵
(𝜙
2

1
, . . . , 𝜙

2

𝐼
) =

𝐼

∑

𝑖=1

𝑇𝑛
𝑖

𝜙
2

𝑖

𝑌
2

𝑖⋅⋅
−

(∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/𝜙
2

𝑖
) 𝑌
𝑖⋅⋅
)
2

∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/𝜙
2

𝑖
)

.

(7)

The observed value of 𝑆2
𝐵
is denoted by 𝑠

2

𝐵
.

The potential extreme region for𝐻
0
: 𝜇
1
= ⋅ ⋅ ⋅ = 𝜇

𝐼
is

{𝑆
2

𝐵
(𝜙
2

1
, . . . , 𝜙

2

𝐼
) ⩾ 𝑠
2

𝐵
(

𝑠
2

1

𝑆
2

1
/𝜙
2

1

, . . . ,
𝑠
2

𝐼

𝑆
2

𝐼
/𝜙
2

𝐼

)} . (8)

The observed sample point (𝑠2
1
, . . . , 𝑠

2

𝐼
) of (𝑆2

1
, . . . , 𝑆

2

𝐼
) falls on

the boundary of this set. The generalized 𝑝 value can be
expressed as

𝑝 = P{𝑆
2

𝐵
(𝜙
2

1
, . . . , 𝜙

2

𝐼
) ⩾ 𝑠
2

𝐵
(

𝑠
2

1

𝑆
2

1
/𝜙
2

1

, . . . ,
𝑠
2

𝐼

𝑆
2

𝐼
/𝜙
2

𝐼

)}

= P{

𝑆
2

𝐵
(𝜙
2

1
, . . . , 𝜙

2

𝐼
)

𝑉
⩾ 𝑠
2

𝐵
(

𝑠
2

1

𝑉
1
/𝑉

, . . . ,
𝑠
2

𝐼

𝑉
𝐼
/𝑉

)}

= 1 − E
𝐵1 ,...,𝐵𝐼−1

{𝐹
𝐼−1,𝑁−𝐼

× [
𝑁 − 𝐼

𝐼 − 1

× {𝑠
2

𝐵
(

𝜆
2

1

𝐵
1
𝐵
2
⋅ ⋅ ⋅ 𝐵
𝐼−1

, . . . ,

𝜆
2

𝑘

(1 − 𝐵
𝑘−1

) 𝐵
𝑘
⋅ ⋅ ⋅ 𝐵
𝐼−1

, . . . ,
𝜆
2

𝐼

1 − 𝐵
𝐼−1

)}]} ,

(9)
where 𝐹

𝐼−1,𝑁−𝐼
is the cdf of the 𝐹 distribution with degrees of

freedom 𝐼−1 and𝑁−𝐼.The expectation is taken with respect
to the independent beta random variables:

𝐵
𝑡
=

∑
𝑡

𝑖=1
𝑈
𝑖

∑
𝑡+1

𝑖=1
𝑈
𝑖

∼ Beta(
∑
𝑡

𝑖=1
𝑛
𝑖
− 1

2
,
𝑛
𝑡+1

− 1

2
) , 𝑡 = 1, . . . , 𝐼.

(10)

2.2. The Standardization-Based 𝑝 Value Test. In this subsec-
tion, we provide new 𝑝 values based on Mahalanobis norm
to test the hypotheses (2). Denote 𝜇 = (𝜇

1
, . . . , 𝜇

𝐼
)
. Note that

the hypotheses (2) can be rewritten in the matrix form
𝐻
0
: 𝐻𝜇 = 0, 𝐻

1
: 𝐻𝜇 ̸= 0, (11)

where

𝐻 = (

1 0 0 ⋅ ⋅ ⋅ 0 −1

0 1 0 ⋅ ⋅ ⋅ 0 −1

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ 1 −1

) , (12)

is an (𝐼 − 1) × 𝐼matrix.
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Denote 𝜇
𝑖
= 𝑌
𝑖⋅⋅
. We have

𝜇
𝑖
=

1

𝑛
𝑖

𝑛𝑖

∑

𝑗=1

𝑌
𝑖𝑗⋅

=
1

𝑇𝑛
𝑖

𝑛𝑖

∑

𝑗=1

1


𝑇
𝑌
𝑖𝑗
∼ 𝑁(𝜇

𝑖
,
𝜙
2

𝑖

𝑇𝑛
𝑖

) . (13)

Thus, it is easy to obtain that

√
𝑇𝑛
𝑖

𝜙
2

𝑖

(𝜇
𝑖
− 𝜇
𝑖
) ∼ 𝑁 (0, 1)

𝑆
2

𝑖

𝜙
2

𝑖

∼ 𝜒
2

𝑛𝑖−1
,

𝑖 = 1, . . . , 𝐼.

(14)

For 𝑖 = 1, . . . , 𝐼, define

𝑍
𝑖
= √

𝑇𝑛
𝑖

𝜙
2

𝑖

(𝜇
∗

𝑖
− 𝜇
𝑖
) ∼ 𝑁 (0, 1) ,

𝑉
𝑖
=

𝑆
∗2

𝑖

𝜙
2

𝑖

∼ 𝜒
2

𝑛𝑖−1
,

(15)

where 𝜇
∗

𝑖
= 𝜇
𝑖
(𝑌
∗
), 𝑆
∗2

𝑖
= 𝑆
2

𝑖
(𝑌
∗
), and 𝑌

∗
= (𝑌

∗

11
, . . . ,

𝑌
∗

1𝑛1
, . . . , 𝑌

∗

𝐼1
, . . . , 𝑌

∗

𝐼𝑛𝐼
) is an independent copy of 𝑌 =

(𝑌
11
, . . . , 𝑌

1𝑛1
, . . . , 𝑌

𝐼1
, . . . , 𝑌

𝐼𝑛𝐼
). By the structural method

provided by Hannig et al. [15] (see Theorem 2 of their
article), we can get the following fiducial generalized pivotal
quantities of 𝜇

𝑖
and 𝜙

2

𝑖
:

𝑅
𝜙
2

𝑖

=
𝑆
2

𝑖

𝑉
𝑖

𝑅
𝜇𝑖

= 𝜇
𝑖
− 𝑍
𝑖
√

𝑅
𝜙
2

𝑖

𝑇𝑛
𝑖

𝑖 = 1, . . . , 𝐼.

(16)

Denote the Mahalanobis norm of a vector 𝑥 with respect
to a positive definite matrix 𝐴 by ‖𝑥‖

𝐴
; that is, ‖𝑥‖

𝐴
=

√𝑥𝐴−1𝑥. Thus, the fiducial generalized pivotal quantity of
𝐻𝜇, the parameter of interest, is 𝑅

𝐻𝜇
= 𝐻𝑅

𝜇
, where 𝑅

𝜇
=

(𝑅
𝜇1
, . . . , 𝑅

𝜇𝐼
)
. Thus, a reasonable ellipsoidal confidence

region of𝐻𝜇 can be given by

{𝐻𝜇 :

𝐻𝜇 − E∗ (𝑅

𝐻𝜇
)
Cov∗(𝑅𝐻𝜇)

⩽ V
𝛼
} , (17)

where 𝐸∗ and Cov∗ represent the expectation and covariance
with respect to𝑌

∗, respectively, and V
𝛼
is the upper 𝛼th quan-

tile of ‖𝐻𝜇 − E∗(𝑅
𝐻𝜇

)‖Cov∗(𝑅𝐻𝜇)
given the observation 𝑌. By

the relationship between confidence regions and hypotheses
testing, the corresponding 𝑝 value for the hypotheses (11) is

𝑝 = P(

𝑅
𝐻𝜇

− E∗ (𝑅
𝐻𝜇

)
Cov∗(𝑅𝐻𝜇)

⩾

E∗ (𝑅

𝐻𝜇
)
Cov∗(𝑅𝐻𝜇)

| 𝑌) .

(18)

It is easy to show that E∗(𝑅
𝐻𝜇

) = 𝐻𝜇 and

Cov∗ (𝑅
𝐻𝜇

) = 𝐻Diag(
𝑆
2

𝑖

𝑇𝑛
𝑖
(𝑛
𝑖
− 3)

)𝐻

. (19)

This method for deriving generalized 𝑝 values concerning
vector parameters has been adopted in Xiong et al. [16].

2.3. The Parametric Bootstrap Test. Following Krishnamoor-
thy et al. [14], we present the parametric bootstrap test for (2).
Denote 𝜙2

𝑖
= 𝑆
2

𝑖
/(𝑛
𝑖
− 1). The test statistic is

TS = 𝑆
2

𝐵
(𝜙
2

1
, . . . , 𝜙

2

𝐼
) =

𝐼

∑

𝑖=1

𝑇𝑛
𝑖

𝜙
2

𝑖

𝜇
2

𝑖
−

(∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/𝜙
2

𝑖
) 𝜇
𝑖
)
2

∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/𝜙
2

𝑖
)

.

(20)

We use the bootstrap method (Efron [17]) to approximate
its null distribution. Generate the bootstrap sample 𝜇

𝐵

𝑖
∼

𝑁(0, 𝜙
2

𝑖
/(𝑇𝑛
𝑖
)) and (𝑛

𝑖
− 1)(𝜙

𝐵

𝐼
)
2
/𝜙
2

𝑖
∼ 𝜒
2

𝑛𝑖−1
, for 𝑖 = 1, . . . , 𝐼.

The bootstrap version of TS is

TS𝐵 =
𝐼

∑

𝑖=1

𝑇𝑛
𝑖

(𝜙
𝐵

𝑖
)
2
(𝜇
𝐵

𝑖
)
2

−

(∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/(𝜙
𝐵

𝑖
)
2

) 𝜇
𝐵

𝑖
)

2

∑
𝐼

𝑖=1
(𝑇𝑛
𝑖
/(𝜙
𝐵

𝑖
)
2

)

. (21)

Given the level 𝛼, we reject 𝐻
0
if TS is greater than the

conditional upper 𝛼th quantile of TS𝐵 conditional on the
observations. The quantile can be computed by the Monte
Carlo method.

3. Simultaneous Confidence Intervals
for the Means

For the case of independent error structure, Xiong and
Mu [18] discussed simultaneous confidence intervals for
all-pairwise differences of the means based on generalized
pivotal quantities. Following their method, we now present
such intervals under the model (1). Bootstrap simultaneous
confidence intervals are also provided.

Denote

𝑅
𝑑
= max
𝑖<𝑗



𝑅
𝜇𝑖
− 𝑅
𝜇𝑗

− E∗ (𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
)

(Var∗ (𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
))

1/2



, (22)

where

E∗ (𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
) = 𝜇
𝑖
− 𝜇
𝑗
,

Var∗ (𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
) =

𝑆
2

𝑖

𝑇𝑛
𝑖
(𝑛
𝑖
− 3)

+

𝑆
2

𝑗

𝑇𝑛
𝑗
(𝑛
𝑗
− 3)

.

(23)

Let 𝑞
𝛼
be the conditional upper 𝛼th quantile of 𝑅

𝑑
. The

distribution of the studentized maximummodulus statistic

𝑀 = max
𝑖<𝑗



(𝜇
𝑖
− 𝜇
𝑗
) − 𝐸
∗
(𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
)

(Var∗ (𝑅
𝜇𝑖
− 𝑅
𝜇𝑗
))

1/2



, (24)
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can be approximated by the conditional distribution of 𝑅
𝑑

conditional on the observations. Then we have the following
(1 − 𝛼) two-sided simultaneous confidence intervals for all-
pairwise differences:

𝜇
𝑖
− 𝜇
𝑗
∈ E∗ (𝑅

𝜇𝑖
− 𝑅
𝜇𝑗
) ± 𝑞
𝛼
(Var∗ (𝑅

𝜇𝑖
− 𝑅
𝜇𝑗
))

1/2

,

∀𝑖 < 𝑗, 𝑖, 𝑗 = 1, . . . , 𝐼.

(25)

The bootstrap method approximates the distribution of
𝑀 by the conditional distribution of 𝑀

𝐵, the bootstrap
version of 𝑀 obtained by replacing 𝜇

𝑖
and 𝜙

2

𝑖
= 𝑆
2

𝑖
/(𝑛
𝑖
− 1)

in 𝑀 with 𝜇
𝐵

𝑖
and (𝜙

𝐵

𝑖
)
2, where 𝜇

𝐵

𝑖
∼ 𝑁(𝜇

𝑖
, 𝜙
2

𝑖
/(𝑇𝑛
𝑖
)) and

(𝑛
𝑖
− 1)(𝜙

𝐵

𝐼
)
2
/𝜙
2

𝑖
∼ 𝜒
2

𝑛𝑖−1
, for 𝑖 = 1, . . . , 𝐼. Then, the bootstrap

(1 − 𝛼) two-sided simultaneous confidence intervals are

𝜇
𝑖
− 𝜇
𝑗
∈ 𝜇
𝑖
− 𝜇
𝑗
± 𝑞
𝐵

𝛼
(Var∗ (𝑅

𝜇𝑖
− 𝑅
𝜇𝑗
))

1/2

,

∀𝑖 < 𝑗, 𝑖, 𝑗 = 1, . . . , 𝐼,

(26)

where 𝑞𝐵
𝛼
is the conditional upper 𝛼th quantile of𝑀𝐵.

4. Simulation Studies

This section is devoted to evaluating the performances of
the procedures described in this paper. We first consider
comparing the generalized 𝐹-tests (denoted by GF), the
standardization-based 𝑝 value test (denoted by SP), and the
parametric bootstrap test (denoted by PB). We will present
the Type I error rates of the three tests through the Monte
Carlo simulation. For a given sample size and parameter
configuration shown in Table 1, the repetition is 5000 times.
The Monte Carlo sample size for computing the 𝑝 values
is 5000. The nominal level is given as 0.05. We take the
dimension 𝑇 of 𝑌

𝑖𝑗
as 4 in our simulation.

The simulated Type I error rates of the two tests are
reported in Table 1. The results are described as follows.

(i) From the results of the two cases, 𝜌 = 0 and 𝜌 = 0.5,
when 𝐼 = 6, we can see that 𝜌 does not have significant
influence on the Type I errors of the two tests.

(ii) The Type I error rates of the GF test exceed the
nominal level in most cases, especially for relatively
large 𝐼. In the worst case of 𝐼 = 10, the Type I error
rate of the GF test is as large as 0.102.

(iii) The SP test appears to be some conservative when the
sample sizes are relatively small. As the sample sizes
increase, its Type I error rates become quite close to
the nominal level.

(iv) The Type I error rates of the PB test sometimes exceed
the nominal level but they are the closest among the
three tests in most cases.

We have an overall conclusion that the proposed SP and
PB tests perform significantly better than the GF test.

The simulated coverage probabilities of the proposed
simultaneous confidence intervals (25) and (26) are shown
in Table 2. It can be seen that the simulated coverage prob-
abilities of such intervals are larger than and/or close to
the confidence level under all sample size and parameter
combinations.

5. An Illustrative Example

We will illustrate our methods using an example. The data
in this example are generated assuming model (1) with 𝐼 =

8, 𝑇 = 4, 𝜎
𝛼

= 1, and 𝜌 = 0.2. We will compare the
performances of the generalized𝐹-test and the proposed tests
with respect to Type I error in the one-way ANOVA model
with unequal error variances. The problem of comparing
seven means is considered. The mean of each distribution is
taken to be 1 so that the null hypotheses 𝐻

01
: 𝜇
2

= 𝜇
3

=

⋅ ⋅ ⋅ = 𝜇
7
, . . . , 𝐻

08
: 𝜇
1
= 𝜇
2
= ⋅ ⋅ ⋅ = 𝜇

7
are all true. Table 3

shows the results of a simulated experiment in which data are
generated from normal distributions with means 1 and the
values of 𝑛

𝑖
, 𝜎
𝑖
, 𝜙
𝑖
, and 𝑖 = 1, . . . , 8. The treatment means 𝜇

𝑖

and residual sum of squares 𝑆2
𝑖
corresponding to each value

of 𝜙
𝑖
are also provided.

Seven treatments out of eight in Table 4 are compared
at a time. The 𝑝 values of the generalized 𝐹-test, the
standardization-based test, and the parametric bootstrap
test are denoted by 𝑝GF, 𝑝SP, and 𝑝PB, respectively. We
compute them using 500,000 Monte Carlo samples. The
results are shown in Table 4. It is noted from the table that
the generalized 𝐹-test tends to reject the null hypothesis.
Even in comparing the means A, B, C, D, E, F, and G, the
generalized 𝐹-test suggests that we have strong evidence to
reject the null hypothesis although the data are generated
with the hypothesis being true. Nevertheless, 𝑝SP’s and 𝑝PB
are all larger than 0.05, which indicates that we cannot reject
any null hypothesis. Thus, compared with the generalized 𝐹-
test, the proposed tests in this paper provide more credible
conclusions in detecting the significance of mean differences.

6. Concluding Remarks

This paper discusses a one-way ANOVAmodel with equicor-
relation error structures. Hypotheses testing of the equality
of the means and simultaneous confidence intervals for all
pair-wise differences of the means are discussed. Numerical
evidences indicate that the proposed tests perform much
better than the generalized 𝐹-test provided by Lin and Lee
[11], and the proposed simultaneous confidence intervals
have good frequentist properties.

Although the generalized inference approach does not
rely on any approximation, it often possesses frequentist
properties only in the asymptotic sense (Hannig et al. [15],
Xiong and Mu [19], and Xiong [20]). Krishnamoorthy et al.
[14] and this paper show that the generalized 𝐹-test has
no satisfactory performances in some cases. It may be a
valuable issue to construct better tests for linear models with
complicatedly dependent structures in the future.
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Table 1: Type I error rates of the tests.

(a)

𝐼 = 6, 𝜌 = 0 𝑛
𝑎

𝑛
𝑏

𝑛
𝑐

𝑛
𝑑

(𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
, 𝜎
5
, 𝜎
6
) GF SP PB GF SP PB GF SP PB GF SP PB

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 0.078 0.037 0.041 0.067 0.043 0.049 0.055 0.042 0.050 0.062 0.047 0.058
(1.0, 1.0, 1.0, 1.5, 1.5, 1.5) 0.075 0.034 0.055 0.068 0.046 0.042 0.056 0.041 0.048 0.065 0.045 0.059
(1.0, 1.0, 1.5, 1.5, 2.0, 2.0) 0.068 0.034 0.052 0.066 0.042 0.038 0.063 0.046 0.045 0.063 0.043 0.048
(1.0, 1.5, 2.0, 2.5, 3.0, 3.5) 0.073 0.033 0.040 0.070 0.046 0.040 0.060 0.044 0.046 0.064 0.046 0.042
𝑛𝑎 = (5, 5, 5, 10, 10, 10); 𝑛𝑏 = (10, 10, 10, 10, 10, 10); 𝑛𝑐 = (10, 10, 10, 15, 15, 15); 𝑛𝑑 = (10, 10, 15, 15, 20, 20).

(b)

𝐼 = 6, 𝜌 = 0.5 𝑛
𝑎

𝑛
𝑏

𝑛
𝑐

𝑛
𝑑

(𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
, 𝜎
5
, 𝜎
6
) GF SP PB GF SP PB GF SP PB GF SP PB

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 0.078 0.037 0.043 0.067 0.043 0.049 0.055 0.042 0.051 0.062 0.047 0.057
(1.0, 1.0, 1.0, 1.5, 1.5, 1.5) 0.075 0.034 0.054 0.070 0.045 0.044 0.057 0.041 0.048 0.064 0.044 0.058
(1.0, 1.0, 1.5, 1.5, 2.0, 2.0) 0.069 0.033 0.052 0.068 0.044 0.040 0.064 0.047 0.047 0.063 0.041 0.047
(1.0, 1.5, 2.0, 2.5, 3.0, 3.5) 0.070 0.032 0.042 0.069 0.047 0.041 0.062 0.043 0.045 0.065 0.048 0.043

(c)

𝐼 = 8, 𝜌 = 0.1 𝑛
1

𝑛
2

𝑛
3

(𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
, 𝜎
5
, 𝜎
6
, 𝜎
7
, 𝜎
8
) GF SP PB GF SP PB GF SP PB

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 0.085 0.042 0.053 0.080 0.045 0.056 0.071 0.047 0.056
(1.0, 1.0, 1.0, 1.0, 1.5, 1.5, 1.5, 1.5) 0.090 0.039 0.045 0.093 0.044 0.051 0.074 0.045 0.052
(1.0, 1.0, 1.5, 1.5, 2.0, 2.0, 2.5, 2.5) 0.087 0.037 0.042 0.084 0.039 0.047 0.072 0.041 0.046
(1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5) 0.092 0.036 0.048 0.085 0.038 0.053 0.077 0.048 0.047
𝑛1 = (5, 5, 5, 5, 10, 10, 10, 10); 𝑛2 = (6, 9, 12, 15, 6, 9, 12, 15); 𝑛3 = (10, 12, 14, 16, 10, 12, 14, 16).

(d)

𝐼 = 10, 𝜌 = 0.3 𝑛
4

𝑛
5

𝑛
6

(𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
, 𝜎
5
, 𝜎
6
, 𝜎
7
, 𝜎
8
, 𝜎
9
, 𝜎
10
) GF SP PB GF SP PB GF SP PB

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 0.094 0.045 0.057 0.096 0.045 0.053 0.076 0.044 0.051
(1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0) 0.102 0.042 0.051 0.098 0.047 0.052 0.089 0.045 0.053
(1.0, 1.0, 1.0, 1.5, 1.5, 1.5, 2.0, 2.0, 3.0, 3.0) 0.094 0.040 0.043 0.083 0.041 0.047 0.077 0.045 0.047
(0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) 0.095 0.041 0.048 0.087 0.039 0.051 0.087 0.048 0.048
𝑛4 = (8, 8, 8, 8, 8, 10, 10, 10, 10, 10); 𝑛5 = (6, 8, 10, 12, 14, 6, 8, 10, 12, 14); 𝑛6 = (10, 10, 10, 10, 10, 15, 15, 15, 15, 15).

Table 2: Coverage probabilities of the simultaneous confidence intervals.

𝜃 = (1, 1, 2, 2) 𝑛 = (6, 8, 10, 12) 𝑛 = (10, 10, 10, 10) 𝑛 = (10, 15, 10, 15)

𝜎 = (𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
) GP PB GP PB GP PB

(1.0, 1.0, 1.0, 1.0) 0.958 0.943 0.957 0.948 0.956 0.954
(1.0, 1.0, 2.0, 2.0) 0.967 0.951 0.959 0.956 0.949 0.950
(1.0, 2.0, 1.5, 1.5) 0.972 0.943 0.955 0.948 0.959 0.946
(0.5, 1.0, 1.5, 2.0) 0.973 0.947 0.960 0.953 0.956 0.948
𝜃 = (1, 2, 3, 4)

𝜎 = (𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
)

(1.0, 1.0, 1.0, 1.0) 0.967 0.942 0.958 0.948 0.955 0.952
(1.0, 1.0, 2.0, 2.0) 0.959 0.945 0.962 0.949 0.946 0.947
(1.0, 2.0, 1.5, 1.5) 0.973 0.952 0.966 0.952 0.953 0.953
(0.5, 1.0, 1.5, 2.0) 0.964 0.945 0.971 0.950 0.956 0.948
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Table 3: Summary statistics in Section 5.

Treatments 𝑛
𝑖

𝜎
𝑖

𝜙
𝑖

𝜇
𝑖

𝜆
2

𝑖

A 5 1.0 5.60 1.806 12.835
B 5 1.5 7.60 2.053 40.928
C 5 2.0 10.40 0.179 10.731
D 5 2.5 14.00 1.492 32.809
E 10 3.0 18.40 0.369 111.134
F 10 3.5 23.60 1.995 430.336
G 10 4.0 29.60 −1.163 290.230
H 10 4.5 36.40 0.743 653.191

Table 4: 𝑃 values in Section 5.

Treatments compared 𝑃GF 𝑃SP 𝑃PB

A, B, C, D, E, F, and G 0.021 0.091 0.075
A, B, C, D, E, F, and H 0.111 0.234 0.186
A, B, C, D, E, H, and G 0.032 0.109 0.134
A, B, C, D, F, G, and H 0.036 0.105 0.115
A, B, C, E, F, G, and H 0.039 0.101 0.089
A, B, D, E, F, G, and H 0.159 0.151 0.152
A, C, D, E, F, G, and H 0.061 0.124 0.073
B, C, D, E, F, G, and H 0.106 0.212 0.182
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