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Abstract

Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection,
rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from
some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice
landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide poly-
morphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association be-
tween rare variants and gene expression outliers under the stress condition. We also show an association of the
strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination

rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
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Introduction

All populations contain some level of deleterious mutation
(Ohta 1973; Huber et al. 2017; Gaut et al. 2018). Strongly
deleterious variants are purged from populations due to
the action of purifying selection, while mildly deleterious
variants can remain in populations at low frequencies
(Kimura 1983). There is great interest in understanding
the levels and consequences of deleterious mutation loads,
since this is an important factor in understanding various
evolutionary phenomena, including the maintenance of
breeding systems, evolution of sex, domestication, and
even species range expansion (Keightley and Eyre-Walker
2000; Peischl et al. 2013; Wright et al. 2013; Gaut et al.
2018; Lozano et al. 2021; Samayoa et al. 2021).
Understanding the nature of deleterious mutations can
also aid in identifying human disease genes, as well as de-
veloping new approaches in plant breeding (Lohmueller
2014; Kono et al. 2016, 2018; Moyers et al. 2018; Wallace
et al. 2018; Labroo et al. 2021).

Considerable effort has gone into predicting the relative
deleteriousness of mutations. In coding sequences, one can
estimate the functional effects of a coding mutation based
on how the mutation affects protein structure (Ng and
Henikoff 2003), while in non-coding sequences, deleter-
iousness is often estimated based on sequence conserva-
tion (Davydov et al. 2010; Kono et al. 2018). The rarity of
polymorphisms in a population can also serve as a signal
for deleteriousness, given that variants can be held at
low frequency by selection and de novo mutations are gen-
erally weakly deleterious (Loewe and Hill 2010; Gibson
2012). Indeed, rare variants are associated with stronger

phenotypic effects compared to common variants
(Marouli et al. 2017; Bloom et al. 2019).

Because of their potentially deleterious nature, rare var-
iants (those whose minor allele frequency in populations
are <5%) are recognized as an important source of vari-
ation in gene expression. Recently, an analysis found that
rare variants account for 25% of gene expression heritabil-
ity, while another approach found 5% gene expression her-
itability explained by singleton polymorphisms (Glassberg
et al. 2019; Hernandez et al. 2019). Large effect expression
quantitative trait loci (eQTLs) are enriched for rare var-
iants, and studies are beginning to quantify rare variant
contribution to gene expression variation (Li et al. 2014;
Bloom et al. 2019; Glassberg et al. 2019).

Genes that are prone to aberrant expression are also en-
riched for rare and private variants in regulatory regions
(Zeng et al. 2015). Rare genetic variants are also associated
with aberrant gene expression and expression outliers in
both human and plant systems (Montgomery et al. 2011;
Zeng et al. 2015; Zhao et al. 2016; Chiang et al. 2017; Li
et al. 2017, 2021; Kremling et al. 2018; Richter et al. 2019;
He et al. 2022). Unsurprisingly, rare variants in expression
outlier genes are enriched for variant classes likely to im-
pact expression, including structural variants (SVs), splice
site mutations, and polymorphisms near the transcription
start site (TSS) (Chiang et al. 2017; Li et al. 2017).

The association of rare genetic variants with outliers in
gene expression supports the prevailing model of gene ex-
pression evolution by stabilizing selection (Glassberg et al.
2019). Under this model, gene expression is under selec-
tion for an optimum level, and deleterious variants are
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predicted to perturb expression away from this optimum
(Bedford and Hartl 2009; Hodgins-Davis et al. 2015; Hill
et al. 2021). Indeed, gene expression patterns are generally
conserved across species, although not all gene classes are
conserved to the same extent (Lemos et al. 2005).

The extent of stabilizing selection on gene expression,
however, is uncertain; when using conventional eQTL ap-
proaches, the ability to identify an eQTL varies at different
allele frequencies and low frequency eQTLs tend to have
inflated effect sizes (Tung et al. 2015; Huang et al. 2018;
Glassberg et al. 2019). Despite this, studies do report an as-
sociation between low allele frequencies and stronger ef-
fect sizes as evidence of stabilizing selection on gene
expression (Li et al. 2014); this is observed even after taking
ascertainment bias and allele frequencies into account
(Josephs et al. 2015; Brown and Kelly 2022). Glassberg
et al. also reported a greater contribution of rare variants
to allele-specific expression and finds fewer regulatory var-
iants around dosage-sensitive genes (Glassberg et al. 2019).
Moreover, the relationship between cis- and trans-
regulatory variation supports stabilizing selection; cis-
and trans-eQTLs tend to evolve commensurate mutations
that maintain gene dosage balance over time (Signor and
Nuzhdin 2018). Patterns of gene evolution also reflect the
importance of gene expression conservation for particular
gene classes, as non-duplicated genes are less tolerant to
regulatory mutations and older genes have fewer asso-
ciated eQTLs (Keane et al. 2014; Popadin et al. 2014).

The stabilizing selection model for gene expression vari-
ation makes other predictions on the strength of the ef-
fects of rare sequence variants on gene expression at
functional loci, but these have remained unexplored. For
example, it would be expected that selection against dele-
terious mutations would be stronger in highly expressed
genes as well as genes with high network connectivity
(Garcia-Alonso et al. 2014; Kremling et al. 2018; Hamala
and Tiffin 2020). These loci would thus be expected to
be depleted of deleterious mutations and display a weaker
effect of rare variants on gene expression variation. This
should also the case for genes in regions of high recombin-
ation, which are expected to have reduced numbers of rare
deleterious mutaions due to the Hill-Robertson effect (Hill
and Robertson 1966; Comeron et al. 2008). Finally, one
would expect that mutations with stronger effects on fit-
ness (Gulko et al. 2015; Joly-Lopez et al. 2020) would be
more likely to impact gene expression variation.

In this study we test these key predictions of the stabil-
izing selection model, as well as generally characterize the
role of rare variants in gene expression in rice (Oryza sati-
va). Rice is a critical crop providing the main food source
for >50% of the world population (Wing et al. 2018).
Rice has a complex demographic history, and during do-
mestication rice populations underwent a series of intro-
gressions and population bottlenecks (Choi et al. 2017;
Liu et al. 2017; Wing et al. 2018). As with many domesti-
cated species, rice has a higher proportion of deleterious
genetic variation compared to its wild relative (Liu et al.
2017; Kou et al. 2020). Rice also transitioned from an
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outbreeding to a selfing reproductive mode, which rapidly
exposes the deleterious effects of rare recessive mutations
while allowing slightly/moderately deleterious variants to
accumulate (Arunkumar et al. 2015).

We examine the relationship between rare genetic var-
iants and outliers in gene expression in a population of
largely O. sativa ssp. indica rice landraces, examining the ef-
fects of multiple variant classes (single nucleotide poly-
morphisms [SNPs], insertion/deletion mutations [indels],
and SVs). We look at the influence of gene expression level,
recombination rate, and gene expression connectivity on
the association between rare sequence polymorphisms
and extremes in gene expression, and probe this both un-
der normal unstressed wet and stressful dry (drought) field
environments. Additionally, we show that variants that
have a higher probability of having a fitness consequence
have stronger associations with outliers in gene expression
(Joly-Lopez et al. 2020).

Results and Discussion

Rare Genetic Variants in Rice

We identified rare genetic variants (<5% minor allele fre-
quency) in a population of 129 O. sativa landraces, which
included 105 cultivars of O. sativa ssp. indica and 24 of the
closely related circum-aus variety group (supplementary
table S1, Supplementary Material online) using whole gen-
ome re-sequencing data (Groen et al. 2020). We included
SNPs, small indels (<20 bps in length), and SVs (>20 bps in
length) in this analysis; unresolved genomic breakpoints
were also categorized as SVs. Across the rice genome of
~400 Mb in length, we initially identified 9,762,370 SNPs,
1,968,501 indels and 110,541 SVs, of which 484,340 SNPs,
294,929 indels and 18,509 SVs across the entire population
had <5% frequency. On average there were 57,345 rare
variants discovered in each genotype, the majority of
which are found in noncoding sequences.

Extremes of Gene Expression Is Associated With
Accumulation of Rare Genetic Variation

Under the stabilizing selection model, deleterious variants
that affect gene expression, which are likely rare, would
tend to increase or decrease gene expression levels away
from the intermediate optimum level (Zhao et al. 2016).
We therefore expect to see an increase in the number of
rare sequence variants in cis-regions of a gene within rice
varieties that display extremes of gene expression in a
population. To test this prediction, we examined the rela-
tionship between rare genetic variation and levels of gene
expression in our rice population, using a rank-based ap-
proach (Zhao et al. 2016; Kremling et al. 2018). In this ana-
lysis, samples are ranked by gene expression level for each
gene in the transcriptome, and the number of rare variants
for each individual at that gene is counted (fig. 1). We then
calculate the mean number of rare variants at each rank
position across all genes (fig. 1). Our analysis included
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FiG. 1. Schematic showing the calculation of mean rare variants per
rank. The expression level for each gene is ranked, and the number of
rare variants for a given individual at a given rank is counted and
summarized across all genes. If there is a relationship between rare
variants, a U-shaped plot of mean rare variants vs. ranks is expected.

rare variants occurring in the gene coding region and 2 kb
upstream of the TSS.

For gene expression data, we used 3’ mRNA expression
data from rice leaves for our sample population collected un-
der both normal wet paddy and dry (drought) field condi-
tions (Groen et al. 2020). The 3’-mRNA-Seq assay was done
in triplicate on 50-day old leaves; in the dry conditions, the
plants were subjected to water deprivation starting 30 days
after planting (Groen et al. 2020). We limited our analysis
to genes that are robustly expressed (i.e, with non-zero ex-
pression levels in >85% of the varieties). This threshold lim-
ited our analysis to 4,046 genes in the wet condition and
3,508 genes in the drought conditions; 3,340 expressed genes
overlapped between these two field environments. We were
able to identify rare variants within the coding region and
2 kb upstream of these robustly expressed genes, including
65,913 SNPs, 12,602 indels, and 5,898 SVs.

We found an association between rare genetic variation
and outlier gene expression in rice under both wet and dry
conditions. As in previous studies, this manifests itself as an
excess of rare variants at the extreme high and low ranks of
genes expression, and the pattern fits a quadratic curve
(wet, =027, P<16%x107°% dry, r’=024, P<4.6X
107%) (fig. 2A) (Zhao et al. 2016; Kremling et al. 2018).

While the above analysis indicates a fit of the data to a
quadratic curve (Zhao et al. 2016), this may not necessarily
reflect significant rare variant enrichment associated with
outlier gene expression. We therefore sought other ways
to test the association of rare variants with outlier gene ex-
pression. As an alternative way to quantify the magnitude
of the burden of rare variants, we tested the direct hypoth-
esis that the extreme ranks in gene expression indeed have
more rare variants compared to the middle ranks. We com-
pared the mean number of rare variants per expression rank
for the highest and lowest 20% of the ranks to the middle
(those in the upper 40 to 60% of the ranks in gene expres-
sion) (fig. 2B). These were all significant using a Mann-
Whitney comparison of mean rare variants per rank.
Under wet conditions, comparison of the high vs. middle
ranks had P=262x10"* and low vs. middle ranks P=
9.25% 107>, while under dry conditions, comparison of
the high vs. middle ranks had P =1 x 10% and low vs. mid-
dle ranks P =0.005. We describe the association of rare var-
iants with outliers in gene expression ‘the rare variant
effect;’ this pattern is a manifestation of the deleterious bur-
den of rare alleles that can contribute to a reduction of
fitness.

Rare Allele Burden in Normal vs. Stress
Environmental Conditions

Under a model of stabilizing selection, gene expression be-
comes canalized whereby the effects of genetic variation
on gene expression is buffered to minimize variation
(Gibson and Wagner 2000; Gibson and Dworkin 2004).
Gene regulatory networks contain buffering motifs and re-
dundancy that promote robustness throughout the net-
work (MacNeil and Walhout 2011; Siegal and Leu 2014).
The ensuing canalization of gene expression patterns could
lead to the accumulation of cryptic genetic variation
(Gibson and Dworkin 2004; Paaby and Rockman 2014).
Under the model of canalization, traits are buffered up
to a certain threshold, past which greater perturbations
can lead to de-canalizing and the release of the cryptic gen-
etic variation (Paaby and Rockman 2014). Accumulation of
novel cryptic variants can lead to deleterious loads under
stressful or novel conditions and the release of expression
regulatory variation in response to temperature variation
has been observed experimentally in Drosophila and C. ele-
gans (Li et al. 2006; Chen et al. 2015; Snoek et al. 2017).
Consistent with this, we observe an increase in the num-
ber of rare variants under stress conditions that may be as-
sociated with cryptic genetic variation. In indica rice, the
rare variant effect on gene expression appears to differ be-
tween environments, and the effect is more pronounced
under the drought stress conditions. To examine this dif-
ference between conditions, we devise the parameter @
=E,/M,, which is the ratio of the total number of rare var-
iants at the extreme ranks (E, = number of rare variants in
the highest 10% and lowest 10% expression ranks) vs. the
middle ranks (M, =number of rare variants between the
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40 and 60% expression ranks). The ratio ¢ = E,/M, =1.158
in drought stress conditions is ~4.5% higher than in nor-
mal wet paddy conditions (¢ =1.108) (supplementary
table S2, Supplementary Material online). This increase
in @ in the stressful dry conditions is small and not signifi-
cant in a permutation test (permuted 1,000 times, P <
0.15), but nevertheless the elevated number of rare var-
iants in extremes vs. middle ranks of gene expression under
stress conditions is significant in a contingency test
(Fishers exact test P=1.6x10"°, log odds ratio= 1.39;
see supplementary table S2, Supplementary Material on-
line for rare variant counts). The pattern remains signifi-
cant when only examining genes shared between the
two conditions (Fishers exact P =0.0067, log odds ratio =
1.02). This suggests that more deleterious mutations are
associated with gene expression outliers under environ-
mental stress conditions.

Rare Variant Effect Among Different Variant Types
We test whether different classes of genetic variants may
have different levels of association with expression outliers.
SVs, for example, create larger mutational lesions in the
genome than SNPs or indels, and are generally associated
with greater effects on expression phenotypes, (Han
et al. 2020; Jakubosky et al. 2020), and are enriched in re-
gions near genes with outlier expression (Chiang et al.
2017). We thus expect SVs to show a more pronounced
rare variant effect on gene expression.

We conducted our analysis on each variant class inde-
pendently and demonstrated that each class contributes to
the rare variant effect (fig. 3). For SNPs, which comprise
the largest variant class, we observe an increase in the num-
ber of rare variants at extreme ranks in both wet and dry con-
ditions (supplementary table S2, Supplementary Material
online). Interestingly, under wet condition there is an increase
in rare indel and SV variants (Mann—-Whitney, SV P = 1.48 X
107°; indel P =0.0018) that appear to lead to decreased gene
expression (fig. 3A). This bias for lower expression is expected
given that SVs (and possibly indels) are more likely to lead to
loss-of-function mutations that decrease gene expression
(Conrad and Hurles 2007). Interestingly, however, the oppos-
ite pattern is observed under dry conditions, at least for SVs
(Mann-Whitney, P =0.02) (fig. 3B), and it is unclear why this
pattern is reversed under stress conditions. It should be noted
that since we observe opposite trends in wet vs,, dry condi-
tions, we do not believe that this environment-specific
skew in rare variant enrichment occurs because of bias asso-
ciated with mapping 3’'mRNA sequencing reads to the refer-
ence genome.

The Effect of Linkage

We compared the rare allele burden at different positions
relative to the gene TSS, with the expectation that the rare
variant effect would be weaker in regions further away
from the TSS. We find the rare variant effect most pro-
nounced in the gene body and in the 2-kb genomic region
immediately upstream of the TSS (fig. 4A). This is observed
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in the quadratic fit of the data in wet conditions, which is
greatest in the gene body (* =0.21) and the 2 kb region
upstream of the TSS (0-2 kb window, r*=0.17 vs. 2—
4 kb window, r* = 0.13). The effect declines in genomic re-
gions further upstream from the TSS, where the quadratic
fit is markedly reduced, with the lowest value in the most
distal region (>20kb upstream of the TSS) (fig. 4A;
supplementary table S3, Supplementary Material online).
We find a similar pattern in dry conditions (fig. 4B;
supplementary table S3, Supplementary Material online).

This linkage effect is also observed with the parameter
¢ =E,/M,. In both wet and dry conditions, this parameter
is high (wet ¢ =1.07, dry ¢ = 1.14) in the 2-kb region dir-
ectly upstream of the TSS, which is consistent with the
presence of regulatory sequences in the gene promoter
(fig. 5). The increase in the proportion of rare variants as-
sociated with the extremes of gene expression between the
2-kb region upstream of genes vs. unlinked sequences
(>20 kb regions) is small—2.8% in wet and 5.2% in dry
conditions. Nevertheless, there is a clear trend of decreas-
ing ¢ with increasing distance from the gene body (see fig.
5). These results are consistent with rare variants having a
greater impact in gene expression the more proximal they
are to the gene and its promoter sequence (Li et al. 2017);
it is the linked sites that are likely to be functionally im-
portant in a gene’s expression.

Interestingly, the parameter ¢ is also high (e.g., wet ¢ =
1.11) in the coding sequence of the gene, which is consist-
ent with other studies that have found that rare variants
from genic regions are also associated with outlier gene ex-
pression (Chiang et al. 2017; Li et al. 2017; Han et al. 2020).
This could partially be explained by linkage between the
gene body and causal rare variants in proximal regulatory
regions, or possibly other regulatory elements within a
gene that affects transcript levels. Decreased mRNA levels,
for example, may arise through loss-of-function mutations
in coding regions that lead to nonsense mediated decay
(Karousis and Miihlemann 2019). Variants in the coding
sequence could also influence expression if a gene has
auto-regulatory functionality or by triggering changes in
feedback loops controlling that gene's expression
(Rockman and Kruglyak 2006). Expression stimulation by
introns is another well characterized source of expression
regulation in many plant species (Rose 2019).

Deleterious Rare Variation and Recombination Rates
The Hill-Robertson effect predicts that selection is less ef-
fective in regions of reduced recombination, and thus dele-
terious variants are more likely to accumulate in regions of
low recombination (Hill and Robertson 1966; Comeron
et al. 2008). Enrichment of deleterious variants in low re-
combining regions is observed in rice and many other sys-
tems (Charlesworth and Campos 2014; Renaut and
Rieseberg 2015; Rodgers-Melnick et al. 2015; Liu et al.
2017; Kono et al. 2019; Kim et al. 2021). We therefore ex-
pect that rare variants in low recombining regions should
contribute more to the burden of rare alleles.
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We assigned recombination rates to each gene in our ana-
lysis based on a genetic map derived from a O. sativa japonica/
aus cross and then classified the genes into high and low re-
combination rate genes based on the top and bottom 50th
percentile (Harushima et al. 1998). The ratio ¢ = E,/M, is high-
er in low recombination genes (¢ = 1.13) compared to high
recombination genes (¢ =1.09) in wet conditions; the same
increase is seen in dry conditions (fig. 6A; supplementary
table S2, Supplementary Material online). There is also enrich-
ment of rare variants in the extremes of gene expression for
the low recombining compared to the high recombining
genes; the increase in low recombining regions is 3.7% in
wet conditions and 5.3% in dry conditions and these are sig-
nificant (Fishers exact, wet: P=3.77 X 10>, log odds = 1.04;
dry: P=2.7 % 107>, log odds = 1.05; supplementary table S2,
Supplementary Material online). Our observation of a re-
duced rare variant effect in genes in high recombination re-
gions demonstrates the role of purifying selection on gene
expression levels, which reduces the levels of deleterious mu-
tations as predicted by the Hill-Robertson effect.

SNPs With Different Fitness Consequence Scores

The relative fitness effects of mutations are often esti-
mated by modeling sequence conservation across species
(Joly-Lopez et al. 2016). It has been observed that gene ex-
pression outlier variants are associated with conserved

sequences in human tissues (Li et al. 2017; Richter et al.
2019). Recently, models have been developed that incorp-
orate not only macroevolutionary sequence variation, but
within- and between-species genetic variation to model
the effects of selection on specific genomic sequence fea-
tures (Gronau et al. 2013; Gulko et al. 2015; Joly-Lopez
et al. 2020). Such models lead to the inference of fitness
consequence (fitCons) maps for a species, and one was re-
cently developed for rice (Joly-Lopez et al. 2020). In these
maps, a fithess consequence score (p) is assigned to differ-
ent positions in the genome; p ranges from 0 to 1 repre-
senting the probability that a mutation at a specific site
has a fitness consequence, and is thus a measure of selec-
tion acting on a genomic region (Joly-Lopez et al. 2020).

For our analysis, we used the rice fitness consequence
map to assign a p value for each rare SNP in our dataset.
Based on the distribution of p across the rice genome, we
then classified SNPs into high (p>0.2) and low (p <0.1)
p classes; the thresholds were determined by the distribu-
tion of fitness consequence scores across the rice genome
(Joly-Lopez et al. 2020). We expected the rare variant effect
to be more pronounced with SNPs in the high p class, since
mutations in this class are expected to be more deleterious
(i.e, with a greater effect on fitness). As predicted, the high
p rare SNPs produced a significantly stronger rare variant
effect compared to the low p rare SNPs in both wet
(~7.4% increase) and dry (~6.03%) conditions (Fishers ex-
act, wet: P=2.04% 10"/, log odds = 1.07; dry: P=3.86x
107>, log odds=1.06) (fig. 6B; supplementary table S2,
Supplementary Material online).

Highly Expressed Genes Have Lower Burden of Rare
Alleles
Highly expressed genes are under greater purifying selection
(Lemos et al. 2005; Larracuente et al. 2008; Gout et al. 2010).
There are two possible scenarios on how the rare variant effect
can manifest itself under this increased selection. First, in-
creased purifying selelction could lead to a more pronounced
rare variant effect by increasing the number of deleterious var-
iants in a population. Alternatively, very strong purifying selec-
tion can purge deleterious alleles, leading to less deleterious
variants in the population and thus a weaker rare variant ef-
fect. Interestingly, we find that the rare variant effect is indeed
weaker among highly expressed genes compared to those ex-
pressed at lower levels, supporting the second scenario. We
split our gene dataset into the highest and lowest 50th per-
centile of gene expression levels. Similar to what has been
shown in maize (Kremling et al. 2018), we find that the quad-
ratic curve is more pronounced in the lower expressed genes.
This pattern can also be seen in a significant enrichment
in the number of rare variants in the extremes among low-
er expressed genes (wet @ =1.13; dry ¢ =1.17) compared
to genes with higher expression (wet ¢ =1.08; dry 9=
1.15) (Fishers exact, wet: P=5.4x 10>, log odds = 1.04;
dry: P=0.05, log odds=1.02) (fig. 6C supplementary
table S2, Supplementary Material online) (Kremling et al.
2018). Correlation between expression level and
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recombination has been observed in other studies; how-
ever, we found no correlation between recombination
rate and gene expression that might explain this pattern
(wet: Pearson r=—0.02, P=0.33; dry: r=—0.01, P=0.37)
(Larracuente et al. 2008). These results suggest that purify-
ing selection may act with greater strength in highly ex-
pressed genes, and is weaker in genes of lower expression
such that the latter harbors more deleterious mutations.

The Impact of Network Connectivity
Stabilizing selection on gene expression should be affected by
the properties of the network of interactions of a given gene.

We obtained a measure of connectivity for each gene in our
data set from a field study of rice (Plessis et al. 2015); our
measure describes how strongly a gene’s expression corre-
lates with the mean expression of genes that belong to a co-
expressed cluster. We estimated connectivity for 2,936 ro-
bustly expressed genes in the wet condition and 2,568 genes
in the dry condition (Plessis et al. 2015). We then classified
genes into high connectivity and low connectivity groups
(high connectivity genes: r=0.80-0.99; low connectivity
genes: r =0.16-0.77) and examined the rare variant effect.
In wet conditions, the rare variant effect was stronger in
low connectivity genes, and the number of rare variants in
expression outliers was lower among high connectivity
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Fic. 4. Mean rare variants per expression rank and linkage. Mean rare variants per expression rank within genes and in 2 kb regions upstream of
the TSS for wet (A) and dry (B) conditions. * values are from the best-fitted quadratic model.
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genes (high connectivity ¢ =1.06; low connectivity ¢ =
1.12; Fishers exact P=5x10">, log odds=1.05) (fig. 6D;
supplementary table S2, Supplementary Material online).
In the dry condition, the rare variant effect is similar in
both high and low connectivity genes (high connectivity
¢ =122, low connectivity ¢ = 1.21, Fishers exact P=0.71,
log odds =0.99), and there is no significant difference.

Gene connectivity is correlated with expression level;
therefore it is difficult to disentangle the relationship be-
tween rare variants and gene connectivity vs. that of gene
expression (Williamson et al. 2014; Josephs et al. 2017).
However, Brown et al, used a similar measure of co-
expression module connectivity and non-expression
correlated genes, and showed that eQTLs in highly con-
nected genes occur at lower population frequencies
than low connectivity genes (Brown and Kelly 2022).
Nucleotide interactome analysis also found that deleteri-
ous variants are more frequent at the periphery of the in-
teractome under normal conditions, while under a
disease state deleterious variants were present in more
central nodes (Garcia-Alonso et al. 2014). Our results
are consistent with these studies, at least in the normal
wet conditions. Together, our results suggest that dele-
terious mutations are at lower levels in highly connected
genes, where such mutations may have greater pleiotrop-
ic consequences and are therefore more likely to have
been purged by purifying selection.

Summary

We have investigated the effects of rare genetic variants on
gene expression in the key domesticated crop O. sativa. Our
work is consistent with results of similar rank-based analysis
of the effects of rare variants on gene expression in humans
and maize (Zhao et al. 2016; Kremling et al. 2018), and add-
itionally shows the contributions of different types of gen-
etic variants to expression variation. The effects of

1.20
wet
1.15 ~ dry
¢ 1.10
1.05
1.00 T T T T T T

Y
A ST NS
Qﬂ/b ¥ o e
Vv '\Oef\

Fic. 5. ¢ for genic regions and windows upstream of the gene in wet
(blue) and dry (red) conditions. Wet corresponds to the left bar and
dry corresponds to the right bar.

deleterious variation on fitness are particularly relevant in
domesticated crops, which have undergone population
bottlenecks during their evolution, and more so in a selfing
species such as rice. As also observed in humans and maize,
the ability to conduct large-scale gene expression assays
permits us to observe the effects of rare deleterious expres-
sion on thousands of gene expression phenotypes.

Our results demonstrate how the burden of rare var-
iants varies among genes based on attributes such as re-
combination rate, expression level, and connectivity, all
of which support a stabilizing selection model for gene ex-
pression; the pattern is summarized in Table 1. We find, for
example, that the rare variant effect is weaker among high-
ly recombining regions, demonstrating the role of recom-
bination in removing deleterious variants from the
population. Differences in the rare variant effect among
different classes of genes also reflect that not all genes
are under equal levels of stabilizing selection, and the rela-
tive tolerance of different gene classes to aberrant gene ex-
pression could provide insights into the relative
contributions of molecular evolution through regulatory
and coding sequence change. Finally, our study examines
the relationship between rare variants and outliers in
gene expression under multiple environmental conditions.
Analyzing environmentally induced changes in gene ex-
pression is a unique way to survey the effects of cryptic
variation simultaneously across a large number of traits.
The transcriptome response to stress is both specific and
non-specific, and the increased dysregulation associated
with deleterious variants under stress could be due to a
general stress response or reflect environment-specific be-
havior (Lépez-Maury et al. 2008).

Studying the extent and nature of deleterious muta-
tions is important in understanding their role in evolution-
ary phenomena (Keightley and Eyre-Walker 2000; Gibson
2012; Wright et al. 2013; Gaut et al. 2018). There are also
more immediate practical reasons, as it has been suggested
that domesticated crop species contain a large mutational
burden that could restrain agricultural yields (Ramu et al.
2017; Yang et al. 2017; Moyers et al. 2018; Wallace et al.
2018). The reduction of this deleterious mutational bur-
den is already a goal of many breeding efforts (Wallace
et al. 2018; Labroo et al. 2021), and dissecting the effects
of these mutations in gene expression can provide new
avenues of investigation and help advance future crop
breeding.

Materials and Methods

Gene Expression Data

Whole genome re-sequencing data and sequencing of 3’
mRNA tags for 129 indica samples are part of a previously
published dataset (Groen et al. 2020). The RNA 3’ reads
were processed using the Drop-seq pipeline (https:/
github.com/broadinstitute/Drop-seq/tree/master/src/
scripts) and the STAR aligner (version 2.5.2b) (https://
github.com/alexdobin/STAR). In summary, the Shuhui498
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(R498) reference genomeV3 (http://mbkbase.org/R498/) was
prepared as the reference using STAR genomeGenerate and
then fastq reads are converted to unaligned BAM files using
picard FastqtoSam for each library. Drop-seq_alignmentsh
from the Drop-seq pipeline (Drop-seq_tools version 1.12)
was run for each BAM file, and the results are converted to
digital expression files using “DigitalExpression” from the
Drop-seq package. Digital expression files were merged and
read count normalized as described in Groen et al, 2020. All
downstream analysis was carried out on log2(normalized
transcripts-per-million value + 1).

SNP/Indel Calling

Raw FASTQ reads were downloaded from SRA BioProject
accession numbers PRJNA422249 and PRJNA557122
(Gutaker et al. 2020). SNP/indel calling was performed
using GATK v.4.0.1.2 implemented in a Nextflow pipeline
(https://github.com/zlye/RVE). In summary, reads were
mapped against Shuhui498 reference genome (Du et al.
2017) using the global aligner BWA-MEM v.0.7.01 mode
(Li and Durbin 2009). FASTQ sequences from the same
samples were merged and duplicate reads are removed
using Picard MarkDuplicates to generate sam files
(http://broadinstitute.github.io/picard/). SAM files were
validated and indexed to make bam files for each sample
which were used to call haplotypes with gatk-4.0.1.2
HAPLOTYPE CALLER. gVCF haplotypes were joined using
gatk-4.0.1.2 GenomicsDBlImport and then called across
the population using gatk-4.0.1.2 GenotypeGVCFs to pro-
duce a set of raw indels and SNPs. SNPs and indels were
filtered for biallelic variants. SNPs and indels were also
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filtered for quality based on normalized by depth (QD),
mapping quality (MQ), MappingQualityRankSumTest
(MQRankSum), read strand bias from strand odds ratio
(SOR) read position bias from Wilcoxon's test
(ReadPosRankSum) and strand bias from Fisher’s test
(FS). The following filters were applied to SNPs: QD > 2,
FS < 60, MQ > 40, SOR < 4, MQRankSum > —12.5;
ReadPosRankSum > —8. The following filters were applied
to indels: QD > 2, FS < 200, SOR < 10. Indels were filtered
for variants 20 bps or less in length.

SV Calling

SVs were discovered from BAM files using GRIDSS v 2.8.0
(Cameron et al. 2017). Samples with multiple sequencing
libraries were jointly processed by GRIDSS. Deletions, du-
plications, insertions, and inversions were resolved from
the breakends (BND) discovered by GRIDSS using custom
scripts (https://github.com/zlye/RVE). Deletion and dupli-
cation variants were annotated for read-depth using
Duphold v0.12 (Pedersen and Quinlan 2019). SVs were fil-
tered for deletions with read-depth fold-change relative to
flanking regions < 70%, and for duplications with fold-
change relative to bins in the genome with similar
GC-content > 130%. BNDs, insertions, and inversions
were retained.

Although SVs are commonly categorized as variants
>50 base pairs, we included variants greater than 20
base pairs because GRIDSS performs well in identifying var-
iants in this size range and we sought to maximize the in-
clusion of genetic variants in our dataset (Cameron et al.
2017; Kosugi et al. 2019). We discarded SVs >200 kb as
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probably false positives. SVs were merged into a popula-
tion dataset using a custom python scrip (https://github.
com/zlye/RVE). Merging required 50% reciprocal overlap
and breakends to be within 1 kb of each other to join
SVs across samples. Exact genomic position match was re-
quired to merge BNDs. SVs with overlapping coordinates
within an individual could represent complex rearrange-
ments and cause ambiguity when merging across samples;
thus, these were excluded.

Rare Variant and Expression Filtering

SNPs and indels were filtered for <5% frequency in the
population and a minimum of at least one homozygous in-
dividual or three heterozygous individuals. We chose this
filtering scheme to account for the possibility of sequen-
cing error in singleton heterozygotes. SVs were also filtered
for frequency <5% in the population. Singletons were per-
mitted among SVs because SV calls are derived from mul-
tiple signals in sequencing data—split-reads, read-depth,
and assembly; thus, the probability of false positive single-
ton SVs is much lower than SNPs or indels.

Genes are considered in the analysis if they are ex-
pressed in two replicates in at least 85% (109/129) indivi-
duals. Genes with >50% reciprocal overlap with predicted
transposable elements were removed from the data set (15
genes were removed). Gene expression is calculated as the
mean expression across the three replicates.

Fitness Consequence Score Analysis

The rice fitness consequence map (Joly-Lopez et al. 2020) is
anchored on the rice japonica Nipponbare reference
Os-Nipponbare-Reference-IRGSP-1.0  (Sasaki and Burr
2000), which can be downloaded from RAP-DB (https://
rapdb.dna.affrc.go.jp/). Nipponbare coordinates were
determined for each rare SNP using LiftOver from
the UCSC genome browser (Kent et al. 2002). Fitness
consequence map was downloaded from the fitcons
browser (http://purugganan-genomebrowser.bio.nyu.edu/
insightJuly2018/greeninsight.html) and intersected with
the rare SNP Nipponbare coordinates to assign fitcons p
scores to each rare SNP.

Connectivity

We obtained measures of expression connectivity based
on gene co-expression modules derived from transcrip-
tome data of 240 rice samples under wet and dry condi-
tions from Plessis et al. (Plessis et al. 2015). Gene

Table 1. Summary of Patterns of Rare Variant Effect.

Strong effect Weak effect
Linkage Linked Unlinked
Recombination rate Low recombination High recombination
Environment Dry/stress Wet/normal
Expression level Lower expression Higher expression
Fitness consequence High p Low p

Connectivity Low connectivity High connectivity

connectivity was defined as the correlation with the
mean of gene expression in the cluster, which we obtained
for 3,071 genes in our dataset of robustly expressed genes.

Statistical Analysis
All statistical analysis were carried out using Python pack-
age SciPy (Virtanen et al. 2020).

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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