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Abstract
Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection, 
rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from 
some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice 
landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide poly-
morphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association be-
tween rare variants and gene expression outliers under the stress condition. We also show an association of the 
strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination 
rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
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Introduction
All populations contain some level of deleterious mutation 
(Ohta 1973; Huber et al. 2017; Gaut et al. 2018). Strongly 
deleterious variants are purged from populations due to 
the action of purifying selection, while mildly deleterious 
variants can remain in populations at low frequencies 
(Kimura 1983). There is great interest in understanding 
the levels and consequences of deleterious mutation loads, 
since this is an important factor in understanding various 
evolutionary phenomena, including the maintenance of 
breeding systems, evolution of sex, domestication, and 
even species range expansion (Keightley and Eyre-Walker 
2000; Peischl et al. 2013; Wright et al. 2013; Gaut et al. 
2018; Lozano et al. 2021; Samayoa et al. 2021). 
Understanding the nature of deleterious mutations can 
also aid in identifying human disease genes, as well as de-
veloping new approaches in plant breeding (Lohmueller 
2014; Kono et al. 2016, 2018; Moyers et al. 2018; Wallace 
et al. 2018; Labroo et al. 2021).

Considerable effort has gone into predicting the relative 
deleteriousness of mutations. In coding sequences, one can 
estimate the functional effects of a coding mutation based 
on how the mutation affects protein structure (Ng and 
Henikoff 2003), while in non-coding sequences, deleter-
iousness is often estimated based on sequence conserva-
tion (Davydov et al. 2010; Kono et al. 2018). The rarity of 
polymorphisms in a population can also serve as a signal 
for deleteriousness, given that variants can be held at 
low frequency by selection and de novo mutations are gen-
erally weakly deleterious (Loewe and Hill 2010; Gibson 
2012). Indeed, rare variants are associated with stronger 

phenotypic effects compared to common variants 
(Marouli et al. 2017; Bloom et al. 2019).

Because of their potentially deleterious nature, rare var-
iants (those whose minor allele frequency in populations 
are <5%) are recognized as an important source of vari-
ation in gene expression. Recently, an analysis found that 
rare variants account for 25% of gene expression heritabil-
ity, while another approach found 5% gene expression her-
itability explained by singleton polymorphisms (Glassberg 
et al. 2019; Hernandez et al. 2019). Large effect expression 
quantitative trait loci (eQTLs) are enriched for rare var-
iants, and studies are beginning to quantify rare variant 
contribution to gene expression variation (Li et al. 2014; 
Bloom et al. 2019; Glassberg et al. 2019).

Genes that are prone to aberrant expression are also en-
riched for rare and private variants in regulatory regions 
(Zeng et al. 2015). Rare genetic variants are also associated 
with aberrant gene expression and expression outliers in 
both human and plant systems (Montgomery et al. 2011; 
Zeng et al. 2015; Zhao et al. 2016; Chiang et al. 2017; Li 
et al. 2017, 2021; Kremling et al. 2018; Richter et al. 2019; 
He et al. 2022). Unsurprisingly, rare variants in expression 
outlier genes are enriched for variant classes likely to im-
pact expression, including structural variants (SVs), splice 
site mutations, and polymorphisms near the transcription 
start site (TSS) (Chiang et al. 2017; Li et al. 2017).

The association of rare genetic variants with outliers in 
gene expression supports the prevailing model of gene ex-
pression evolution by stabilizing selection (Glassberg et al. 
2019). Under this model, gene expression is under selec-
tion for an optimum level, and deleterious variants are 
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predicted to perturb expression away from this optimum 
(Bedford and Hartl 2009; Hodgins-Davis et al. 2015; Hill 
et al. 2021). Indeed, gene expression patterns are generally 
conserved across species, although not all gene classes are 
conserved to the same extent (Lemos et al. 2005).

The extent of stabilizing selection on gene expression, 
however, is uncertain; when using conventional eQTL ap-
proaches, the ability to identify an eQTL varies at different 
allele frequencies and low frequency eQTLs tend to have 
inflated effect sizes (Tung et al. 2015; Huang et al. 2018; 
Glassberg et al. 2019). Despite this, studies do report an as-
sociation between low allele frequencies and stronger ef-
fect sizes as evidence of stabilizing selection on gene 
expression (Li et al. 2014); this is observed even after taking 
ascertainment bias and allele frequencies into account 
(Josephs et al. 2015; Brown and Kelly 2022). Glassberg 
et al. also reported a greater contribution of rare variants 
to allele-specific expression and finds fewer regulatory var-
iants around dosage-sensitive genes (Glassberg et al. 2019). 
Moreover, the relationship between cis- and trans- 
regulatory variation supports stabilizing selection; cis- 
and trans-eQTLs tend to evolve commensurate mutations 
that maintain gene dosage balance over time (Signor and 
Nuzhdin 2018). Patterns of gene evolution also reflect the 
importance of gene expression conservation for particular 
gene classes, as non-duplicated genes are less tolerant to 
regulatory mutations and older genes have fewer asso-
ciated eQTLs (Keane et al. 2014; Popadin et al. 2014).

The stabilizing selection model for gene expression vari-
ation makes other predictions on the strength of the ef-
fects of rare sequence variants on gene expression at 
functional loci, but these have remained unexplored. For 
example, it would be expected that selection against dele-
terious mutations would be stronger in highly expressed 
genes as well as genes with high network connectivity 
(Garcia-Alonso et al. 2014; Kremling et al. 2018; Hämälä 
and Tiffin 2020). These loci would thus be expected to 
be depleted of deleterious mutations and display a weaker 
effect of rare variants on gene expression variation. This 
should also the case for genes in regions of high recombin-
ation, which are expected to have reduced numbers of rare 
deleterious mutaions due to the Hill–Robertson effect (Hill 
and Robertson 1966; Comeron et al. 2008). Finally, one 
would expect that mutations with stronger effects on fit-
ness (Gulko et al. 2015; Joly-Lopez et al. 2020) would be 
more likely to impact gene expression variation.

In this study we test these key predictions of the stabil-
izing selection model, as well as generally characterize the 
role of rare variants in gene expression in rice (Oryza sati-
va). Rice is a critical crop providing the main food source 
for >50% of the world population (Wing et al. 2018). 
Rice has a complex demographic history, and during do-
mestication rice populations underwent a series of intro-
gressions and population bottlenecks (Choi et al. 2017; 
Liu et al. 2017; Wing et al. 2018). As with many domesti-
cated species, rice has a higher proportion of deleterious 
genetic variation compared to its wild relative (Liu et al. 
2017; Kou et al. 2020). Rice also transitioned from an 

outbreeding to a selfing reproductive mode, which rapidly 
exposes the deleterious effects of rare recessive mutations 
while allowing slightly/moderately deleterious variants to 
accumulate (Arunkumar et al. 2015).

We examine the relationship between rare genetic var-
iants and outliers in gene expression in a population of 
largely O. sativa ssp. indica rice landraces, examining the ef-
fects of multiple variant classes (single nucleotide poly-
morphisms [SNPs], insertion/deletion mutations [indels], 
and SVs). We look at the influence of gene expression level, 
recombination rate, and gene expression connectivity on 
the association between rare sequence polymorphisms 
and extremes in gene expression, and probe this both un-
der normal unstressed wet and stressful dry (drought) field 
environments. Additionally, we show that variants that 
have a higher probability of having a fitness consequence 
have stronger associations with outliers in gene expression 
(Joly-Lopez et al. 2020).

Results and Discussion
Rare Genetic Variants in Rice
We identified rare genetic variants (<5% minor allele fre-
quency) in a population of 129 O. sativa landraces, which 
included 105 cultivars of O. sativa ssp. indica and 24 of the 
closely related circum-aus variety group (supplementary 
table S1, Supplementary Material online) using whole gen-
ome re-sequencing data (Groen et al. 2020). We included 
SNPs, small indels (<20 bps in length), and SVs (>20 bps in 
length) in this analysis; unresolved genomic breakpoints 
were also categorized as SVs. Across the rice genome of 
∼400 Mb in length, we initially identified 9,762,370 SNPs, 
1,968,501 indels and 110,541 SVs, of which 484,340 SNPs, 
294,929 indels and 18,509 SVs across the entire population 
had <5% frequency. On average there were 57,345 rare 
variants discovered in each genotype, the majority of 
which are found in noncoding sequences.

Extremes of Gene Expression Is Associated With 
Accumulation of Rare Genetic Variation
Under the stabilizing selection model, deleterious variants 
that affect gene expression, which are likely rare, would 
tend to increase or decrease gene expression levels away 
from the intermediate optimum level (Zhao et al. 2016). 
We therefore expect to see an increase in the number of 
rare sequence variants in cis-regions of a gene within rice 
varieties that display extremes of gene expression in a 
population. To test this prediction, we examined the rela-
tionship between rare genetic variation and levels of gene 
expression in our rice population, using a rank-based ap-
proach (Zhao et al. 2016; Kremling et al. 2018). In this ana-
lysis, samples are ranked by gene expression level for each 
gene in the transcriptome, and the number of rare variants 
for each individual at that gene is counted (fig. 1). We then 
calculate the mean number of rare variants at each rank 
position across all genes (fig. 1). Our analysis included 
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rare variants occurring in the gene coding region and 2 kb 
upstream of the TSS.

For gene expression data, we used 3′ mRNA expression 
data from rice leaves for our sample population collected un-
der both normal wet paddy and dry (drought) field condi-
tions (Groen et al. 2020). The 3′-mRNA-Seq assay was done 
in triplicate on 50-day old leaves; in the dry conditions, the 
plants were subjected to water deprivation starting 30 days 
after planting (Groen et al. 2020). We limited our analysis 
to genes that are robustly expressed (i.e., with non-zero ex-
pression levels in >85% of the varieties). This threshold lim-
ited our analysis to 4,046 genes in the wet condition and 
3,508 genes in the drought conditions; 3,340 expressed genes 
overlapped between these two field environments. We were 
able to identify rare variants within the coding region and 
2 kb upstream of these robustly expressed genes, including 
65,913 SNPs, 12,602 indels, and 5,898 SVs.

We found an association between rare genetic variation 
and outlier gene expression in rice under both wet and dry 
conditions. As in previous studies, this manifests itself as an 
excess of rare variants at the extreme high and low ranks of 
genes expression, and the pattern fits a quadratic curve 
(wet, r2 = 0.27, P < 1.6 × 10−9; dry, r2 = 0.24, P < 4.6 × 
10−8) (fig. 2A) (Zhao et al. 2016; Kremling et al. 2018).

While the above analysis indicates a fit of the data to a 
quadratic curve (Zhao et al. 2016), this may not necessarily 
reflect significant rare variant enrichment associated with 
outlier gene expression. We therefore sought other ways 
to test the association of rare variants with outlier gene ex-
pression. As an alternative way to quantify the magnitude 
of the burden of rare variants, we tested the direct hypoth-
esis that the extreme ranks in gene expression indeed have 
more rare variants compared to the middle ranks. We com-
pared the mean number of rare variants per expression rank 
for the highest and lowest 20% of the ranks to the middle 
(those in the upper 40 to 60% of the ranks in gene expres-
sion) (fig. 2B). These were all significant using a Mann– 
Whitney comparison of mean rare variants per rank. 
Under wet conditions, comparison of the high vs. middle 
ranks had P = 2.62 × 10−4 and low vs. middle ranks P = 
9.25 × 10−3, while under dry conditions, comparison of 
the high vs. middle ranks had P = 1 × 10−4, and low vs. mid-
dle ranks P = 0.005. We describe the association of rare var-
iants with outliers in gene expression ‘the rare variant 
effect;’ this pattern is a manifestation of the deleterious bur-
den of rare alleles that can contribute to a reduction of 
fitness.

Rare Allele Burden in Normal vs. Stress 
Environmental Conditions
Under a model of stabilizing selection, gene expression be-
comes canalized whereby the effects of genetic variation 
on gene expression is buffered to minimize variation 
(Gibson and Wagner 2000; Gibson and Dworkin 2004). 
Gene regulatory networks contain buffering motifs and re-
dundancy that promote robustness throughout the net-
work (MacNeil and Walhout 2011; Siegal and Leu 2014). 
The ensuing canalization of gene expression patterns could 
lead to the accumulation of cryptic genetic variation 
(Gibson and Dworkin 2004; Paaby and Rockman 2014). 
Under the model of canalization, traits are buffered up 
to a certain threshold, past which greater perturbations 
can lead to de-canalizing and the release of the cryptic gen-
etic variation (Paaby and Rockman 2014). Accumulation of 
novel cryptic variants can lead to deleterious loads under 
stressful or novel conditions and the release of expression 
regulatory variation in response to temperature variation 
has been observed experimentally in Drosophila and C. ele-
gans (Li et al. 2006; Chen et al. 2015; Snoek et al. 2017).

Consistent with this, we observe an increase in the num-
ber of rare variants under stress conditions that may be as-
sociated with cryptic genetic variation. In indica rice, the 
rare variant effect on gene expression appears to differ be-
tween environments, and the effect is more pronounced 
under the drought stress conditions. To examine this dif-
ference between conditions, we devise the parameter φ 
= Er/Mr, which is the ratio of the total number of rare var-
iants at the extreme ranks (Er = number of rare variants in 
the highest 10% and lowest 10% expression ranks) vs. the 
middle ranks (Mr = number of rare variants between the 
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FIG. 1. Schematic showing the calculation of mean rare variants per 
rank. The expression level for each gene is ranked, and the number of 
rare variants for a given individual at a given rank is counted and 
summarized across all genes. If there is a relationship between rare 
variants, a U-shaped plot of mean rare variants vs. ranks is expected.

3

https://doi.org/10.1093/molbev/msac193


Lye et al · https://doi.org/10.1093/molbev/msac193 MBE

40 and 60% expression ranks). The ratio φ = Er/Mr = 1.158 
in drought stress conditions is ∼4.5% higher than in nor-
mal wet paddy conditions (φ = 1.108) (supplementary 
table S2, Supplementary Material online). This increase 
in φ in the stressful dry conditions is small and not signifi-
cant in a permutation test (permuted 1,000 times, P < 
0.15), but nevertheless the elevated number of rare var-
iants in extremes vs. middle ranks of gene expression under 
stress conditions is significant in a contingency test 
(Fishers exact test P = 1.6 × 10−8, log odds ratio = 1.39; 
see supplementary table S2, Supplementary Material on-
line for rare variant counts). The pattern remains signifi-
cant when only examining genes shared between the 
two conditions (Fishers exact P = 0.0067, log odds ratio = 
1.02). This suggests that more deleterious mutations are 
associated with gene expression outliers under environ-
mental stress conditions.

Rare Variant Effect Among Different Variant Types
We test whether different classes of genetic variants may 
have different levels of association with expression outliers. 
SVs, for example, create larger mutational lesions in the 
genome than SNPs or indels, and are generally associated 
with greater effects on expression phenotypes, (Han 
et al. 2020; Jakubosky et al. 2020), and are enriched in re-
gions near genes with outlier expression (Chiang et al. 
2017). We thus expect SVs to show a more pronounced 
rare variant effect on gene expression.

We conducted our analysis on each variant class inde-
pendently and demonstrated that each class contributes to 
the rare variant effect (fig. 3). For SNPs, which comprise 
the largest variant class, we observe an increase in the num-
ber of rare variants at extreme ranks in both wet and dry con-
ditions (supplementary table S2, Supplementary Material
online). Interestingly, under wet condition there is an increase 
in rare indel and SV variants (Mann–Whitney, SV P = 1.48 × 
10−5; indel P = 0.0018) that appear to lead to decreased gene 
expression (fig. 3A). This bias for lower expression is expected 
given that SVs (and possibly indels) are more likely to lead to 
loss-of-function mutations that decrease gene expression 
(Conrad and Hurles 2007). Interestingly, however, the oppos-
ite pattern is observed under dry conditions, at least for SVs 
(Mann–Whitney, P = 0.02) (fig. 3B), and it is unclear why this 
pattern is reversed under stress conditions. It should be noted 
that since we observe opposite trends in wet vs., dry condi-
tions, we do not believe that this environment-specific 
skew in rare variant enrichment occurs because of bias asso-
ciated with mapping 3′mRNA sequencing reads to the refer-
ence genome.

The Effect of Linkage
We compared the rare allele burden at different positions 
relative to the gene TSS, with the expectation that the rare 
variant effect would be weaker in regions further away 
from the TSS. We find the rare variant effect most pro-
nounced in the gene body and in the 2-kb genomic region 
immediately upstream of the TSS (fig. 4A). This is observed 

in the quadratic fit of the data in wet conditions, which is 
greatest in the gene body (r2 = 0.21) and the 2 kb region 
upstream of the TSS (0–2 kb window, r2 = 0.17 vs. 2– 
4 kb window, r2 = 0.13). The effect declines in genomic re-
gions further upstream from the TSS, where the quadratic 
fit is markedly reduced, with the lowest value in the most 
distal region (>20 kb upstream of the TSS) (fig. 4A; 
supplementary table S3, Supplementary Material online). 
We find a similar pattern in dry conditions (fig. 4B; 
supplementary table S3, Supplementary Material online).

This linkage effect is also observed with the parameter 
φ = Er/Mr. In both wet and dry conditions, this parameter 
is high (wet φ = 1.07, dry φ = 1.14) in the 2-kb region dir-
ectly upstream of the TSS, which is consistent with the 
presence of regulatory sequences in the gene promoter 
(fig. 5). The increase in the proportion of rare variants as-
sociated with the extremes of gene expression between the 
2-kb region upstream of genes vs. unlinked sequences 
(>20 kb regions) is small—2.8% in wet and 5.2% in dry 
conditions. Nevertheless, there is a clear trend of decreas-
ing φ with increasing distance from the gene body (see fig. 
5). These results are consistent with rare variants having a 
greater impact in gene expression the more proximal they 
are to the gene and its promoter sequence (Li et al. 2017); 
it is the linked sites that are likely to be functionally im-
portant in a gene’s expression.

Interestingly, the parameter φ is also high (e.g., wet φ = 
1.11) in the coding sequence of the gene, which is consist-
ent with other studies that have found that rare variants 
from genic regions are also associated with outlier gene ex-
pression (Chiang et al. 2017; Li et al. 2017; Han et al. 2020). 
This could partially be explained by linkage between the 
gene body and causal rare variants in proximal regulatory 
regions, or possibly other regulatory elements within a 
gene that affects transcript levels. Decreased mRNA levels, 
for example, may arise through loss-of-function mutations 
in coding regions that lead to nonsense mediated decay 
(Karousis and Mühlemann 2019). Variants in the coding 
sequence could also influence expression if a gene has 
auto-regulatory functionality or by triggering changes in 
feedback loops controlling that gene’s expression 
(Rockman and Kruglyak 2006). Expression stimulation by 
introns is another well characterized source of expression 
regulation in many plant species (Rose 2019).

Deleterious Rare Variation and Recombination Rates
The Hill-Robertson effect predicts that selection is less ef-
fective in regions of reduced recombination, and thus dele-
terious variants are more likely to accumulate in regions of 
low recombination (Hill and Robertson 1966; Comeron 
et al. 2008). Enrichment of deleterious variants in low re-
combining regions is observed in rice and many other sys-
tems (Charlesworth and Campos 2014; Renaut and 
Rieseberg 2015; Rodgers-Melnick et al. 2015; Liu et al. 
2017; Kono et al. 2019; Kim et al. 2021). We therefore ex-
pect that rare variants in low recombining regions should 
contribute more to the burden of rare alleles.
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We assigned recombination rates to each gene in our ana-
lysis based on a genetic map derived from a O. sativa japonica/ 
aus cross and then classified the genes into high and low re-
combination rate genes based on the top and bottom 50th 
percentile (Harushima et al. 1998). The ratio φ = Er/Mr is high-
er in low recombination genes (φ = 1.13) compared to high 
recombination genes (φ = 1.09) in wet conditions; the same 
increase is seen in dry conditions (fig. 6A; supplementary 
table S2, Supplementary Material online). There is also enrich-
ment of rare variants in the extremes of gene expression for 
the low recombining compared to the high recombining 
genes; the increase in low recombining regions is 3.7% in 
wet conditions and 5.3% in dry conditions and these are sig-
nificant (Fishers exact, wet: P = 3.77 × 10−5, log odds = 1.04; 
dry: P = 2.7 × 10−5, log odds = 1.05; supplementary table S2, 
Supplementary Material online). Our observation of a re-
duced rare variant effect in genes in high recombination re-
gions demonstrates the role of purifying selection on gene 
expression levels, which reduces the levels of deleterious mu-
tations as predicted by the Hill–Robertson effect.

SNPs With Different Fitness Consequence Scores
The relative fitness effects of mutations are often esti-
mated by modeling sequence conservation across species 
(Joly-Lopez et al. 2016). It has been observed that gene ex-
pression outlier variants are associated with conserved 

sequences in human tissues (Li et al. 2017; Richter et al. 
2019). Recently, models have been developed that incorp-
orate not only macroevolutionary sequence variation, but 
within- and between-species genetic variation to model 
the effects of selection on specific genomic sequence fea-
tures (Gronau et al. 2013; Gulko et al. 2015; Joly-Lopez 
et al. 2020). Such models lead to the inference of fitness 
consequence (fitCons) maps for a species, and one was re-
cently developed for rice (Joly-Lopez et al. 2020). In these 
maps, a fitness consequence score (ρ) is assigned to differ-
ent positions in the genome; ρ ranges from 0 to 1 repre-
senting the probability that a mutation at a specific site 
has a fitness consequence, and is thus a measure of selec-
tion acting on a genomic region (Joly-Lopez et al. 2020).

For our analysis, we used the rice fitness consequence 
map to assign a ρ value for each rare SNP in our dataset. 
Based on the distribution of ρ across the rice genome, we 
then classified SNPs into high (ρ > 0.2) and low (ρ < 0.1) 
ρ classes; the thresholds were determined by the distribu-
tion of fitness consequence scores across the rice genome 
(Joly-Lopez et al. 2020). We expected the rare variant effect 
to be more pronounced with SNPs in the high ρ class, since 
mutations in this class are expected to be more deleterious 
(i.e., with a greater effect on fitness). As predicted, the high 
ρ rare SNPs produced a significantly stronger rare variant 
effect compared to the low ρ rare SNPs in both wet 
(∼7.4% increase) and dry (∼6.03%) conditions (Fishers ex-
act, wet: P = 2.04 × 10−7, log odds = 1.07; dry: P = 3.86 × 
10−5, log odds = 1.06) (fig. 6B; supplementary table S2, 
Supplementary Material online).

Highly Expressed Genes Have Lower Burden of Rare 
Alleles
Highly expressed genes are under greater purifying selection 
(Lemos et al. 2005; Larracuente et al. 2008; Gout et al. 2010). 
There are two possible scenarios on how the rare variant effect 
can manifest itself under this increased selection. First, in-
creased purifying selelction could lead to a more pronounced 
rare variant effect by increasing the number of deleterious var-
iants in a population. Alternatively, very strong purifying selec-
tion can purge deleterious alleles, leading to less deleterious 
variants in the population and thus a weaker rare variant ef-
fect. Interestingly, we find that the rare variant effect is indeed 
weaker among highly expressed genes compared to those ex-
pressed at lower levels, supporting the second scenario. We 
split our gene dataset into the highest and lowest 50th per-
centile of gene expression levels. Similar to what has been 
shown in maize (Kremling et al. 2018), we find that the quad-
ratic curve is more pronounced in the lower expressed genes.

This pattern can also be seen in a significant enrichment 
in the number of rare variants in the extremes among low-
er expressed genes (wet φ = 1.13; dry φ = 1.17) compared 
to genes with higher expression (wet φ = 1.08; dry φ = 
1.15) (Fishers exact, wet: P = 5.4 × 10−5, log odds = 1.04; 
dry: P = 0.05, log odds = 1.02) (fig. 6C; supplementary 
table S2, Supplementary Material online) (Kremling et al. 
2018). Correlation between expression level and 
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recombination has been observed in other studies; how-
ever, we found no correlation between recombination 
rate and gene expression that might explain this pattern 
(wet: Pearson r = −0.02, P = 0.33; dry: r = −0.01, P = 0.37) 
(Larracuente et al. 2008). These results suggest that purify-
ing selection may act with greater strength in highly ex-
pressed genes, and is weaker in genes of lower expression 
such that the latter harbors more deleterious mutations.

The Impact of Network Connectivity
Stabilizing selection on gene expression should be affected by 
the properties of the network of interactions of a given gene. 

We obtained a measure of connectivity for each gene in our 
data set from a field study of rice (Plessis et al. 2015); our 
measure describes how strongly a gene’s expression corre-
lates with the mean expression of genes that belong to a co- 
expressed cluster. We estimated connectivity for 2,936 ro-
bustly expressed genes in the wet condition and 2,568 genes 
in the dry condition (Plessis et al. 2015). We then classified 
genes into high connectivity and low connectivity groups 
(high connectivity genes: r = 0.80–0.99; low connectivity 
genes: r = 0.16–0.77) and examined the rare variant effect.

In wet conditions, the rare variant effect was stronger in 
low connectivity genes, and the number of rare variants in 
expression outliers was lower among high connectivity 
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genes (high connectivity φ = 1.06; low connectivity φ = 
1.12; Fishers exact P = 5 x10−5, log odds = 1.05) (fig. 6D; 
supplementary table S2, Supplementary Material online). 
In the dry condition, the rare variant effect is similar in 
both high and low connectivity genes (high connectivity 
φ = 1.22, low connectivity φ = 1.21, Fishers exact P = 0.71, 
log odds = 0.99), and there is no significant difference.

Gene connectivity is correlated with expression level; 
therefore it is difficult to disentangle the relationship be-
tween rare variants and gene connectivity vs. that of gene 
expression (Williamson et al. 2014; Josephs et al. 2017). 
However, Brown et al, used a similar measure of co- 
expression module connectivity and non-expression 
correlated genes, and showed that eQTLs in highly con-
nected genes occur at lower population frequencies 
than low connectivity genes (Brown and Kelly 2022). 
Nucleotide interactome analysis also found that deleteri-
ous variants are more frequent at the periphery of the in-
teractome under normal conditions, while under a 
disease state deleterious variants were present in more 
central nodes (Garcia-Alonso et al. 2014). Our results 
are consistent with these studies, at least in the normal 
wet conditions. Together, our results suggest that dele-
terious mutations are at lower levels in highly connected 
genes, where such mutations may have greater pleiotrop-
ic consequences and are therefore more likely to have 
been purged by purifying selection.

Summary
We have investigated the effects of rare genetic variants on 
gene expression in the key domesticated crop O. sativa. Our 
work is consistent with results of similar rank-based analysis 
of the effects of rare variants on gene expression in humans 
and maize (Zhao et al. 2016; Kremling et al. 2018), and add-
itionally shows the contributions of different types of gen-
etic variants to expression variation. The effects of 

deleterious variation on fitness are particularly relevant in 
domesticated crops, which have undergone population 
bottlenecks during their evolution, and more so in a selfing 
species such as rice. As also observed in humans and maize, 
the ability to conduct large-scale gene expression assays 
permits us to observe the effects of rare deleterious expres-
sion on thousands of gene expression phenotypes.

Our results demonstrate how the burden of rare var-
iants varies among genes based on attributes such as re-
combination rate, expression level, and connectivity, all 
of which support a stabilizing selection model for gene ex-
pression; the pattern is summarized in Table 1. We find, for 
example, that the rare variant effect is weaker among high-
ly recombining regions, demonstrating the role of recom-
bination in removing deleterious variants from the 
population. Differences in the rare variant effect among 
different classes of genes also reflect that not all genes 
are under equal levels of stabilizing selection, and the rela-
tive tolerance of different gene classes to aberrant gene ex-
pression could provide insights into the relative 
contributions of molecular evolution through regulatory 
and coding sequence change. Finally, our study examines 
the relationship between rare variants and outliers in 
gene expression under multiple environmental conditions. 
Analyzing environmentally induced changes in gene ex-
pression is a unique way to survey the effects of cryptic 
variation simultaneously across a large number of traits. 
The transcriptome response to stress is both specific and 
non-specific, and the increased dysregulation associated 
with deleterious variants under stress could be due to a 
general stress response or reflect environment-specific be-
havior (López-Maury et al. 2008).

Studying the extent and nature of deleterious muta-
tions is important in understanding their role in evolution-
ary phenomena (Keightley and Eyre-Walker 2000; Gibson 
2012; Wright et al. 2013; Gaut et al. 2018). There are also 
more immediate practical reasons, as it has been suggested 
that domesticated crop species contain a large mutational 
burden that could restrain agricultural yields (Ramu et al. 
2017; Yang et al. 2017; Moyers et al. 2018; Wallace et al. 
2018). The reduction of this deleterious mutational bur-
den is already a goal of many breeding efforts (Wallace 
et al. 2018; Labroo et al. 2021), and dissecting the effects 
of these mutations in gene expression can provide new 
avenues of investigation and help advance future crop 
breeding.

Materials and Methods
Gene Expression Data
Whole genome re-sequencing data and sequencing of 3′ 
mRNA tags for 129 indica samples are part of a previously 
published dataset (Groen et al. 2020). The RNA 3′ reads 
were processed using the Drop-seq pipeline (https:// 
github.com/broadinstitute/Drop-seq/tree/master/src/ 
scripts) and the STAR aligner (version 2.5.2b) (https:// 
github.com/alexdobin/STAR). In summary, the Shuhui498 
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(R498) reference genomeV3 (http://mbkbase.org/R498/) was 
prepared as the reference using STAR genomeGenerate and 
then fastq reads are converted to unaligned BAM files using 
picard FastqtoSam for each library. Drop-seq_alignment.sh 
from the Drop-seq pipeline (Drop-seq_tools version 1.12) 
was run for each BAM file, and the results are converted to 
digital expression files using “DigitalExpression” from the 
Drop-seq package. Digital expression files were merged and 
read count normalized as described in Groen et al., 2020. All 
downstream analysis was carried out on log2(normalized 
transcripts-per-million value + 1).

SNP/Indel Calling
Raw FASTQ reads were downloaded from SRA BioProject 
accession numbers PRJNA422249 and PRJNA557122 
(Gutaker et al. 2020). SNP/indel calling was performed 
using GATK v.4.0.1.2 implemented in a Nextflow pipeline 
(https://github.com/zlye/RVE). In summary, reads were 
mapped against Shuhui498 reference genome (Du et al. 
2017) using the global aligner BWA-MEM v.0.7.01 mode 
(Li and Durbin 2009). FASTQ sequences from the same 
samples were merged and duplicate reads are removed 
using Picard MarkDuplicates to generate sam files 
(http://broadinstitute.github.io/picard/). SAM files were 
validated and indexed to make bam files for each sample 
which were used to call haplotypes with gatk-4.0.1.2 
HAPLOTYPE CALLER. gVCF haplotypes were joined using 
gatk-4.0.1.2 GenomicsDBIImport and then called across 
the population using gatk-4.0.1.2 GenotypeGVCFs to pro-
duce a set of raw indels and SNPs. SNPs and indels were 
filtered for biallelic variants. SNPs and indels were also 

filtered for quality based on normalized by depth (QD), 
mapping quality (MQ), MappingQualityRankSumTest 
(MQRankSum), read strand bias from strand odds ratio 
(SOR) read position bias from Wilcoxon’s test 
(ReadPosRankSum) and strand bias from Fisher’s test 
(FS). The following filters were applied to SNPs: QD > 2, 
FS < 60, MQ > 40, SOR < 4, MQRankSum > −12.5; 
ReadPosRankSum > −8. The following filters were applied 
to indels: QD > 2, FS < 200, SOR < 10. Indels were filtered 
for variants 20 bps or less in length.

SV Calling
SVs were discovered from BAM files using GRIDSS v 2.8.0 
(Cameron et al. 2017). Samples with multiple sequencing 
libraries were jointly processed by GRIDSS. Deletions, du-
plications, insertions, and inversions were resolved from 
the breakends (BND) discovered by GRIDSS using custom 
scripts (https://github.com/zlye/RVE). Deletion and dupli-
cation variants were annotated for read-depth using 
Duphold v0.12 (Pedersen and Quinlan 2019). SVs were fil-
tered for deletions with read-depth fold-change relative to 
flanking regions < 70%, and for duplications with fold- 
change relative to bins in the genome with similar 
GC-content > 130%. BNDs, insertions, and inversions 
were retained.

Although SVs are commonly categorized as variants 
>50 base pairs, we included variants greater than 20 
base pairs because GRIDSS performs well in identifying var-
iants in this size range and we sought to maximize the in-
clusion of genetic variants in our dataset (Cameron et al. 
2017; Kosugi et al. 2019). We discarded SVs >200 kb as 
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probably false positives. SVs were merged into a popula-
tion dataset using a custom python scrip (https://github. 
com/zlye/RVE). Merging required 50% reciprocal overlap 
and breakends to be within 1 kb of each other to join 
SVs across samples. Exact genomic position match was re-
quired to merge BNDs. SVs with overlapping coordinates 
within an individual could represent complex rearrange-
ments and cause ambiguity when merging across samples; 
thus, these were excluded.

Rare Variant and Expression Filtering
SNPs and indels were filtered for <5% frequency in the 
population and a minimum of at least one homozygous in-
dividual or three heterozygous individuals. We chose this 
filtering scheme to account for the possibility of sequen-
cing error in singleton heterozygotes. SVs were also filtered 
for frequency <5% in the population. Singletons were per-
mitted among SVs because SV calls are derived from mul-
tiple signals in sequencing data—split-reads, read-depth, 
and assembly; thus, the probability of false positive single-
ton SVs is much lower than SNPs or indels.

Genes are considered in the analysis if they are ex-
pressed in two replicates in at least 85% (109/129) indivi-
duals. Genes with >50% reciprocal overlap with predicted 
transposable elements were removed from the data set (15 
genes were removed). Gene expression is calculated as the 
mean expression across the three replicates.

Fitness Consequence Score Analysis
The rice fitness consequence map (Joly-Lopez et al. 2020) is 
anchored on the rice japonica Nipponbare reference 
Os-Nipponbare-Reference-IRGSP-1.0 (Sasaki and Burr 
2000), which can be downloaded from RAP-DB (https:// 
rapdb.dna.affrc.go.jp/). Nipponbare coordinates were 
determined for each rare SNP using LiftOver from 
the UCSC genome browser (Kent et al. 2002). Fitness 
consequence map was downloaded from the fitcons 
browser (http://purugganan-genomebrowser.bio.nyu.edu/ 
insightJuly2018/greenInsight.html) and intersected with 
the rare SNP Nipponbare coordinates to assign fitcons ρ 
scores to each rare SNP.

Connectivity
We obtained measures of expression connectivity based 
on gene co-expression modules derived from transcrip-
tome data of 240 rice samples under wet and dry condi-
tions from Plessis et al. (Plessis et al. 2015). Gene 

connectivity was defined as the correlation with the 
mean of gene expression in the cluster, which we obtained 
for 3,071 genes in our dataset of robustly expressed genes.

Statistical Analysis
All statistical analysis were carried out using Python pack-
age SciPy (Virtanen et al. 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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