
Received: August 1, 2024. Revised: December 8, 2024. Accepted: December 27, 2024
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2025, 26(1), bbae715

https://doi.org/10.1093/bib/bbae715

Problem Solving Protocol

Directed evolution of antimicrobial peptides using
multi-objective zeroth-order optimization
Xianliang Liu1, Jiawei Luo1, Xinyan Wang2, Yang Zhang3, Junjie Chen 1,*

1School of Computer Science and Technology, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055,
Guangdong, China
2Core Research Facility, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen 518055, Guangdong, China
3School of Science, Harbin Institute of Technology, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, Guangdong, China

*Corresponding author. Info Building, HIT Campus, Shenzhen University Town, Nanshan District, Shenzhen 518055, China. E-mail: junjiechen@hit.edu.cn

Abstract

Antimicrobial peptides (AMPs) emerge as a type of promising therapeutic compounds that exhibit broad spectrum antimicrobial activity
with high specificity and good tolerability. Natural AMPs usually need further rational design for improving antimicrobial activity
and decreasing toxicity to human cells. Although several algorithms have been developed to optimize AMPs with desired properties,
they explored the variations of AMPs in a discrete amino acid sequence space, usually suffering from low efficiency, lack diversity,
and local optimum. In this work, we propose a novel directed evolution method, named PepZOO, for optimizing multi-properties
of AMPs in a continuous representation space guided by multi-objective zeroth-order optimization. PepZOO projects AMPs from a
discrete amino acid sequence space into continuous latent representation space by a variational autoencoder. Subsequently, the
latent embeddings of prototype AMPs are taken as start points and iteratively updated according to the guidance of multi-objective
zeroth-order optimization. Experimental results demonstrate PepZOO outperforms state-of-the-art methods on improving the multi-
properties in terms of antimicrobial function, activity, toxicity, and binding affinity to the targets. Molecular docking and molecular
dynamics simulations are further employed to validate the effectiveness of our method. Moreover, PepZOO can reveal important motifs
which are required to maintain a particular property during the evolution by aligning the evolutionary sequences. PepZOO provides a
novel research paradigm that optimizes AMPs by exploring property change instead of exploring sequence mutations, accelerating the
discovery of potential therapeutic peptides.
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Introduction
Antimicrobial peptides (AMPs) are a type of small proteins that
exhibit broad-spectrum antimicrobial activity with high speci-
ficity and good tolerability [1]. The emergence of drug resistance
is becoming a major clinical challenge due to the single tar-
get antibiotics, long-term and extensive utilization [2, 3]. Unlike
conventional antibiotics, AMPs can act on multiple targets on
the plasma membrane and intracellular targets of pathogenic
bacteria, demonstrating their potential as novel therapeutic can-
didates [4]. However, natural AMPs often have deficiencies, such
as instability, short half-life, side effects, severe hemolytic activity,
and proteolytic degradation [5]. Therefore, it is an urgent need to
optimize the natural AMPs to overcome their shortcomings. Tradi-
tional chemical modification-based methods design new AMPs by
adding or substituting amino acids, usually aiming at increasing
the amphiphilicity or charge. However, such a process is costly and
time-consuming due to the vast searching space. Thus, it is urgent
to devise efficient and accurate in silico approaches to accelerate
the discovery of novel AMP drugs.

In recent years, computational approaches for peptide design
are rapidly emerging and have achieved significant success in
the discovery of therapeutic peptides. The paradigms of existing

methods are grouped as screening-based methods, de novo design
methods, and evolutionary-based methods. The screening-based
methods build classifiers to predict the properties of peptides,
such as the toxicity or activity, by typically capturing the internal
patterns of amino acids from large-scale databases. A series of
methods based on quantitative structure-activity relationship
models [6], traditional machine learning methods (iAMP-2L [7],
ProFun-SOM [8], scCM [9], Lee et al. [10]), deep-learning methods
(AMPlify [11], iAMPCN [12], iAMP-CA2L [13], TPpred-ATMV [14],
iMFP-LG [15], MLBP [16], AMP Scanner Vr.2 [17], CFAGO [18],
TPpred-SC [19], sAMPpred-GAT [20], KNIME [21], pLM4ACE [22],
pLM4Alg [23], esm-AxP-GDL [24]), pre-trained protein language
models [25, 26] were proposed to distinguish AMPs and non-
AMPs. To discover new AMPs, these screening-based methods
are usually employed to screen various large protein datasets.
For instance, AMPlify [11] was used to mine the AMP-rich North
American bullfrog (Rana [Lithobates] catesbeiana) genome for
novel natural AMPs. Ma et al. [25] combined multiple natural
language processing models to construct a unified pipeline
for candidate AMP identification from human gut microbiome
data. Nevertheless, these methods can only identify possible
AMPs from existing databases and cannot generate novel AMPs.
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The de novo design methods utilize generative models to learn
the distribution of natural AMPs and generate novel potential
active peptides that don’t exist in nature. The widely used
generative models, such as generative adversarial networks
(GAN) (PepGAN [27], Enhancer-GAN [28], Forest-GAN [29], AMP-
GAN [30], DeepImmuno [31], PAR-GAN [32], ProteinGAN [33],
GAN-pep [34], Feedback GAN [35]) as well as variational auto-
encoders (VAE) (PepCVAE [36], PepVAE [37], HydrAMP [5], CLaSS
[38]), have been employed for designing new AMPs. Recent
progress in Transformer-based architectures has enabled the
implementation of language models capable of generating text
with human-like capabilities. Motivated by this success, protein
language models trained on the protein space that generates
de novo protein sequences following the principles of natural
ones have been proposed, including ProtGPT2 [39], ProGen2 [40].
Nevertheless, these generative models have no precise control
over the properties of the generated peptides. The candidate
sequences are typically challenging to further optimize iteratively
by this method.

In contrast, the evolutionary-based methods iteratively evolve
a population of AMPs from the AMP prototypes and evaluate their
fitness. The performance of these methods depend on the strate-
gies of evolution. The genetic algorithms (GA) based approaches
( [41–46]) generate new sequences by adding random mutations
or recombination. Bayesian optimization (BO) [47] recommends
the new AMP variants according to the distribution of existing
AMPs so as to find AMPs with high properties efficiently. However,
both GA and BO methods are used for searching in the discrete
sequence space, resulting in low efficiency in the case of high
discrete dimension. While the query-based molecule optimization
[48] framework exploits latent representation learning and differ-
ent sampling techniques to achieve an efficient search. Examples
include the combined use of VAE and BO [49], VAE and Gaussian
sampling [50], VAE and sampling guided by a predictor [51], VAE
and evolutionary algorithms [52], VAE and random neighborhood
sampling [48], deep reinforcement learning and a generative net-
work [53, 54], and attribute-guided rejection sampling on a VAE
[38].

Regarding the design of potential AMPs, optimizing the mul-
tiple properties of an AMP (e.g. overcoming the deficiencies of
existing natural AMPs while enhancing their activity) can improve
the success rate of generation. Compared with the exploration of
whole peptide space by adding or substituting amino acids, the
zeroth-order optimization algorithm is flexible to be integrated
with multiple-objective optimization framework to directionally
optimize the AMP in latent representation space, avoiding costly
and time-consuming searching.

In this study, we proposed a multi-objective directed evolution
method for AMP design, named PepZOO, to optimize multiple
properties of the natural AMPs. PepZOO first projects the amino
acid sequences of AMPs as latent embeddings by leveraging a pre-
trained autoencoder model, and then searches the evolutionary
direction by evaluating the multiple desired properties of the close
AMP embeddings in the latent space. At last, the evolutionary
direction is determined according to the zeroth-order optimiza-
tion. PepZOO is flexible, as it can work with any predictor and does
not require the predictor to be differentiable, just using feedback
from a set of predictors to guide the optimization. Experimental
results demonstrate PepZOO outperforms state-of-the-art meth-
ods on improving the properties of peptides in terms of antimi-
crobial function, activity, and toxicity. Furthermore, molecular
docking as well as molecular dynamics (MD) simulations show the
validity of PepZOO with a high success rate on the optimization

of binding affinity. PepZOO is a novel paradigm in designing AMPs
to accelerate the discovery of therapeutic AMPs and combat the
issue of antimicrobial resistance.

Results
Overview of the proposed method PepZOO
PepZOO is a multi-objective optimization framework that directly
searches peptide variants with desired properties in a peptide
representation space guided by a set of property predictors and
evaluation metrics. It consists of three modules (Fig. 1), including
peptide representation module, property evaluation module, and
directed searching module.

Peptide representation module projects peptides as embed-
dings in a latent representation space by leveraging an encoder-
decoder model. The encoder Enc: PL → R

d encodes a peptide p =
a1, a2, · · · , aL ∈ P

L to a low-dimensional continuous real-valued
representation of dimension d, denoted by an embedding vector
z = Enc(p), where ai(i = 1, 2, · · · , L) is one of 20 amino acids and P

L

is a set of peptides with less than L amino acids. The decoder Dec:
R

d → P
L decodes the latent representation z back to the peptide

sequence p′, denoted by p′ = Dec(z). Property evaluation module
can be a set of predictive models or scoring functions used to
estimate desired properties of peptide variants generated by the
decoder. For the generated peptide sequence p′, PepZOO employs a
set of separate predictive models fi(p′)m

i=1 to evaluate the multiple
properties to be optimized, where f (·) is denoted as a predictive
model and m is the total number of predictive models. In this
study, we are interested in the properties, such as antimicrobial
function, activity, toxicity, and binding affinity. Directed searching
module is to determine an evolutionary direction according to
the property evaluation of n random samplings z(1), z(2), · · · , z(n)

near the embedding z in latent representation space by the prop-
erty evaluation module f (Dec(z(i))). Since the property evaluation
module may not be differentiable, zeroth-order optimization algo-
rithm is employed to calculate gradients of optimization direction,
denoted by ∇grad(z) = ∑m

j=1

∑n
i=1 ZOOj(fj(Dec(z(i))). At last, the

peptide embeddings are updated according to the zeroth-order
gradients z′ = z + k∇grad(z) (k is the learning rate), and are
fed into the decoder to generate novel peptides p′′ = Dec(z′).
This optimization can be iteratively conducted, until the target
properties of peptides satisfy the requirements.

Optimization of function and activity
of antimicrobial peptides
We first illustrated the effectiveness of PepZOO to optimize the
antimicrobial function and activity of peptides, comparing with
three widely used methods: conditional VAE (CVAE) [55], PepCVAE
[36], and HydrAMP [5]. Specifically, we evaluated the effective-
ness of separately enhancing the antimicrobial function PAMP and
antimicrobial activity PMIC, as well as simultaneously optimizing
these two properties. To evaluate the improvement of compared
methods, all peptides were divided into three cases according to
their antimicrobial function PAMP and antimicrobial activity PMIC,
where case 1 consists of peptides with high antimicrobial function
(PAMP >0.8) and high antimicrobial activity (PMIC >0.5), case 2
consists of peptides with high antimicrobial function (PAMP >0.8)
and low antimicrobial activity (PMIC ≤ 0.5), and case 3 consists of
the remaining peptides with low antimicrobial function (PAMP ≤
0.8). For DRAMP dataset, case 1 has 5523 peptides, 8,453 peptides
for case 2, and 3,147 peptides for case 3. For APD3 dataset, case1
has 687 peptides, 688 peptides for case 2, and 13 peptides for
case 3, respectively. Here, PepZOO_AMP represents the model to
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Figure 1. Illustration of the proposed PepZOO framework. (a) The architecture of PepZOO, which consists of three modules, including peptide
representation module, property evaluation module, and directed searching module. (b) Two applications of PepZOO. The task 1 is to optimize the
antimicrobial functionality of AMP prototypes, which are divided into three cases according to their antimicrobial function PAMP and activity PMIC. The
task 2 is to optimize the structural property of prototype peptides against SARS-CoV-2 virus.

optimize antimicrobial function. PepZOO_MIC denotes the model
to optimize the antimicrobial activity, where PepZOO_AMP_MIC
refers to simultaneously optimizing both properties.

For the antimicrobial function optimization, PepZOO_AMP out-
performs the other three methods (Fig. 2a). All of the methods
can generate peptides with higher PAMP than that of prototypes
for all of three cases in both DRAMP and APD3 datasets, but
the improvement ratio of PepZOO_AMP is the highest. Taking the
results of the DRAMP dataset as an example (Fig. 2a). For case 1,
although most of the PAMP of prototypes are greater than 0.97,
PepZOO can generate peptides with PAMP greater than 0.99. For
case 2, PepZOO generates peptides with PAMP greater than 0.99
while other methods generate peptides with PAMP greater than
0.97. For case 3, given prototypes with low PAMP, PepZOO can
generate peptides with PAMP greater than 0.95, while other models
have a relatively small increase in PAMP. Furthermore, although
PMIC is not an optimization goal in this experimental setting, the
PMIC of generated peptides is also improved. The last two rows in
Fig. 2a show the performance comparison between our method

and compared methods on the APD3 dataset. The results on
the APD3 are consistent with those on the DRAMP. In summary,
PepZOO has superior performance in improving PAMP compared
with other models.

For the antimicrobial activity optimization, PepZOO_MIC also
surpasses other methods (Fig. 2a). AMPs with high activity can
exert antimicrobial effects at lower doses, which can fundamen-
tally reduce the side effects caused by AMPs. Here, an AMP with
a higher PMIC indicates a higher probability to have MIC ≤ 101.5 �
32μg/mL. Thus, a higher PMIC is better for antimicrobial activity
optimization. The first two rows in Fig. 2a present the experi-
mental results of our method alongside comparisons with other
methods on the DRAMP dataset. For case 1, all of the methods
can generate peptides with better PMIC than that of prototype, but
PepZOO_MIC can achieve a higher improvement ratio compared
to other methods. For case 2 and case 3, PepZOO_MIC can generate
highly active AMPs with PMIC greater than 0.8, while the other
three methods often fail to optimize the antimicrobial activity of
the prototype with most of peptides’ PMIC less than 0.2. Similarly,



4 | Liu et al.

Figure 2. The optimization performance comparison between PepZOO and compared methods. (a) The performance comparison for all of three cases
in DRAMP and APD3 datasets. (b) The optimization trajectory of PepZOO and random optimization. z0 is the start sequence to optimize, z∗ and ẑ are the
final optimized sequences by PepZOO and random method, respectively.
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the results obtained from the APD3 dataset are consistent with
those from the DRAMP dataset (Fig. 2a). Additionally, we found
that PAMP of the peptides generated by PepZOO_MIC has also
been greatly improved in both DRAMP and APD3 datasets, which
is consistent with the fact that there is a positive correlation
between being AMP and high activity.

In order to make peptides satisfy multiple desired properties
at the same time, we performed multi-objective optimization
to simultaneously improve antimicrobial function and activity.
Results of PepZOO_AMP_MIC in both DRAMP and APD3 show
that both PAMP and PMIC of generated peptides have been greatly
improved across all three cases, outperforming the separate opti-
mization of antimicrobial function and activity. The first two
rows in Fig. 2a show the experimental results of our method
and compared methods on the DRAMP dataset. For prototypes
in case 1 with PAMP greater than 0.8 and PMIC greater than 0.5,
PepZOO_AMP_MIC can generate peptides with both PAMP and PMIC

greater than 0.99, while PepZOO_AMP generates peptides with
slightly lower PMIC. For prototypes in case 2 with PAMP greater
than 0.8 and PMIC less than 0.5, PepZOO_AMP_MIC can generate
peptides with PAMP greater than 0.99 and PMIC greater than 0.8,
while peptides generated by PepZOO_AMP get a much lower PMIC

with more than half of them less than 0.2. Surprisingly, Pep-
ZOO_MIC achieves the same performance as PepZOO_AMP_MIC
for case 1 and 2. For prototypes in case 3 with PAMP less than
0.8, PepZOO_AMP_MIC can generate peptides with PAMP greater
than 0.9 and PMIC greater than 0.8, while PepZOO_AMP generates
peptides with high PAMP but low PMIC and peptides generated
by PepZOO_MIC get a lower PAMP than peptides generated by
PepZOO_AMP_MIC. Furthermore, the t-test method was employed
to conduct a significance test on the experimental results. The
P-values of between PepZOO_AMP_MIC and compared methods
are all less than 0.05, indicating PepZOO_AMP_MIC significantly
outperforms compared methods. The last two rows in Fig. 2a
show the experimental results of our method in comparison
with compared methods on the APD3 dataset. The results on the
APD3 are also consistent with those on the DRAMP. These results
demonstrate that PepZOO with multi-objective optimization not
only achieves comparable improvement as separate optimization
on one property, but also improves all desired properties simulta-
neously.

To further illustrate how PepZOO optimizes peptides in the
representation space, we intuitively analyzed the PepZOO opti-
mization trajectory in a 2D plane (Fig. 2b), comparing with the
trajectory of a random optimization. We performed 20 itera-
tions on the optimization processes of PepZOO and the random
method. The optimization trajectory of PepZOO is guided toward
a high PAMP area, in contrast, the trajectory of a random process
is an uncertain random walk. In the first five iterations, Pep-
ZOO was able to find a sequence with PAMP greater than 0.9 in
the search space, while PAMP of the sequences generated by the
random optimization process were all below 0.5, demonstrating
that PepZOO has excellent directional optimization capabilities.
In summary, these results showed that PepZOO can stably and
efficiently explore peptides with better desired properties in the
representation space.

Improvement of physicochemical properties and
sequence novelty
The subtle balance between physicochemical properties of
peptides and compositions of the amino acids determine the
mode of action of AMP. Generally, AMPs have significantly larger
isoelectric point, charge, hydrophobic ratio, and hydrophobic

moment compared to those of non-AMPs. We estimated the
distribution of the physicochemical properties of generated
peptides, including charge, hydrophobic moment, hydrophobic
ratio, and isoelectric point, as shown in Fig. 3a. The prototypes
in case 1 are composed of AMPs with high PAMP and high PMIC, so
they have relatively higher physicochemical properties than the
whole AMP dataset. PepZOO preserves similar physicochemical
properties except the hydrophobic moment, HydrAMP is also able
to preserve these physicochemical properties except hydrophobic
ratio, while CVAE and PepCVAE generate peptides with lower
hydrophobic ratio and lower hydrophobic moment. For case 2,
although its distribution of physicochemical properties is much
lower than that of case 1, PepZOO improves the distribution
of generated peptides to comparable with case 1. Nonetheless,
other methods achieve limited improvements for all four
physicochemical properties. As for case 3, the prototypes have
the lowest distribution of physicochemical properties. PepZOO
also notably improves the distribution of all four physicochemical
properties, while other three competing methods fail to optimize
this case.

Furthermore, we analyzed the novelty and improvement ratio
during the optimization by PepZOO. Novelty is used to evaluate
the differences between the optimized peptides and the proto-
types. It is defined by the sum of Levenshtein distance between
the prototype and corresponding optimized peptides divided by
the number of optimized peptides. The larger novelty values
indicate generated peptides have more mutations comparing the
corresponding prototype sequences. The improvement ratio is the
probability of successfully optimized peptides whose PAMP and
PMIC are higher than the prototypes. As shown in Fig. 3b. For all
three cases, the improvement ratio (red line) quickly reaches a
stable value in several iterations, such as 20% of peptides in
case 1 are improved by PepZOO in terms of MIC, about 30%
for peptides in case 2, and 50% for peptides in case 3. Since
peptides in case 1 whose PAMP and PMIC are already high, there
is limited potential space for improvement. Whereas, PepZOO
exhibits a higher relative growth in the improvement ratio in
case 2 and case3, demonstrating it can achieve more significant
improvements in the peptides with low PMIC. However, the novelty
(blue line) gradually increases with the number of iterations for all
three cases, indicating that PepZOO attempts to explore different
regions of latent space to design diverse peptides. For peptides
in case 1 whose PAMP and PMIC are already high, PepZOO only
needs to search for peptides that meet the desired properties
around the latent space of prototypes. Compared with case 1,
case 2 requires PepZOO to explore latent space farther away
from prototypes to meet the requirement of high PMIC. In order to
simultaneously satisfy high PAMP and PMIC, given prototypes with
low PAMP and PMIC, PepZOO must jump out of the current poor
region to find a new region with high PAMP and PMIC. In summary, if
only considering the improvement of MIC, PepZOO can optimize
the prototypes in several iterations, while keeping high sequence
identity. If considering to design novel peptides, more iterations
are needed, and keeping high improvement ratio at the same time.

Optimization of antiviral peptides toward strong
binding affinity to SARS-CoV-2 S protein and low
toxicity to human organisms
We further illustrated the effectiveness of PepZOO to optimize
protein structure by enhancing the binding affinity of existing
antiviral peptides to SARS-CoV-2 S protein and decreasing their
toxicity to human organisms. Binding affinity measures the ability
of a peptide to bind to a target protein. The higher the binding
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Figure 3. Comparison of improvement of physicochemical properties and sequence novelty. (a) Distributions of physicochemical properties (isoelectric
point, charge, hydrophobic ratio, hydrophobic moment). (b) Generation performance in terms of novelty and improvement ratio.

affinity, the more stably the peptides bind to the target protein.
Low toxicity represents the slight side effects. Toxicity is often
the reason for the final failure of peptides in the clinical stage,
peptides with high toxicity can cause serious side effects on the
human body and therefore cannot be used to treat various human
diseases.

We randomly selected 10 antiviral peptides from the antiviral
dataset as prototypes due to the large time cost of MD simula-
tions, and then performed 40 rounds of iterative optimization.
The binding affinity of all peptides to SARS-CoV-2 S protein is
evaluated by CAMP [56]. Most of the initial binding scores of
prototypes are below 0.1, indicating that the prototypes have
hardly binding ability to SARS-CoV-2 S protein. After optimization,
their binding scores reach above 0.9, which means that opti-
mized peptides could bind to SARS-CoV-2 S protein more stably
(Fig. 4a). To further verify the effectiveness of optimized peptides,
molecular docking was performed on those peptides with binding
score greater than 0.9. The PDB file of SARS-CoV-2 S protein was
downloaded from the PDB dataset while the PDB files of optimized
peptides were generated by ESMFold [57]. Most peptides opti-
mized by PepZOO need lower docking energy than the prototypes
(Fig. 4b), indicating that they have better binding affinity to SARS-
CoV-2 S protein. The trend of novelty and improvement ratio
with the number of iterations is similar to the MIC optimization
of AMPs. The novelty gradually increases with the number of
iterations until the 35th iteration, while the improvement ratio
reaches the highest value at the 10th iteration and remains until
the end (Fig. 4c). In addition, we selected top 3 optimized peptides
for all 10 prototypes according to the docking energy to run MD
simulations. For 9 out of the 10 prototypes, we obtained optimized
peptides with lower binding free energies, which means that

these 9 optimized peptides have better ability to bind to SARS-
CoV-2 S protein, the results of successfully optimized peptides
and corresponding prototypes were shown in Table 1. For a case
study, the binding sites of prototypes and optimized peptides to
SARS-CoV-2 S protein are visualized in Fig. 4d and e, where the
binding between prototype and the SARS-CoV-2 S protein have
one hydrogen bond and one dihydrogen bond with docking energy
of -170.092 kcal/mol. In contrast, the optimized peptide formed
one hydrogen bond and two dihydrogen bonds with the SARS-CoV-
2 S protein with docking energy of -218.429 kcal/mol, indicating
that the optimized peptide could bind more tightly to the SARS-
CoV-2 S protein.

We also attempted to simultaneously optimize the toxicity
and binding affinity of existing antiviral peptides to SARS-CoV-
2 S protein. The toxicity of peptides was predicted by Toxinpred3
[58], and a peptide with toxic score greater than or equal to 0.38
was considered toxic. We compared the improvements of binding
score and toxic score in three different optimization strategies:
optimizing binding affinity alone, optimizing toxicity alone, and
optimizing both binding affinity and toxicity simultaneously. Tak-
ing the prototype sequence GVSGHGQHGVHG as an example, the
improvement comparison of three different optimization strate-
gies is shown in Fig. 5. For the strategy of optimizing binding
affinity alone, the binding score of the optimized peptide quickly
increases from nearby 0 to above 0.9, and then fluctuates around
0.9, but the toxic score remains above 0.4. Nonetheless, when
optimizing toxicity alone, the toxic score of the optimized peptide
dropped rapidly from over 0.9 to close to 0, while the binding
score first increased and then decreased and stabilized at around
0.7 at last. When simultaneously optimizing binding affinity and
toxicity, the binding scores reached the highest value in the 4th
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Figure 4. The results of binding affinity optimization. Distribution comparison of (a) binding scores and (b) docking energy between 10 prototype peptides
and corresponding optimized peptides. The black dot represents the prototypes while other color dots in the same column represent corresponding
optimized peptides. (c) The novelty and improvement ratio during optimization processes. The binding sites of SARS-CoV-2 S protein with (d) prototype
and (e) optimized peptides. The green dotted line denotes the hydrogen bond, and the number above the green dotted line is the atomic distance between
the two atoms forming a hydrogen bond.

Figure 5. The optimization of binding affinity and toxicity. (a–c) The binding score and toxicity score during optimization by PepZOO when using binding
affinity, toxicity, and binding affinity and toxicity as the optimization target, respectively. (d–f) The sequence logos of optimized peptides when using
binding affinity, toxicity, and binding affinity and toxicity as the optimization target, respectively.

iteration, and finally stabilized above 0.9, while the toxic scores
reached the lowest value in the 3rd iteration and then stabilized
close to 0. These results demonstrate that when optimizing one
property alone, the other property also can be optimized, but the
improvement is limited. When simultaneously optimizing binding
affinity and toxicity, the two target properties are both optimized
significantly. To further illustrate the difference among these

three optimization strategies, we aligned the optimized sequences
to find the specific motifs (Fig. 5d–f). The 1st, 2nd, and 9th sites
are kept conserved during optimization for all three optimiza-
tion strategies. Besides, the peptides with low toxicity both in
optimizing toxicity alone and simultaneously optimizing binding
affinity and toxicity have more conserved sites, including 4th, 6th,
7th, 11th sites. Compared with the peptides with high toxicity in
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Table 1. The binding free energy of MD simulations results of
prototypes and corresponding optimized peptides.

Type Sequence Binding free energy
(kcal/mol) ↓

Prototype EQCREEEDDR +43.47
Optimized EQFRLELSAR −17.59
Prototype VKSTGRADDDLAVKTKYLPP +0.47
Optimized VKSTGYADDALAVPVPYTFP −15.74
Prototype GWMSKIASGIGTFLSGV---QQG +19.81
Optimized GKMTWFAEGCGVPISGHYTHQNM −49.92
Prototype LLKELWTKIKGAGKAVLGKIKGLL +3.30
Optimized ELNDTKGISHGGAKAGGALLHAHV −52.13
Prototype GVSGHGQHG--VHG −1.85
Optimized GFSHFGRFGVPVHT −21.08
Prototype GLLSGILNTAGGLLGNLIGSLSN +3.19
Optimized GLKTVFIPHGGVLHSITTSGEGH −38.00
Prototype GIADILKGLL +15.69
Optimized GFSEFNKGLL −5.30
Prototype LLGGLLQSLL--- +0.50
Optimized LLGGLLIGLETIN −11.06
Prototype GVVDTLKNLLMGLL- −3.82
Optimized GVVAILKPHHGGLLF −12.25
Prototype NRILPTLIGPL −0.07
Optimized LR–PFYVIHM +7.05

Note: ↓ means a smaller value is better on this metric. The amino acids
represented by orange letters have changed after optimization, the amino
acids represented by blue letters are the amino acids added after
optimization, and the amino acids represented by red letters are the amino
acids that were deleted after optimization.

optimizing binding affinity alone, the 3rd, 5th, 6th sites are totally
different, which means these sites may have a critical impact on
toxicity. Overall, all the above results demonstrate that PepZOO
can effectively optimize the binding affinity of existing antiviral
peptides to the target protein while reducing their toxicity and
provide promising drug candidates for the drug discovery process.

Conclusion
In this study, we proposed a novel directed evolution method,
named PepZOO, for optimizing multi-properties of peptides.
PepZOO projects AMP sequences into a continuous latent
representation space by a VAE and searches the evolutionary
direction guided by multi-objective zeroth-order optimization.
Experimental results on two tasks, including the optimization
of antimicrobial function and activity and the optimization
of affinity and toxicity, showed that PepZOO outperforms the
state-of-the-art methods, especially for those cases with poor
properties. In summary, PepZOO can effectively optimize various
objectives and constraints based on initial peptide sequences,
indicating that it can be applied to the actual peptide design
process and propose new peptides with good target binding ability.
PepZOO can serve as a practical tool for peptide optimization and
accelerate discovery of peptide drugs.

Although our study demonstrates outstanding results, there
are two primary limitations to be considered in future work.
First, the peptide sequence length is restricted to 25 amino
acids. This threshold facilitates the success rate of subsequent
laboratory synthesis, but it concurrently constrains the sequence
space that the peptide representation model can learn. Moving
forward, we plan to enhance our model to accommodate longer
peptide sequences, which will enable us to better assess their
potential binding affinity and therapeutic applications. Given the
remarkable performance of large language models in natural

language processing, future work could leverage protein language
models trained on extensive protein sequence data to enhance
the peptide representation and generation capabilities. Second,
the zeroth-order optimization introduces randomness, which
may limit the model’s performance. The zeroth-order gradient
is derived from random perturbations around the peptide
embeddings, potentially affecting the model’s convergence speed.

Materials and methods
Datasets
We evaluated our proposed method on two widely used datasets,
Data Repository of Antimicrobial Peptides (DRAMP) [59], which
currently encompasses a collection of 22 528 entries, and APD3
with a total number of 3167 unique sequences. Since the AMPs
with less than 25 amino acids are more feasible to peptide syn-
thesis and AMPs with a length of less than or equal to 25 amino
acids account for more than 70% of the entire dataset, peptide
sequences longer than 25 amino acids were filtered out, as a
result that 17 123 AMPs were selected from DRAMP and a total
number of 1388 entries were selected from APD3. We used these
benchmark datasets to test the performance of PepZOO as well
as compared methods. AMP is a general term for peptides with
different functions. Generally speaking, AMPs can be divided into
different categories according to their functions, such as antibac-
terial peptides, antiviral peptides, anticancer peptides, etc. For
the antimicrobial function and activity optimization task, we use
all AMPs as prototypes to evaluate our proposed method and
compared methods. Although Müller et al. [60] proposed a method
to design peptides against the SARS-CoV-2 S protein and obtain
some inhibitors toward the SARS-CoV-2 S protein, the length of
these inhibitors exceed 25 amino acids, which limits our ability
to incorporate them into our analysis at this time. Besides, due to
the huge amount of running time for MD simulation, we randomly
selected 10 antiviral peptides with high toxicity and low binding
affinity to SARS-CoV-2 S protein as the prototypes for the binding
affinity and toxicity optimization task.

Peptide representation module
Peptide representation module projects peptides as latent embed-
dings. Since a peptide is a discrete string of amino acids, the gradi-
ent optimization can’t efficiently search for peptides with desired
properties in discrete amino acid combination space. Therefore,
peptides have to be mapped into a continuous representation
space. The peptide representation module can be any encoder-
decoder models, which satisfy two conditions: (i) peptides with
similar properties are projected as embeddings closely in the
representation space by the encoder; (ii) these close embeddings
in latent space can be reconstructed into peptides with similar
properties by the decoder.

In this study, we employed a CVAE model, named HydrAMP [5]
as the peptide representation model. HydrAMP incorporates two
optimization objectives: Jacobian disentanglement regularization
and reconstruction regularization. The Jacobian disentanglement
regularization encourages an orthogonal decoupling between the
latent variable z and two properties, antimicrobial function and
activity. The reconstruction regularization focuses on training the
VAE model to generate valid peptide structures by accurately
reconstructing input peptides. HydrAMP learns the spatial dis-
tribution of peptide sequences and decouples the representation
of peptides from their properties. It can not only satisfy the
aforementioned two conditions but also ensure that the generated
peptides adhere to specific criteria.



PepZOO: directed evolution of antimicrobial peptides | 9

Property evaluation module
Property evaluation module estimates interested properties of
generated peptides. In this study, we focus on the AMPs with high
activity, high affinity, and low toxicity. Thus, we employed an AMP
predictor, an MIC predictor, a toxicity predictor, and a binding
affinity predictor to estimate the properties of each generated
novel peptide.

The ESM-2 [61] can learn evolutionary information [62] in
large-scale protein sequences, enabling it to achieve excellent
performance in downstream tasks. Therefore, the antimicrobial
function of peptides is estimated through the probability of being
AMPs (PAMP) by an AMP predictor developed by Cordoves et al.
[24], which is a graph deep learning (GDL) architecture based on
ESM-2 and ESMFold [61] trained on a comprehensive dataset. Its
experimental results show that the performance of this model
is optimal with an accuracy of 0.97, outperforming the other
competing models. The activity of peptides (PMIC) is predicted
by an MIC predictor proposed by Szymczak et al. [5], which
estimates whether AMPs are highly active with MIC ≤ 101.5 �
32μg/mL. This model consists of CNN and LSTM architecture and
achieves an accuracy of 0.942 on experimentally validated MIC
data, outperforming the other competing models. The toxicity of
peptides is predicted by Toxinpred3 [58], which is an integrated
method by building multiple decision trees and combining their
prediction results, achieving an AUROC of 0.98 and an MCC of
0.81. In order to predict the binding affinity of a peptide with its
target protein, CAMP [56] is employed, which is a state-of-the-
art method on binary peptide-protein interaction prediction via
CNN and self-attention layers to extract features of peptides and
proteins, respectively.

Directed searching module
Directed searching module determines an evolutionary direc-
tion according to the feedback of property evaluation module.
Since the property evaluation module may not be differentiable,
a zeroth-order optimization algorithm is employed to calculate
gradients of optimization direction. Because the properties are
predicted based on discrete amino acids sequences, which can not
directly feedback the optimization gradient about the embedding
of peptides. Therefore, zeroth-order optimization is utilized to
achieve gradients about the embedding of peptides according to
the feedback of the property evaluation module.

Zeroth-order optimization does not require the differentiable
evaluation function, but it defines a substitute based on sampling
and difference, which is called zeroth-order gradient. It can be
formulated as follows:

∇̃f (p) = Eμ∼N (μ)

[
f (Dec(z + ε · μ)) − f (Dec(z))

ε
· μ

]
(1)

where ε is a small positive number, N (μ) is a normal distribution
with a mean value of 0 and a covariance matrix as the unit matrix.

Multi-objective optimization is a crucial component in the
directed searching module, particularly when dealing with the
optimization of multiple peptide properties. In this study, different
properties of peptides such as antimicrobial function, antimicro-
bial activity, binding affinity, and toxicity are considered simul-
taneously. The goal is to find an optimal balance among these
properties to achieve the best overall performance of peptides.
The multi-objective optimization approach integrated into the
directed searching module enables the simultaneous optimiza-
tion of multiple peptide properties, providing a balanced and
effective solution to peptide design. Given a peptide p, firstly its

latent embedding vector z = Enc(p) is projected by an Encoder.
Next, Q perturbation vectors {μ(t)

q }Q
q=1 from normal distribution

are randomly selected. Then the zeroth-order gradient at the t-th
iteration is calculated by:

∇̃grad(t)(z) = d
β · Q

Q∑
q=1

m∑
i=1

ωi ·
[
fi(Dec(z(t) + β · μ(t)

q )) − fi(Dec(z(t)))
]

· μ(t)
q (2)

where d is the dimension of the latent space learned by the
Encoder, β >0 is a smoothing parameter used to perturb the
embedding vector z(t), t is the number of iterations, Dec(·) is the
Decoder, fi denotes property predictors, specifically in this study,
f1 denotes AMP predictor, f2 denotes MIC predictor, f3 denotes
binding affinity predictor and f4 denotes toxicity predictor, and
ωi is the weight of each predictor. By setting different weights
for different predictors, our method is able to optimize multiple
desired properties simultaneously and weigh the importance of
different properties. Finally, we use the zeroth-order gradient to
update the embedding vector z(t) by:

z(t+1) = z(t) − α · ∇̃grad(z(t)) (3)

where α is the learning rate. In this study, d is set to 64, β is set to
0.5, Q is set to 32, m is set to 4, and αt is set to 0.05.

Molecular docking
Molecular docking predicts the binding affinity of ligands to
receptor proteins by simulating the interaction between a small
molecule and a protein at the atomic level, subsequently enabling
researchers to study the behavior of small molecules within the
binding site of a target protein and understand the fundamental
biochemical process underlying this interaction.

In this work, molecular docking of peptides to the SARS-CoV-2
S protein is predicted by HPEPDOCK [63], which is a web server for
global peptide–protein docking based on a hierarchical algorithm.
A comprehensive evaluation [64] among 14 docking programs on
peptide-protein complexes demonstrates that HPEPDOCK has the
best success rate and computational efficiency in global docking.
For binding affinity optimization, these optimized peptides with
binding score given by CAMP greater than or equal to 0.9 were
selected to dock with the SARS-CoV-2 S protein. Then the top
three conformations generated by HPEPDOCK were selected for
MD simulations.

Molecular dynamics simulations
MD simulations of the peptide-protein complexes were performed
using the GROMACS 2020.7 [65] with CUDA support. The top three
conformations of the docking results generated by HPEPDOCK
were selected as the initial peptide-protein complexes to perform
MD simulations.

MD simulations were carried out with Amber ff99SB-ILDN
force field [66], which is a force field improved by modifying
the parameters of side chain based on Amber ff99SB [67]. Firstly,
the structure files of the docked complexes were converted into
the topology files in GROMACS format by the pdb2gmx module.
Then a dodecahedron box was constructed by editconf mod-
ule and the peptide-protein complex was placed in its center,
ensuring a minimum distance of 1.2 nm between the complex
and the edges of the box. The dodecahedron box was filled with
TIP3P water molecules, and the counter ions (Na+ and Cl−) were
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added to the box to neutralize the total charge. After that, sev-
eral pre-equilibrium steps for energy minimization using the
steepest descent minimization method under the vacuum and
solvated environment were performed, respectively. The Particle
Mesh Ewald [68] approach was used to calculate the long-range
electrostatic interactions under the periodic boundary conditions,
with a cutoff of 1.5 nm. Van der Waals non-bonded interactions
were calculated by cutoff scheme with a cutoff of 1.5 nm. Then,
NVT and NPT pre-equilibrium were performed to make the sys-
tem reach a proper temperature at 310K and a pressure at 1 atm.
Finally, the formal MD simulations for all of the peptide-protein
complexes were performed with a simulation time of 200 ns, and
the integration step was set to 2 fs.

Key Points

• This study proposed a novel directed evolution method,
named PepZOO, for optimizing multi-properties of AMPs
in a continuous representation space guided by a multi-
objective zeroth-order optimization.

• PepZOO can simultaneously optimize the multiple
desired properties of natural AMPs, achieving compara-
ble improvements with optimizing each property alone.

• PepZOO can reveal important motifs which are required
to maintain a particular property during the evolution
by aligning the evolutionary sequences.
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