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Abstract: Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of
cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can
lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are
rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant
melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance,
and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in
order to improve the outcomes of melanoma patients. In this mini-review, we compile our current
knowledge of lysosomes’ role in tumorigenesis, progression, therapy resistance, and the current
treatment strategies related to lysosomes in melanoma.
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1. Introduction

Lysosomes are membrane-enclosed organelles responsible for the disposal and re-
cycling of worn out and damaged cellular macromolecules and organelles. Cells digest
foreign materials by endocytosis and phagocytosis in lysosomes [1,2]. Lysosomal degrada-
tion products are recycled back to the cytosol via diffusion and specific transport channels
or released to the extracellular space by exocytosis [1]. Moreover, lysosomes play essen-
tial roles in other cellular processes, including nutrient sensing and the control of energy
metabolism [3].

The alteration of lysosomal functions can lead to broad detrimental effects, such as
inflammation, apoptosis, failure to clear potentially toxic cellular waste, and the dysreg-
ulation of cellular signaling, causing a variety of diseases, including cancers [3]. It is
expected that the expression and function of various lysosomal hydrolases are increased in
human tumors, and they often correlate with a higher risk of recurrence and poor progno-
sis [1]. In addition, studies have shown that lysosomal enzymes play critical roles in cancer
invasiveness, angiogenesis, and progression [1].

Malignant melanoma, a highly metastatic, drug-resistant, and aggressive malignancy,
is the most lethal form among skin cancers [4]. Although it comprises only 5–10% of all skin
cancers, malignant melanoma is responsible for more than 75% of all skin cancer-related
deaths [4]. The incidence rates of melanoma have been augmenting rapidly over the past
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few decades. According to American Cancer Society’s estimates, about 99,780 (57,180
in men and 42,600 in women) new melanomas will be diagnosed in the United States
in 2022 [5]. Several risk factors are reported to be associated with cutaneous melanoma,
including skin type (fair skin, freckling, and light hair), exposure to sun radiation, number
of nevi (>50 moles), age (being older), gender (being male), immune status (having a
weakened immune system), family history and former removed melanomas [6]. The
early stages of melanoma are relatively easy to manage by surgical excision. However,
melanoma is highly invasive and metastatic, and the prognosis for long-term survival is
poor when the disease reaches advanced stages. Even though the use of targeted therapies
and immunotherapies has improved the clinical outcomes, melanoma remains notoriously
difficult to treat once it metastasizes to other sites, including brain, lungs, liver or bone [7].

Increasing efforts are currently focusing on novel biomarker identification for pre-
dicting the treatment response and prognosis of melanoma. Zhang et al. established a
14 cytolytic activity (CYT)-related-gene prognostic model, which can be used as a pre-
dictive biomarker and therapeutic target for cutaneous melanoma patients [8]. Bacchetti
et al. reported that the expression levels of paraoxonase-2 (PON2) could be positively
related to the tumor aggressiveness of skin cancers, including melanoma [9]. Campagna
et al. demonstrated that nicotinamide N-methyltransferase (NNMT) knockdown led to
a significant reduction in cell proliferation and migration of human melanoma cell lines
and was correlated to enhanced chemosensitivity to dacarbazine, suggesting that NNMT
could represent a molecular target for the effective treatment of melanoma [10]. Still, it
is important to understand melanoma pathogenesis and factors that contribute to drug
resistance to develop new therapeutic strategies.

In this review, we mainly focus on the role of lysosomes in melanoma tumorigenesis
and progression, along with therapy resistance, including chemotherapies, targeted thera-
pies, and immunotherapies. We also highlight the current treatment strategies related to
lysosomes in melanoma.

2. The Roles of Lysosomes in Melanoma Progression

Hanahan and Weinberg proposed that cancers have several hallmarks, such as sus-
taining proliferative signaling, evading tumor suppressors, and promoting invasion and
metastasis [11]. Lysosomes play critical roles in tumorigenesis and cancer progression.
Rapidly proliferating cancer cells place heavy demands on the synthesis rates of new pro-
teins, membrane lipids, DNA, and RNA [12]. In addition, cancer cells need to compete with
extreme fluctuations in the poor vascularized tumor microenvironment with limited nutri-
ent and oxygen levels [13]. Thus, nutrient-scavenging pathways associated with lysosomes
help generate the nutrients and energy required by cancer cells [13]. Compared to healthy
tissue, melanoma has higher level of reactive oxidative species (ROS), which can damage
DNA, proteins and lipids, resulting in senescence and cytotoxicity [14,15]. Lysosomal
autophagy helps melanoma cells escape senescence and promote adaptive survival by
recycling damaged cellular organelles and proteins [16].

2.1. Lysosomes Mediate Melanoma Cell Proliferation, Survival and Death

In mammalian and yeast cells, the master growth regulator mTORC1 protein kinase
is recruited and activated at the lysosome in response to nutrients [17]. In tumor de-
velopment, cancer cells often experience stressed and nutrient-limited milieu. Through
phagocytosis, endocytosis, and macropinocytosis, extracellular substances are delivered to
lysosomes and undergo lysosomal degradation to generate nutrients [18]. In melanoma,
it is reported that Ca2+ channel mucolipin 1 (MCOLN1) is preferentially required for the
survival and proliferation of melanoma cells by negatively regulating MAPK and mTORC1
signaling [19]. Additionally, macropinocytosis is upregulated in melanoma cells relative to
normal melanocytes and is sustained by MCOLN1 [19].

The MiT/TFE transcription factor family, encoding MITF (micropthalmia-associated
transcription factor), TFEB, TFE3, and TFEC, belongs to the MYC superfamily of ba-
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sic helix-loop-helix leucine zipper (bHLH-ZIP) proteins [20]. MITF is recognized as a
master regulator of melanocytes required for the development, growth and survival of
melanocytes and as a melanoma oncogene amplified in 30–40% of melanomas [21–23].
Additionally, it is observed that the MITF E318K mutation predisposes to familial and
sporadic melanoma [24]. MITF in melanoma not only acts as a major oncogene, but also
correlates with many lysosomal genes and generates late endosomes that are not functional
in proteolysis [25]. MITF is also the transcriptional regulator of v-ATPase gene expression
in melanocytes and melanomas [26,27].

Ploper et al. reported that, in melanoma cells, the nuclear accumulation and sta-
bilization of MITF caused an expansion of the late endolysosome/multivesicular body
(MVB) compartment and elevated expression of late endosomal proteins, including Rab7,
LAMP1, and CD63. This increased endosome/MVB biogenesis enhanced Wnt signaling by
increasing the sequestration of destruction complex components, such as GSK3 and Axin1
inside MVBs, generating a positive feedback loop and ultimately contributing to melanoma
proliferation [22,25]. Based on this finding and the fact that MITF-M isoform, which is the
type of isoform expressed in melanomas, lacks this N-terminal domain which is required
for lysosomal localization and mTOR phosphorylation, it is proposed that overexpressing
MITF-M binds promiscuously to CLEAR element lysosomal genes without being restrained
by mTOR signaling and hence regulates endolysosomal biogenesis [25].

Similarly, Möller et al. demonstrated that MITF can bind to the CLEAR-box element
in the promoters of lysosomal and autophagosomal genes in melanocytes and melanoma
cells [28]. In metastatic melanoma cell lines and tumors, MITF positively correlated with
the expression of lysosomal and autophagosomal genes, and the knockdown of MITF
resulted in starvation-induced autophagy degradation in both melanocytes and melanoma
cells, presumably due to less autophagosomal formation [28]. On the other hand, the
overexpression of MITF in melanoma cells elevated the expression of lysosomal and
autophagosomal genes and induced autophagosome formation, but not sufficiently to
induce autophagic flux [28], echoing the finding observed by Ploper et al. [25].

Furthermore, it is reported that an MITF-dependent melanoma patient-derived cell
line, 501Mel, showed induction of RagD expression and increased mTORC1 activation, and
the silencing of RagD was sufficient to greatly revert the hyperproliferative phenotype of
this melanoma cell line [29]. Notably, markedly reduced xenograft tumor growth upon
RagD silencing was observed in mice bearing 501Mel melanoma cells, indicating a key
role of RagD in promoting tumor growth [29]. A significant correlation between MITF
and RagD gene expression levels is demonstrated by the analysis of microarray data of
melanoma metastatic patients and melanoma cell lines [29]. These findings support the idea
that melanomas associated with MITF hyperactivation lead to constitutive RagD GTPase
transcriptional induction and enhanced mTORC1 signaling, which fuels tumor growth [29].

On the other hand, melanoma cells with enhanced expression of LAMP-2C, a lysosome-
associated membrane protein, displayed elevated cell cycle arrest, increased the expression
of the cell cycle regulators Chk1 and p21, and greater apoptosis and necrosis [30]. Reduced
tumor growth was also observed in immune-compromised mice bearing melanoma cells
with increased LAMP-2C expression, suggesting a potential role for LAMP-2C as a tumor
suppressor in melanoma progression [30].

2.2. Lysosome Alterations Promote Melanoma Invasiveness and Metastasis

Cysteine cathepsin proteases (herein referred to as cathepsins) are involved in al-
most all processes related to lysosomes, such as protein degradation, protein and lipid
metabolism, autophagy, antigen presentation, growth factor receptor recycling, cellular
stress signaling, and lysosome-mediated cell death [31]. In addition, these enzymes can be
secreted via lysosomal exocytosis, resulting in the degradation of extracellular targets [31].
Accumulating evidence suggests that cathepsins critically contribute to tumor progression
in a variety of cancers [31]. Cathepsins are crucial acid hydrolases within lysosomes and
are the key effectors of protein catabolism and autophagy, which support the elevating
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metabolic needs of proliferating cancer cells [31–33]. Moreover, secreted cathepsins can
modify the tumor microenvironment by degrading the extracellular matrix and contribute
to tissue invasion and metastasis [31,34–36].

In invasive human melanomas, cathepsins B and L were found to be upregulated and
were correlated with metastasis. The inhibition of the cell-membrane-permeable cathepsins
B and L suppressed the invasive growth of the melanoma cells [37]. Similarly, cathep-
sin K was strongly expressed in most primary melanomas and all cutaneous melanoma
metastases. The inhibition of cathepsin K significantly reduced melanoma cell invasion
and increased detection of internalized collagen in vitro [38]. Additionally, Alonso-Curbelo
et al. reported that cathepsins can be misrouted within the cell via the lineage-specific
wiring of the endolysosomal pathway [39].

Rab7, a GTPase, has a key role in lysosome biogenesis and the lysosomal-associated
degradation of cytoplasmic vesicles. The knockdown of Rab7 promoted the secretion of
multiple lysosomal cathepsins and matrix proteins, and subsequently increased melanoma
invasion [39]. Moreover, Tripathi et al. investigated the signaling pathways leading to
increased cathepsin secretion in melanoma cells and found that the nonreceptor tyrosine
kinases Abl and Arg induced the secretion of cathepsins B and L by activating transcription
factors, including Ets1, Sp1, and NF-κB/p65, which play critical roles in driving melanoma
invasion and metastasis [40].

Furthermore, Johansson et al. revealed that the oncogene PRL3 bound and dephospho-
rylated RNA helicase DDX21 to restrain the transcription of MITF-regulated endolysosomal
genes in the melanocyte stem cell [41]. In clinical melanoma samples, PRL3 expression was
inversely correlated with endolysosomal vesicle gene expression, and high PRL3 expression
was significantly associated with melanoma-specific death, making it a valuable predictive
marker for metastatic melanoma-specific death in all stages [41]. Together, the abovemen-
tioned studies support the idea that the dysregulation of endolysosomal pathways has
emerged as a hallmark of melanoma and a driver of metastasis (Table 1) [39,41,42].

Table 1. Role of molecules related to lysosomal pathways in melanoma progression.

Molecule Description Role in Melanoma Model References

MCOLN1

MCOLN1 negatively regulates
MAPK and mTORC1

signaling and sustains
upregulated micropinocytosis

Survival
and proliferation

Patient-derived
melanoma [19]

Atg7 Atg7 promotes the growth of
BRAFV600E melanoma Melanomagenesis Genetically engineered

mouse models [16]

Atg5
Downregulation of Atg5 promotes

the proliferation of melanocytes
introduced with mutated BRAF

Suppressing
melanoma tumorigenesis Primary melanocytes [43]

LAMP-2C
Mice bearing melanoma cells with

increased LAMP-2C expression
show reduced tumor growth

Tumor suppressor in
melanoma progression

Human melanoma
cell lines

(DM331 and SLM2-Mel)
[30]

Cathepsins B and L

Abl and Arg induce the secretion of
cathepsins B and L; Cathepsin B and

L inhibitors suppress the invasive
growth of the melanoma cells

Metastasis
and invasiveness

Human melanoma cell
lines (WM115, WM793,
WM239, SK-MEL-28,

SK-MEL-103,
SK-MEL-147, 435s,

WM3248, and UACC-903)

[37,40]

Cathepsin K

Cathepsin K inhibition reduces
melanoma cell invasion and

increases detection of
internalized collagen

Invasiveness
Human melanoma

cell lines
(MMAN, MeWo, and LIBR)

[38]
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Table 1. Cont.

Molecule Description Role in Melanoma Model References

Rab7

Knockdown of Rab7 promotes the
secretion of cathepsins and matrix

proteins and subsequently increased
melanoma invasion

Invasiveness

Human melanoma cell
lines (SK-Mel-5,

SK-Mel-19, SK-Mel-28,
SK-Mel-29, SK-Mel-103,

SK- Mel-147,
SK-Mel-173, G-361,
UACC-62, Mel-1,
WM-164, 1205Lu
and WM-1366)

[39]

MITF

Overexpression of MITF causes an
expansion of the late

endolysosome/MVB compartment
and elevates expression of late

endosomal proteins

Proliferation

Human melanoma cell
lines (C32, 501Mel,

SkMel28, and Lu1205);
primary normal ,

melanocytes (NHEM)

[22,25,28]

RagD
RagD silencing causes reduced
tumor growth in mice bearing

MITF-dependent melanoma cells
Tumor growth Human melanoma cell

line (501Mel) [29]

PRL3

PRL3 expression is inversely
correlated with endolysosomal

vesicle gene expression, and high
PRL3 expression is associated with

melanoma-specific death

Poor patient outcomes Human melanoma cell
lines (A375 and C092) [41]

3. Lysosomes and Therapy Resistance
3.1. Lysosomes Mediate Chemoresistance

Lysosomes play important roles in resistance to therapies such as chemotherapy, tar-
geted therapy, and immunotherapy. Prior to recent therapeutic advances, chemotherapy
was the treatment of choice for advanced melanoma, although the success has been min-
imal due to chemoresistance [44]. It may, however, remain important in the palliative
treatment of refractory, progressed, and relapsed melanoma [45]. The molecular basis of
chemoresistance in melanoma is multifactorial, including the overexpression of drug efflux
proteins, the alteration of enzyme activation, the deregulation of apoptosis, Ras mutation,
epithelial to mesenchymal transition, and the deregulation of microRNA expression [46].

Lysosomes contribute to hydrophobic weak base chemotherapeutic drug resistance
via lysosomal sequestration, based on passive cation trapping [47]. Hydrophobic weak
base chemotherapeutics become entrapped in lysosomes due to their protonation in the
acidic lumen of lysosomes. Hence, these sequestered drugs can neither reach their target
sites nor exert their cytotoxic effects [47]. In addition to the passive accumulation of
chemotherapeutics, lysosomes can also mediate active lysosomal drug sequestration via
transporters localized in the lysosomal membrane [47].

Autophagy is also emerging as a key player in therapy resistance. Therapy-induced
autophagy has two possible effects; it may either contribute to the anticancer effects of
chemotherapeutics or facilitate chemotherapy resistance [48]. In melanoma, Ma et al.
showed that patients bearing melanomas with a high autophagic index were less likely to
respond to treatment (temozolomide and sorafenib), and autophagy inhibition using either
hydroxychloroquine or inducible shRNA against Atg5 led to a significant augmentation
of temozolomide-induced cell death [49]. On the other hand, Li et al. demonstrated that
the blockade of BRAF inhibitor-induced autophagy–lysosome activation in melanoma
xenografts results in chemoresistance, which is associated with elevated TGF-β levels and
enhanced TGF-β signaling [50].
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3.2. Lysosomes Promote Resistance to Targeted Therapies

Kinase inhibitors, particularly BRAF and MEK inhibitors, have become the first line of
treatment for advanced BRAF-mutated melanoma, which is the most common mutation
in cutaneous melanoma. Although the response of these targeted therapies is impressive,
the duration is short lived, with acquired resistance after a median of 6–8 months [51]. It
is known that therapy-induced autophagy promotes resistance to kinase inhibitors. Ma
et al. investigated tumor biopsies from patients treated with BRAF inhibitors or combined
BRAF/MEF inhibitors and found that tumors with resistance to BRAF inhibitors had
increased levels of autophagy relative to the baseline [52]. In addition, patients with
higher therapy-induced autophagy levels experienced significantly lower response rates to
BRAF inhibitors [52]. The in vitro experiments further demonstrated that BRAF inhibitors
induced cytoprotective autophagy by activating an ER stress response [52]. Interestingly, it
is shown that heterozygous (but not homozygous) Atg5 loss compromised the response of
BRAF inhibitors in melanoma-specific mouse models, raising caution about the incomplete
blockade of this gene in clinical aspects, since this may cause an unexpected worsening of
patient outcomes [53].

3.3. Lysosomes Contribute to Immunotherapy Resistance

Immunotherapies with CD8+ cytotoxic T cells as major cellular effectors appear to
be a promising treatment option for patients with advanced melanoma, since they show
durable response rates in selected patients [7]. However, primary and acquired resistance
to immunotherapies is common [7]. The secretion of the pore-forming protein perforin
and granzyme B by human cytotoxic T cells is the crucial mechanism to kill target cells,
which occurs at the cytotoxic T cell/target cell lytic synapse [54,55]. It is reported that
human melanoma cells can develop a rapid response to cytotoxic T cells at the lytic synapse
by a secretory burst of lysosome/late endosomes, which leads to cathepsin-mediated
perforin degradation and deficient granzyme B penetration [55]. The inhibition of this
melanoma response by the depletion of SNAP-23-dependent lysosomal trafficking, pH
perturbation, or impairment of lysosomal proteolytic activity restores susceptibility to
cytotoxic T cell assault. This finding supports this potential mechanism contributing to
melanoma cell immune resistance [55]. Moreover, dendritic cells are required to license
the cytotoxic activity of CD8+ T cells in T-cell-based immunotherapy. Santana-Magal et al.
found that tumor-infiltrating monocyte-derived dendritic cells undergo apoptosis due to
their excessive phagocytosis of melanoma-secreted lysosomes as melanoma progresses. In
their absence, cytotoxic T cells fail to lyse melanoma cells, suggesting that lysosomes play a
role in limiting the effect of immunotherapy [56].

4. Targeting Lysosomes in Cancer Therapeutics

The contribution of lysosomes to cancer progression and therapy resistance provides
the rationale for targeting lysosomes as a cancer therapeutic strategy. Lysosomes are
critical for both anabolic growth pathways driven by mTORC1 and catabolic pathways,
including macropinocytosis as well as autophagy; these pathways are all potential targets
in cancer [57]. mTOR is crucial for regulating cell growth, proliferation, metabolism,
and angiogenesis. mTOR inhibitors have been widely used against cancers in multiple
preclinical studies and clinical trials [57,58]. Despite having both pro- and antitumor
effects, autophagy is a potential target of inhibition because it can promote the growth of
established tumors and mediate therapy resistance during cancer therapy [59].

4.1. Lysosomotropic Agents

Lysosome-targeting strategies mainly focus on lysosomotropic compounds, such as
chloroquine, ammonium chloride, methylamine, and siramesine [60]. Because of their
weak base characteristics, lysosomotropic compounds act by elevating lysosomal pH when
accumulating in the lysosomal lumen and usually inducing lysosomal membrane perme-
abilization [60,61]. Additionally, as repurposing approved and abandoned nononcological
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drugs becomes an alternative approach to identifying anticancer therapeutics, antimalarials
that potentially inhibit lysosomal functions have been considered as promising candi-
dates for oncological repurposing and have been tested in preclinical and clinical cancer
studies [62,63]. Hydroxychloroquine (HCQ), one such antimalarial, has been widely inves-
tigated in many clinical trials combining other anticancer therapies [64]. A phase 1 trial of
HCQ and temsirolimus (TEM) demonstrated that TEM and HCQ have antitumor effects by
inhibiting autophagy in patient with a safe profile [65]. Another clinical study showed that
the combination of high-dose HCQ and dose-intense temozolomide is safe and tolerable.
The treatment outcome with a prolonged stable disease and responses suggested antitumor
activity in melanoma patients [17]. These two clinical studies warranted the combination
of potent autophagy modulating molecules for improving melanoma patients’ outcomes.

In melanoma, it has been shown that amodiaquine (AQ), a clinical 4-aminoquinoline
antimalarial, can cause an autophagic–lysosomal and proliferative blockade in melanoma
cells. It can also sensitize melanoma cells to either starvation- or chemotherapeutic agent-
induced cell death [63]. Xie et al. also demonstrated that the antimalarial lysosomotropic
agent HCQ synergized with TEM, which in turn led to the suppression of melanoma
growth and induced cell death via apoptosis in both three-dimensional spheroid cultures
and tumor xenografts [66]. In addition, McAfee et al. synthesized a bisaminoquinoline
autophagy inhibitor Lys05, which is more potent than HCQ, and assessed its antitumor
activity in vivo [67]. This result showed that mice bearing melanoma xenografts treated
with Lys05 exhibited more significant tumor growth reduction than mice treated with PBS
and HCQ [67]. The authors also demonstrated that Lys05 caused lysosomal dysfunction by
deacidifying the lysosome, leading to the impairment of lysosomal enzymes and effective
autophagy inhibition [67].

4.2. v-ATPase Inhibits Melanoma Survival and Metastasis

v-ATPase inhibition is another potential strategy for cancer therapeutics because cancer
cells are more reliant on v-ATPase for survival than nontransformed cells [68]. In melanoma,
Pan et al. demonstrated that cleistanthin A (CA), a natural compound which has the ability
to inhibit v-ATPase activity and to neutralize the pH of lysosomes, inhibited the invasion
and migration of human melanoma A375 cells in vitro by downregulating the expression of
matrix metallopeptidase (MMP)-2 and -9 [69]. In line with this, another in vitro study also
showed that concanamycin, a very specific inhibitor of v-ATPases, significantly suppressed
the migration and invasion of murine melanoma B16F10 cells, but not nontumor melanocyte
Melan-A cells [70]. Additionally, Martins et al. reported that the inhibition of v-ATPases
by Myrtenal disrupted the electrochemical H+ gradient across the tumor cell membranes,
leading to reprogrammed cell death and decreased tumor cell migration and invasion
in vitro using murine as well as human melanoma cell lines [71]. Myrtenal also significantly
suppressed metastasis induced by B16F10 murine melanoma in vivo, supporting v-ATPase
as a molecular target to inhibit cancer progression [71]. Furthermore, the inhibition of
v-ATPase by esomeprazole, a proton pump inhibitor, inhibited proliferation of human
melanoma cells in vitro and reduced the tumor growth in vivo as well as increased survival
of mice bearing human melanoma [72]. Moreover, Nishisho et al. identified a particular
v-ATPase subunit, a3 isoform, as a potential therapeutic target by showing that knockdown
of a3 v-ATPase in B16F10 murine melanoma model significantly reduced invasiveness and
metastases to lung and bone [73].

4.3. Cathepsins Inhibition Deactivates Melanoma Invasiveness and Metastasis

Cathepsins have been correlated with cancer metastasis by facilitating cell migration
and invasiveness due to their proteolytic activity. Hence, targeting cathepsins has potential
to be a therapeutic strategy [74–76]. It is reported that inhibition of cathepsin B by either
a specific chemical inhibitor, CA-074, or specific anti-cathepsin B antibodies significantly
prevented the in vitro invasiveness of metastatic melanoma cell lines [76]. Accordingly,
CA-074 dramatically reduced human melanoma growth and lung metastases in murine
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xenograft models [76]. Similarly, Liu et al. demonstrated that cepharanthine (CEP), a
natural alkaloid with cathepsin B inhibitory function, inhibited human primary cutaneous
melanoma cell viability and proliferation in vitro. It also decreased the tumor growth in
cutaneous melanoma mouse models by the topical application or intra-tumoral injection
of CEP [77]. In addition, the incubation of primary cutaneous melanoma cells with CEP
showed not only decreased cathepsin B expression, but also decreased autophagy-related
protein, LC3-I and LC3-II, expression in a dose-dependent manner, while antioncogene
p53, p21Cip1p, and p16Inka expression was upregulated [77].

5. Conclusions

The lysosome has emerged as a key regulatory hub in physiological homeostasis.
Increasing evidence has also demonstrated its critical role in disease pathogenesis. Lyso-
somes are involved in many intracellular processes, including autophagy, and they have
been shown to have a dual role in cancer progression and drug resistance. Therefore, to
develop effective cancer therapeutics by targeting lysosomes, lysosomal activation and
inhibition should be investigated cautiously. In addition, many lysosomotropic agents
showing promising results are FDA approved and can translate to the clinic. A combination
of lysosomotropic compounds with other therapies might improve the clinical outcomes of
melanoma patients. However, more studies are needed to identify further lysosomotropic
agents’ specific roles in lysosome biogenesis and metabolism. Similarly, it is important
to determine the consequences of v-ATPase and cathepsin inhibition, although a variety
of studies have demonstrated their potential as therapeutic targets. The purpose of this
mini-review is to highlight the role of lysosomes in melanoma progression and therapy
resistance and to encourage the development of lysosome-targeted therapeutics, which
hold hope for improving clinical outcomes of melanoma patients (Figure 1).
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CEP cepharanthine
Chk1 Checkpoint kinase 1
CLEAR coordinated lysosomal expression and regulation
CYT cytolytic activity
DDX21 DExD-Box Helicase 21
ER Endoplasmic Reticulum
Ets1 ETS Proto-Oncogene 1, Transcription Factor
GSK3 Glycogen synthase kinase-3
HCQ Hydroxychloroquine
LAMP Lysosomal Associated Membrane Protein
LC3 light chain 3
Lys05 autophagy inhibitor
MCOLN1 Ca2+ channel mucolipin 1
MAPK Mitogen-Activated Protein Kinase
MITF micropthalmia-associated transcription factor
MiT/TFE microphthalmia/transcription factor E
MMP matrix metallopeptidase
mTORC1 mammalian target of rapamycin complex 1
MVB multivesicular body
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NNMT nicotinamide N-methyltransferase
p21 cyclin-dependent kinase inhibitor 1
PON2 paraoxonase-2
PRL3 Phosphatase of regenerating liver 3
Rab Ras-Associated Protein
RagD Ras related GTP binding D
ROS reactive oxidative species
shRNA short hairpin RNA
SNAP-23 Synaptosome Associated Protein 23
Sp1 Sp1 Transcription Factor
TEM temsirolimus
TFE3 Transcription Factor Binding To IGHM Enhancer 3\
TFEB Transcription Factor EB
TFEC Transcription Factor EC
TGF-β Transforming growth factor β
v-ATPase Vacuolar-type ATPase
Wnt Wingless and Int-1
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