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INTRODUCTION

While it seems inevitable that genome analysis will
one day be incorporated into routine health care, there is
as yet no clear strategy for doing so. Leroy Hood’s P4 vi-
sion that systems medicine should be predictive, preven-
tive, personalized, and participatory [1,2] has gained
traction as a statement of intent, but we are not seeing
large numbers of generally healthy people having their
genomes sequenced and interpreted for clinical purposes.
Next generation sequencing is being rapidly adopted in
oncology [3,4] and for molecular diagnosis of pediatric
congenital abnormalities [5,6]. The next phase will be to
implement genome analysis into care of patients with
chronic diseases such as diabetes, coronary artery dis-
ease, or inflammatory autoimmune conditions [7]. Fur-
thermore, truly preventive and predictive systems
medicine will be utilized by healthy adults with an eye to
maintaining their wellness into old age [8].

Before this happens, a number of obstacles must be
overcome. Perhaps most importantly, utility must be
demonstrated, with regard to both cost-effectiveness and

capacity to improve outcomes or prevent illness [9]. In
the context of lifetime per-individual health care costs
that are now in excess of USD $500,000 or of per-visit
hospital expenses that can easily exceed $10,000, the cost
of sequencing a person’s genome is very modest. Yet so
long as the expense must come from a person’s pocket
without reimbursement and given that benefits will often
be deferred for years or decades or will entail a period of
anxiety and require purposeful modification of behavior,
most individuals will not be willing to pay $1,000 for
their own genome sequence. It seems more likely that
employers may see the benefits of healthier employees
in terms of greater productivity and be willing to defray
costs, even if only a fraction of people benefit. Metrics
need to be developed that establish the utility of person-
alized medicine in the context of predictive health.

A second set of obstacles relates to the delivery of
genomic and comprehensive clinical information to con-
sumers [10,11]. We summarize the challenge with the
acronym PART, denoting that information must be pro-
vided in a format that is palatable, actionable, repro-
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CASE REPORT

We describe the Wellness and Health Omics Linked to the Environment (WHOLE†) personalized medicine
profile for a 50-year-old Caucasian male living in Atlanta, Georgia. Based on the principle that genomic
medicine will be most effective when presented in the context of an individual’s clinical and lifestyle data,
we propose the use of a “risk radar” that summarizes health risks in eight domains. Rather than providing
overwhelming lists of potentially deleterious genetic variants, we argue that profiles should be palatable,
actionable, reproducible, and teachable: the PART principle. Genetic risk scores for this individual are strik-
ingly concordant for his height, body mass index (BMI), waist hip ration (WHR), and cholesterol, and
blood transcriptome data agrees with and complements his complete blood counts. Despite enjoying cur-
rently good health, his risk radar highlights metabolic disease as his major health concern.
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ducible, and teachable. By palatable, we mean that hun-
dreds of thousands of data points must be reduced to a for-
mat that is neither overwhelming nor so riddled with
negatives that it is demotivating. Actionable means that it
should encourage the individual to adopt simple health be-
havior changes that are likely to make a difference and al-
ternatively that it does not burden them with incidental
findings that they are powerless to confront. Reproducible
means that the report should be based on transparent al-
gorithms and comparison with large databases that render
the conclusions robust to re-evaluation either by others or
over time, ensuring a level of trustworthiness. By teach-
able, we imply recognition that findings are, in most cases,
going to be outside the standard knowledge base of con-
sumers, so there must be support for people being able to
evaluate the results on their own, learn more, and partici-
pate in their own decision making.

Two divergent genomic wellness initiatives are rep-
resented by 23andMe and iPOP. The company 23andMe
for a time provided customers with an interpretation of
their whole genome genotype profile, generated from a
saliva sample consisting of mini-genetic risk scores as-
sembled from a handful of markers for each of hundreds
of conditions and sent anonymously by courier [12]. This
polygenic risk score service is currently suspended pend-
ing revision of the status of genomic information as a
medical device [13], though provision of highly penetrant
rare variants that promote, for example, breast cancer can
proceed. At the other end of the spectrum, Stanford Pro-
fessor Mike Snyder sequenced his own genome and per-
formed transcriptome, metabolome, proteome, immune,
and many other diagnostics at regular intervals over a 14-
month period [14]. The resultant integrated personal omics
profile (iPOP: http://snyderome.stanford.edu/) exposed a
pre-diabetic state and thereby argued for the utility of in-
clusion of functional genomic and clinical information
alongside gene sequences. Expense and practicality make
comprehensive iPOP less than attractive as a general so-
lution, but it does seem that a compromise is feasible.  

In particular, the recognition that personal omic pro-
files measured from blood are remarkably constant over
the interval of a few years, a phenomenon we have called
“omic personality” [15], implies that a baseline profile for
each person might be generated relatively inexpensively.
The Stanford group also has introduced the concept of a
genetic Risk-o-Gram, which takes polygenic risk scores
and combines them, based on knowledge of how diseases
and traits interact, into a single portrayal of the areas of
greatest genetic risk for the person [16]. We extended this
concept to incorporate an individual’s known clinical risk
profile, arguing that rather than scaling genetic risk to the
population mean, it should be scaled to the risk in a clin-
ically matched sample [17]. That study also discussed how
very rare variants identified by whole exome or genome
sequencing provide somewhat orthogonal measures of
health risks (and possibly also protective factors) to those
derived from common variants, which are the focus of this

paper. Ultimately as well, risk profiles should incorporate
environmental and family history information where
available, giving rise to the WHOLE strategy: wellness
and health omics linked to the environment [18].

Here, we report a case study of how this WHOLE
strategy might be applied following the PART principle.
The individual is a Caucasian male, CM763, who visited
the Center for Health Discovery and Well Being
(CHDWB) at Emory University in Atlanta on three occa-
sions in his late 40s and once more close to his 52nd birth-
day. He describes himself as being in good health and
indeed has an SP36 physical summary score in the top
fifth percentile. He also has an Ubble age of 40, which
means that his risk of dying of natural causes in the next
5 years (less than 1 percent) is approximately that of a 40-
year-old English male (www.ubble.co.uk) [19], based on
multi-variate risk-assessment applied to half a million peo-
ple. (In particular, being a never-smoker who walks fast
and feels in good health seem to be major factors in the
quick online survey assessment).  However, males in his
family have not recently lived into their 70s, dying young
of various causes, and there are clinical warning signs of
impending health concerns in his profile, making CM763
a good candidate for this personalized medicine approach.

MATERIAL AND METHODS

Clinical Measurements  
Almost 200 biochemical, anthropomorphic, clinical,

and survey measurements, some of which are reported
here, were obtained in the course of CM763’s participation
in the Center for Health Discovery and Well Being study
at Emory University, which is described in detail in [20-
22]. Blood and urine biochemistry and CBC data points
were generated under contract to Quest Diagnostics in At-
lanta, GA.  Whole body densitometry (DXA scan) and
SphygomoCor cardiovascular assessment were performed
at the Center, and food and behavioral survey assessments
were filled in over the Internet within a week of each visit.
Center visits were conducted on January 5, 2011; August
1, 2011; February 6, 2012; February 15, 2013; and July
15, 2015.  Percentile scores for the nine traits reported here
were generated from the z-score distribution of each trait
in 291 males in the study, averaged over an average of 2.7
visits.  Framingham risk scores for Diabetes and Cardio-
vascular Disease were calculated by combining age, gen-
der, BMI, cholesterol, smoking, blood pressure,
triglycerides, and fasting glucose as described in [23,24]. 

Under the terms of the CHDWB institutional review
board (IRB) protocols at Emory and Georgia Tech, genetic
data cannot be returned to participants, but it is fully avail-
able for research. In this case, CM763 volunteered to pro-
vide genetic data generated independent of the CHDWB
study, and it is combined with clinical data obtained dur-
ing his participation in the CHDWB study. Data for an-
other 312 participants is reported simply as a histogram
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summarizing the distribution of correlations of percentiles
of genetic risks and observed traits.

Genetic Data

All of the genotypes reported in this manuscript were
derived from CM763’s 23andMe profile, which is based
on data generated on a custom Illumina genotyping chip
with 960,614 SNPs. A total of 576 unique single-
nucelotide polymorphisms (SNPs) were chosen for analy-
sis, and these were involved in 604 trait associations. They
are listed in Supplementary Table 1. More than half of the
28 genetic effects shared by two or more traits were be-
tween cholesterol and triglycerides (8), coronary artery
disease (CAD) and myocardial infarction (MI) (4), or
Crohn’s disease and ulcerative colitis (4), and accordingly,
these were the only Genetic Risk Scores (GRS) (see
below) that showed even modest correlations.  

The list of SNPs was obtained by browsing the Phe-
notype-Genotype Integrator (PhenGenI) [25] site
(http://www.ncbi.nlm.nih.gov/gap/phegeni) in May 2015
for all SNPs associated at p < 10-8 with each of 26 com-
mon diseases or phenotypes for which clinical data was
available. A further 24 blood pressure-associated SNPs
were extracted from Table 1 in [26], two of which are also
associated with BMI or CAD. Five hundred ninety-nine
of 1,572 SNPs were removed due to linkage disequilib-
rium (r2 > 0.2) with a peak association in the vicinity, pro-
ducing a list of 973 associations with 27 traits involving
933 unique SNPs. Since PhenGenI only reports the SNP
rsIDs, a further manual curation step was required to iden-
tify the risk allele. We searched each SNP’s profile on
SNPedia, which reports the risk SNP, when available, for
each relevant study and provides links to the papers as
well as population genetic data.  For some traits, many of
the risk alleles are not reported, and inconsistencies where
different studies reported opposite alleles as carrying risk,
or ambiguities due to A/T or G/C alleles having similar
frequencies, were removed. This left a list of 617 unique
SNPs.  Most of these were directly reported on the Illu-
mina genotyping chip (a similar version of which, Illu-
mina OmniQuad, was used to genotype the CHDWB
cohort), but 179 were imputed with IMPUTE2 [27]
against the build 37 phase 1 1000G haplotypes, noting that
37 of the SNPs failed imputation. 

Allelic sum genetic risk scores [28] were computed by
assigning all risk allele homozygotes for each SNP a value of
2, all heterozygotes a value of 1, and the alternate homozy-
gotes a value of 0, and then summing these scores for each
trait in each individual. These scores were computed for
CM763 and for each of 317 other Caucasian individuals
(males and females) in the CHDWB database. Two hundred
eighty out of 192,072 genotypes (604 associations in 318
people) were not available, for a missing value rate of just
0.15 percent. Scores for individuals with incomplete profiles
for a given trait were adjusted to the nearest whole number
after multiplying their allelic sum by the number of SNPs for
the trait and dividing by the number observed in their pro-

file. Thus, someone with a score of 20 based on 19 of 21
SNPs would have an adjusted score of 22. CM763’s per-
centile genetic risk score was then computed by reference to
the 318 individual panel and assigned to the midpoint per-
centile of his bin. Thus, if he had a score of 15 along with 10
percent of the sample, and 21 percent had a score of 14 or
lower, his percentile was set at (21+10/2) = 26 percent.  The
genetic risk scores for all 318 individuals along with
CM376’s percentile rank are listed in Supplementary Table 2.  

Transcriptome Data

All transcriptome data was generated from whole blood
samples preserved in Tempus RNA tubes. One microarray
sample, corresponding to the baseline January 2011 visit,
was generated on the Illumina HT12 human gene expres-
sion profiling chip and is included in the data reported at the
Gene Expression Omnibus, GSE61672 (sample
GG2_0014), processed as described in [29]. Three RNASeq
samples were generated from samples collected on April 3,
April 10, and April 21, 2015 (CM763 vas travelling over-
seas on April 14). 100bp paired end short reads were aligned
to HuRef GRCh38 release 79 fasta assembly using Kallisto
v0.42.2 (http://pachterlab.github.io/kallisto/download.html)
to generate transcript-level counts, which were converted to
counts per million (cpm) by summing the counts for all tran-
scripts of each of 25,963 genes, dividing by the total counts
and multiplying by 106. Differential expression relative to
the 12 individuals reported in [15], or between the Week 3
and Weeks 1 and 2 samples, was performed in edgeR [30],
retaining only 7,720 or 4,357 genes with at least 50 cpm in
at least two of the samples, respectively. Preliminary analy-
ses had indicated that Weeks 1 and 2 are much more similar
to one another than Week 3, which was close to full recov-
ery, but also during a period of jet lag. For the analysis just
of CM763, no further normalization was performed, but for
comparison with the 12 CHDWB participants, inter-quartile
range transformation was applied to the 39 samples to equil-
ibrate the profiles. This transform adjusts the profiles such
that the value of the 25th and 75th percentiles are the same
and was performed in JMP Genomics v5.0.  Supplementary
Table 3 reports the counts and cpm for CM763’s three sam-
ples.

RESULTS
Consistent with the core principle of the WHOLE ap-

proach [18], that genomic information should be supplied
in consultation with medical professionals and not just as
a report delivered anonymously by email or over the In-
ternet, we start this case study with a brief summary of
salient environmental and family history observations. En-
vironment means the combination of behavioral, dietary,
lifestyle, and medication influences that are not ostensi-
bly genetic. The main body of the report then places two
types of genomic information into this context, namely
polygenic risk assessment from common genotypes and
gene expression profiling by microarray and RNASeq.
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Environmental and Family History Observations

Exercise: CM763 meets the U.S. Food and Drug Ad-
ministration (FDA)-recommended aerobic exercise goals
by walking to work 25 minutes each way, five times a
week, and engaging in vigorous exercise (jogging, yoga,
formerly swimming) twice a week. He does not use a Fit-
bit or Runkeeper-style app to log activity.

Diet: CM763 enjoys a diverse, low-fat omnivorous
diet based on fresh produce with little fast food.  Breakfast
and lunch are light, with a single main meal that is taken
in the evening without exercise before sleep, which may
contribute to his gradual weight gain despite calculations
that his total caloric consumption should be less than the
number of calories burned. Low-carb diets such as Atkins
or South Beach do not agree with him, but reduced car-
bohydrate intake is always a goal. Portion control and in-
creased exercise has historically been his most effective
mechanism for weight loss.

Drugs and Medication:CM763 is a strong proponent
of the notion that the body knows best how to heal itself and
does not take any medications or supplements. The only ex-
ceptions are prescriptions for a few days on a handful of oc-
casions as an adult, and non-steroidal inhalants to treat
childhood asthma. He has never smoked. He does, however,
consume the standard amount of alcohol for a professional
adult, namely one or two glasses of wine or beer a day.

Stressors:CM763 has lived an upper middle-class life,
excepting graduate school, without undue stress lasting
more than a few months, and has been married for 21 years.
He has lived in nine cities on three continents, both in sub-
urbia and the inner city. Aside from a few incidents requir-
ing stitches, he has not experienced any trauma. However,
an anomaly is that he has low social function scores, such
as the SP12 survey of meaning and peacefulness that places
him in the bottom percentile. He does not have children,
does not attend church, and is not on Facebook.

Family History: There are no strong indicators of en-
hanced familial risk for any common or rare diseases in
CM763’s immediate family. His father died of colon can-
cer in his 60s, and his mother has survived two separate in-
cidents of breast cancer, but the overall incidence of
cancer in the extended family is not unusual. Diabetes and
cardiovascular and autoimmune disease are also not indi-
cated in his family.  Isolated cases of osteoarthritis and se-
vere depression do not present more than mild concern,
as there is again no indication of inheritance in the family.

Genetic Risk Scores

Polygenic risk scores provide an estimate of an indi-
vidual’s risk of disease or sub-clinical abnormality based
on the contributions of a collection of common genetic
variants. These variants, or single-nucleotide polymor-
phisms (SNPs), are generated on a genotyping chip that, in
this case, included more than 960,000 SNPs. Genome-
wide association studies (GWAS) have identified between
10 and 130 SNPs associated with each of the 27 traits and
diseases listed in Supplementary Table 1. Approximately

three quarters of them were present in the Illumina geno-
typing files for 317 other Caucasian males in the CHDWB
cohort, so bioinformatic imputation methods were used to
generate the full set of 592 genotypes for each individual,
an average of 22 loci per trait. There are numerous ways
to generate genetic risk scores from such data, many of
which incorporate effect size estimates into a likelihood
estimate of disease [31]. However, we decided that a sim-
ple allelic sum [26] is the most transparent and repeatable
score at this time, so we report here the percentile rank of
CM763 relative to the CHDWB Caucasians for each risk
score. We also note that alternative methods for GRS com-
putation may give almost identical (weighted GRS) or
moderately (log odds ratios) correlated scores [18], but do
not present a comparison here, since for all traits the
known genotypes explain less than 20 percent of the ge-
netic variance so in any event should be regarded, at this
stage of genomic analysis, as very modest predictors.

Figure 1A shows a remarkable degree of concordance
between the genetic risk scores for CM763 and his ob-
served clinical profile. The overall regression of genetic
and clinical percentile ranks for nine traits is only mar-
ginally significant (R2 = 0.47, p = 0.04: dashed line), but
if the three metabolic disease-related traits in red are re-
moved, the regression for the other six measures is
strongly linear (R2 = 0.97, p = 0.0003). The histogram in
Figure 1B shows the distribution of correlations for the
same nine traits for 313 people (114 men, 199 women) in
the CHDWB cohort, with an arrow indicating that
CM763’s concordance is actually in the top half dozen in
the study. His actual WHR, height, blood pressure, BMI,
Beck Depression Index, and total cholesterol are very con-
sistent with estimates based on 11, 92, 24, 28, 6, and 43
loci, respectively. The total cholesterol estimate is partic-
ularly interesting as he has been in the top few percentiles
for this measure his whole life. Both his high- and low-
density liporptoteins (HDL and LDL) are unusually high,
and while this might be taken as a sign of a familial rare
hypercholesterolemia mutation, the GRS implies instead
that he has an unusually high polygenic combination of
alleles promoting high cholesterol.

At the other end of the plot, he has always been rela-
tively short, and this agrees with a GRS for height at the
14th percentile — if anything, he is taller, at 5’8” (170
cm), than expected. Similarly, his WHR GRS is in just the
fourth percentile, and at least until recently, that is re-
flected in the 20th percentile WHR rank for men. The
blood pressure estimate (both systolic and diastolic) is also
close to the 28th percentile predicted by the GRS, while
his slightly overweight BMI is around the 40th percentile
for both measures. The Beck Depression Index (BDI)
score [32] is most likely a coincidence, as the score fluc-
tuates widely and for most people is within a standard de-
viation unit of zero, so a 75th percentile BDI may just
reflect willingness to admit occasional anxiety and intro-
spection. The related bipolar depression GRS is based on
just six loci that explain very little of the genetic variance,
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and there is no hint of clinical diagnosis of BPD for
CM763. Not shown on the figure is his predicted early age
of onset of menarche, since menstruation is not relevant
for a male, though he is happy to attribute occasional
mood swings to menopause that is predicted to occur in
his early 50s.

The discordance in metabolic disease GRS assess-
ments for triglycerides, Type 2 diabetes (T2D), and coro-
nary artery disease, all of which are in the 60th to 75th
percentiles, and corresponding clinical measures of
triglycerides, and the Framingham T2D and CAD risk
measures [23,24], all of which are below the 30th per-
centile, is interesting given several other clinical data
points and the non-genetic data described above. On the
one hand, these high GRS along with very high choles-
terol is prima facie cause for concern, as is the report from
his whole body densitometry DXA scan that places the
percent body fat in his tissues between 30 percent and 35
percent, placing him in the top few percentile for men.
This result has been consistent over four visits to the
CHDWB, but seems implausible given his BMI and is at
odds with the alternate percent body fat measure from a
Tanita scale, which places him squarely in the normal
range. Nevertheless, the possibility of a genetic variant or
variants that produce a highly unusual body fat distribu-
tion cannot be excluded. On the other hand, CM763 has
heart function scores (augmentation index, pulse wave ve-
locity, hyperemia and sub-endocardial viability ratio) that
are all on the healthy side of normal, as well as plaque-
free arterial CAT-scan images. Given his overall good
health, exercise, and diet, CM763 has chosen to regard all
of the biomarkers taken together as a potential indicator of
future health issues, but not to pursue pharmacological in-
tervention at this time.

Gene Expression Profiles

A second type of genomic measure of particular in-
terest with respect to immune function is peripheral blood
gene expression profiling. CM763 had microarray-based
transcriptome analysis [33] performed during his initial
CHDWB visits, and RNASeq [34] was performed on three
samples over a month-long period during a respiratory in-
fection that was slow to resolve in April 2015.  

Whole blood RNA is a complex mixture of cell types,
numerically dominated by lymphocytes, neutrophils, and
monocytes, but with minor contributions from basophils,
eosinophils, dendritic cells, macrophages, and other white
blood cells. Red blood cells and platelets, being anuclear,
have limited RNA repertoires, but a signature of reticulo-
cyte abundance can be detected. We have introduced the
use of Blood Informative Transcripts (BIT) as a means to
profile immune activity based on the ability of 10 sets of
10 highly co-regulated transcripts to capture the covari-
ance of hundreds of genes related to immune function
[35].

The most notable feature of this analysis is the strong
concordance between the consistently high lymphocyte counts
(90th percentile) and low neutrophil counts (9th percentile) in
CM763, and his Axis 1 and Axis 5 scores that respectively
capture T-cell signaling and neutrophil/inflammatory signal-
ing and are in the 98th and 4th percentiles respectively [35].
The other Axes that are enriched for gene functions related to
B-cell signaling, general cellular processes, and the type 1 in-
terferon response are unremarkable, and there is no corre-
sponding data from the complete blood cell analysis. We have
reported recently that each of the BIT scores tend to remain
within 10 percent of a person’s healthy median value, despite
considerable fluctuation in neutrophil counts, so they can be
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Figure 1. Genetic risk score — Phenotype Correlations. A) Plot of percentile rank of phenotype against percentile
rank of allelic sum genetic risk score for the trait (Height, Waist-to-Hip Ratio (WHR), Body Mass Index (BMI), Systolic
Blood Pressure (BP), Triglycerides (TRIG), Beck Depression Index (BDI), and Total Cholesterol) or related Framing-
ham Risk Score (for Type 2 Diabetes (T2D) or Cardiovascular Disease (CVD)). Green circles are traits for which the
GRS rank closely matches the observed clinical rank for CM763; red points are three outliers. B) Histogram of fre-
quencies of Pearson correlations between the percentile ranks for 313 CHDWB participants, including 114 men (dark
shading) and 199 women (light shading).



used to establish a baseline profile [15]. Chaussabel et al. [36]
have shown that components of these Axes differentiate im-
mune disease-types, so it is possible that the signatures provide
biomarkers of immune risks. The data here suggests that
CM763 has a strong capacity for adaptive immune response
but perhaps less robust innate immune function. He rarely
contracts influenza or experiences illness requiring time off,
but it remains to be determined whether or how this relates to
his unusually high ratio of lymphocytes to neutrophils.  

The RNASeq analysis performed during a respiratory
infection is also of interest with regard to the gene sets that
are enriched both comparing him with 12 other CHDWB
participants [15] and comparing Week 3 with Weeks 1 and
2. These lists are documented in Table 1, and the differ-

ential expression is shown in the heat map in Figure 2A.
First, comparing the third week when he had almost re-
covered to the first two weeks of low-grade infection
whose only symptom was a persistent cough, there was
increased expression of multiple genes related to cytokine
production, and eight of the 10 Axis 5 blood informative
transcripts were also elevated, suggesting a neutrophil re-
sponse. In contrast, he had reduced expression of three he-
moglobins and several genes related to platelet production
and mean corpuscular volume. This is in addition to al-
ready low general expression of oxygen-binding heme
proteins and reticulocyte factors relative to the other 12
individuals, suggesting persistently mild anemia. Further-
more, the microarray analysis had also indicated low Axis
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Figure 2. RNASeq-based Transcriptional profiling of CM763 relative to 12 other CHDWB participants. A) Heat
map of 300 genes (vertical bars) that are significantly differentially expressed in CM763, in 39 samples (three for
each individual, rows) hierarchically clustered in both dimensions by Ward’s method, standardizing genes to z-scores
(red high expression, blue low expression). Note how the three samples for each individual indicated by color coding
of the dendrogram tend to be adjacent, indicating overall conservation of expression, but with four individual samples
that are more similar to CM763, who is the bottom set of three samples. B) Pairwise correlations of the first five prin-
cipal components of each sample considering all genes, as a measure of overall profile similarity, demonstrating how
CM763’s three profiles (highlighted with thin vertical black bars) are embedded within the matrix of 12 other individu-
als’ profiles, each of whom forms a unique cluster. Green high positive correlation, purple negative correlation (range
1.0 to -0.4) indicating very strong to weak profile similarity.



2 score, which is strongly correlated with reticulocyte
counts [37] relative to the entire cohort (11th percentile).
However, CM763 actually has RBC counts ranging from
the 75th to 95th percentile across his CHDWB visits, as
well as normal hemoglobin levels, oxygen saturation, and
hematocrit levels. By contrast, his mean corpuscular he-
moglobin concentration (MCHC) is in the bottom per-
centile for the study, raising the possibility that it is caused
by aberrant reticulocyte-related gene expression detected
both by microarray and RNASeq. He is not aware of any
adverse health effects related to RBC function, but this
profile is cause for attention.

Among the up-regulated peripheral blood genes are
hundreds that contain binding sites for the hematopoiesis
transcription factors ELK1 and STAT1, as well as hundreds
of genes with roles in mitochondrial electron transport,
respiration, and ribosomal function. A caveat to this analy-
sis is that the RNASeq of his samples was performed at a
different time and on a different sequencer than the other
CHDWB samples, and an inter-quartile range normaliza-
tion was needed to ensure that the profiles have similar
overall distributions. Despite this, considering all 13,560
measured transcripts, his three samples are embedded
within the overall profile similarity matrix (Figure 2B)
forming a unique set, as do each other individual’s three
samples. This strengthens the inference that the large num-
ber of up-regulated genes in Figure 2A and Table 1 has a
biological rather than technical basis. It is, though, note-
worthy that a cluster of four samples that are most similar
to him are from four different individuals at one of their
three times, suggesting that perturbation can also give rise

to differential expression of the genes that are most diver-
gent in CM763.

DISCUSSION
The results presented above suggest that, at least for

CM763, genetic risk and transcriptional profiles can be
concordant with and potentially explain clinical attributes
of interest. The regression in Figure 1A is actually con-
siderably more significant than theory predicts the rela-
tionship between GRS and traits should be [38], given that
to date the scores explain generally less than a tenth of the
phenotypic variance. Divergence in mean phenotypes is
expected at the extremes of the distribution, but not to the
degree observed, and this is confirmed by the observation
that by chance, he is in the top half dozen individuals of
313 considered in parallel. Nevertheless, the only really
discordant measured point, aside from the Framingham
risk scores, was triglycerides, but rather than considering
it an outlier, the 70th GRS percentile is actually within
range of the observed clinical 30th percentile given the
small amount of variance explained by genotypes. Gen-
eration of similar profiles for thousands of people will be
required to establish how unusual CM763’s regression is
and to define patterns of concordance from real data.  It is
also important to emphasize that whole genome sequenc-
ing would be expected to uncover dozens of very rare vari-
ants that severely impair the function of specific genes and
may sometimes have larger effects than the cumulative
common variant scores, which is a major limitation of the
current study.
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Table 1. Blood Informative Transcript Analysis.

Gene Sets Up-Regulated in CM763 (of 814 genes)
RNA-binding proteins including ribosome constituents (218; FDR 1×10-54)

Respiratory electron transport chain (47; FDR 2×10-31)
Threonine endopeptidase activity (15; FDR 4×10-14)

Oxidoreductase activity (84; FDR 8×10-14)
NADH Dehydrogenase activity (17; FDR 5×10-10)

Acidosis (30; FDR 2×10-5)
Binding sites for ELK1 (107; FDR 2×10-14)
Binding sites for STAT1 (26; FDR 2×10-3)

Gene Sets Down-Regulated in CM763 (of 36 genes)
Oxygen-binding heme proteins (5; FDR 3×10-9)

Reticulocytosis (mouse phenotype) (5; FDR 2×10-4)
Thalassemia (3; FDR 3×10-7)

Gene Sets Up-Regulated at Week 3 in CM763 (of 45 genes)
Cytokine production (11; FDR 1×10-4)

Abnormal macrophage physiology (8; FDR 0.03)

Gene Sets Down-Regulated at Week 3 in CM763 (of 27 genes)
Ribosomal proteins (10; FDR 4×10-13)

Oxygen-binding heme (haptoglobulin) proteins (3; FDR 3×10-7)
Microcytic anemia (4; FDR 6×10-6)

Abnormal platelet number (mouse phenotype) (5; FDR 0.002)
Abnormal mean corpuscular volume (mouse phenotype) (4; FDR 0.008)

Thalassemia (3; FDR 2×10-7)



Assuming for now that genetic risk scores continue
to improve, and that within 5 years they will be able to ex-
plain half of the genetic variance for a wide range of traits,
the next issue becomes how to present the data in a palat-
able, actionable, reproducible, and teachable manner. Fig-
ure 3 shows our proposal for how a Risk Radar plot may
work [17]. The radiating arms of the radar each represent
a domain of health and disease, clockwise from the top:
immunity, respiratory, cardiovascular, musculoskeletal,
metabolic, cognitive, psychological, and malignancy/on-
cology. Percentiles of genetic risk are indicated by each
successive web, from high risk (100th percentile) on the
outside to low risk (0th percentile) at the inner ring. The
green line joins a general estimate of risk in each domain,
while filled circles represent biochemical or survey meas-
urements that summarize observed clinical risk or health
status. Large red circles show high clinical risk, blue in-
termediate, and small white ones low risk. The two plus
signs over the cognitive and oncology domains indicate
that in the absence of disease, clinical risk is unknown.

Environmental and family history data is not directly
represented on the plot, but can be interpolated by the in-
dividual as he or she decides, possibly in consultation with
health care professionals, how to respond to the profile.
For CM763, the two most striking conclusions are that he

has multiple signs of metabolic disease risk that is con-
cordant with high GRS for cholesterol and above average
risk for high triglycerides and T2D. Given that his blood
glucose is at the high end of normal and that he is reason-
ably physically active and controls caloric consumption,
these metabolic domain scores serve as a warning to keep
paying attention. Currently, there is insufficient genotype
information to formulate a GRS in the musculoskeletal
domain, so it was set to 50 percent, but early signs of
arthritis along with bone mineral density in the bottom
quartile are mild concerns, also lessened by the fact that
CM763 has a low bodily pain index.

Two other domains suggest some discordance be-
tween genetic risk and clinical observation. The GRS for
CAD and MI are moderately high, but that for blood pres-
sure is not, and aside from very high cholesterol, all other
measures of cardiovascular function are healthy. Analysis
of exome and eventually whole genome sequence data
may also uncover rare variants that alter protein function
and may contribute in deleterious or protective ways to
CM763’s health profile. In the immunological domain, his
GRS for a variety of autoimmune and inflammatory con-
ditions are above average, but he seems to have a strong
immune system that is supported by high adaptive im-
mune activity from his transcriptome profile, despite the
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Figure 3. Risk Radar for CM763, showing his percentile rank for genetic risk on the rays and summary of clin-
ical risk as the size of the filled circle in each of the seven health domains. Genetic risk ranges from zero (inner
web) to 100 (outer web), as average of up to half a dozen traits in each domain. The objective is not to provide a pre-
cise statement of risk for individual conditions, but rather to contrast which domains are concordant for high or low ge-
netic and clinical risk. See Discussion for full explanation. The idea is to provide a simple representation of genetic
risk compared with existing clinical risk, in eight domains of disease: IMM, immunological; RSP, respiratory; CVD, car-
diovascular; MSK, musculoskeletal; MET, metabolic; COG, cognitive; PSY, psychological; ONC, oncological. Other
possible domains that could be added include reproductive health, or organ and tissue aging. See [17] for presenta-
tion of how more detailed analysis of genotypes within each domain may generate actionable behavioral or other in-
terventions.



slow resolution of a persistent cough on this one occasion.
Perhaps the biggest surprise from this analysis was the ab-
normality of his red blood cell related transcriptional pro-
files, both relative to others and at the end of the mild
illness, particularly given that he has never complained of
anemia or a blood-related disorder.

This profile will appear to be unduly simplified to
many, but the point is to reduce a potentially overwhelm-
ing body of data to broad areas that the patient may choose
to focus on. As argued in our earlier paper [17], more de-
tailed analyses within each domain, including genetic
measurements, can help to refine the risk assessment.
Readers may also object to the use of a simple allelic sum
to generate GRS, but again the point is not to provide a
quantitative point estimate of risk (which, in most cases,
will have a very large error of plus or minus at least 20
percentage points), but to place each person’s summary
profile in context. Allelic sums are actually highly corre-
lated with odds ratio estimates, since effect sizes are gen-
erally quite similar and small, and have the advantage that
they are not affected by error in the estimate of the effect
sizes across populations, and heterozygote effect estimates
are not influenced by allele frequencies (as they can be in
odds ratio methods). It is, however, important to recog-
nize that the distribution of GRS can vary among popula-
tions, so evaluations should be made relative to the
appropriately matched ethnicity. Clearly, GRS will change
over time as more and more SNPs are discovered, pre-
sumably converging on more accurate estimates as more
variance is explained. Thus, they should not currently be
seen as satisfying the robust repeatability criterion of our
PART assessment.

Ultimately, the utility of a systems biology risk pro-
file lies in the willingness of the patient to act on the in-
formation received, his or her preparedness for dealing
psychologically with the information, and commitment to
adopt suitable health behaviors [39]. Genetic information
is by nature often negative, risks of not responding to in-
formation are usually deferred to a time in the future, and
the information is only weakly predictive or difficult to
comprehend. Nevertheless, if it helps a patient to take more
interest in his or her own health and provides a foundation
for a dialog with medical professionals that moves beyond
mere phenomenology, then there is potential for benefits
that may maintain wellness. Private mutations currently are
attracting much of the attention in genomic medicine, but
we would argue that integrative genomic approaches that
also incorporate common variants, perhaps including
methylation and metabolomic profiles, have an important
place in the future of medical care.
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