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Abstract

Heterologous channel expression can be used to control activity in select neuronal populations, thus expanding the tools
available to modern neuroscience. However, the secondary effects of exogenous channel expression are often left
unexplored. We expressed two transient receptor potential (TRP) channel family members, TRPV1 and TRPM8, in cultured
hippocampal neurons. We compared functional expression levels and secondary effects of channel expression and
activation on neuronal survival and signaling. We found that activation of both channels with appropriate agonist caused
large depolarizing currents in voltage-clamped hippocampal neurons, exceeding the amplitude responses to a calibrating
30 mM KCl stimulation. Both TRPV1 and TRPM8 currents were reduced but not eliminated by 4 hr incubation in saturating
agonist concentration. In the case of TRPV1, but not TRPM8, prolonged agonist exposure caused strong calcium-dependent
toxicity. In addition, TRPV1 expression depressed synaptic transmission dramatically without overt signs of toxicity, possibly
due to low-level TRPV1 activation in the absence of exogenous agonist application. Despite evidence of expression
at presynaptic sites, in addition to somatodendritic sites, TRPM8 expression alone exhibited no effects on synaptic
transmission. Therefore, by a number of criteria, TRPM8 proved the superior choice for control over neuronal membrane
potential. This study also highlights the need to explore potential secondary effects of long-term expression and activation
of heterologously introduced channels.
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Introduction

There has been strong recent interest in heterologous control

over electrical activity in neurons and other excitable cells [1,2,3].

These approaches offer the possibility of remotely controlling the

activity of select populations of neurons, thereby gaining

experimental or therapeutic influence over network activity. For

instance, heterologously introduced channels have been used

recently to control courtship and escape behavior in flies and fish

[4,5,6,7] and to control sleep-wake behavior and motor behavior,

including Parkinsonian and epileptic symptoms, in mammals

[8,9,10,11,12,13]. Because electrical activity is critical for neuronal

survival, development, and plasticity [14,15,16], these techniques

also have experimental potential to help unravel the downstream

signaling mechanisms responsible for these important facets of

neuronal function [17,18].

Heterologous expression of ligand-gated receptors and leak

channels received initial attention [17,19,20,21,22], but this

approach has largely been supplanted by optogenetic approaches

that employ channels directly activated by light [23,24,25,26].

Multiple approaches for heterologous control over activity are

probably needed, however, as one single method is unlikely to be

appropriate in all situations. Introduction of leak channels

[17,21,22] suffers from a lack of control over the degree of

activity change and typically is limited to an inhibitory influence,

and one obvious disadvantage of optogenetic approaches is the

need for a light source. A light source of appropriate wavelength

will not be feasible or cost-effective in all circumstances. In the

intact nervous system, light implantation may be prohibitively

invasive. Furthermore, some applications may require activation

of a spatially dispersed set of neurons over a large area, in which

case a single light source may not be adequate.

For these reasons, we have explored further the advantages and

disadvantages of a heterologous ligand-gated receptor approach.

This approach offers the possibility of global administration of

ligand for activating populations of heterologously transfected

neurons. We explored two candidate heterologous ligand-gated

channels: transient receptor potential vanilloid receptor 1

(TRPV1) and transient receptor potential cation channel,

subfamily M, member 8 (TRPM8), which normally are respon-

sible for pain and temperature signal transduction in sensory

neurons and respond to the pharmacological ligands capsaicin and

menthol, respectively [27,28,29]. These channels were chosen for

their ability to be controlled readily by agonist application and

their lack of strong endogenous role in hippocampal function. To

test advantages and disadvantages of expressing each channel in

hippocampal neurons, we used sparse transfection of neurons

to avoid complications and confounds of widespread neuronal
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activation and associated release of neurotransmitters and

modulators. We tested the activation of these channels relative

to depolarizing currents activated by elevated extracellular

potassium as a calibration standard.

Acute activation of both TRPV1 and TRPM8 induced large

currents in response to saturating agonist concentration. Both

showed evidence of desensitization with prolonged receptor activa-

tion, although these responses still compared favorably with non-

desensitizing potassium-induced depolarizing currents. TRPM8

exhibited less agonist-induced toxicity and less interference with

normal synaptic communication in the absence of agonist. In

addition to soma expression of channels, we observed evidence for

direct depolarization of axon terminals of TRPM8- and TRPV1-

transfected neurons, suggesting cell-wide expression. Because our

results suggest that TRPM8 is expressed throughout the cell with no

detectable secondary effects on cell function, TRPM8 is the better

choice for studies requiring exogenous control over the membrane

potential of neuronal subpopulations. Our results also stress the

importance of fully characterizing a heterologous expression system

to avoid confounding and other unintended effects of manipulating

that system.

Results

TRPV1 transfection
We transfected neurons in our primary mass hippocampal

cultures with heterologous ligand-gated ion channels to spatially

and temporally control neuronal depolarization. We co-trans-

fected a yellow fluorescent protein-tagged synaptophysin con-

struct (Syn-YFP), which served as a marker for somata and

presynaptic terminals in transfected neurons (Figure 1A). We

first co-expressed the ligand-gated, nonselective cation channel

TRPV1 (Figure 1A and 1B). Whole-cell currents (see Figure

1E and 1F) from YFP-positive and YFP-negative neurons in

cultures co-transfected with TRPV1 showed that, at a 1:4

Syn-YFP:TRPV1 DNA ratio, no neurons expressed one con-

struct without the other (N = 38 transfected and 19 non-transfected

neurons). Assessed by YFP fluorescence, transfection efficiency was

1.160.3% (N = 3 dishes).

To determine whether current amplitudes generated by TRPV1

were sufficiently large to cause action potentials in transfected

cells, we performed cell-attached patch recordings from neurons.

Cell-attached patch methods were used in order to prevent cell

rupture, which would cause cytosolic mixing with internal patch

pipette solution and, therefore, potentially alter the intracellular

milieu and neuronal responses to environmental manipulation.

Application of a saturating concentration (500 nM) of the TRPV1

agonist capsaicin [27,30], which was chosen in order to maximize

neuronal depolarization and potential secondary effects of channel

activation, induced a pattern of 1–9 action potentials in TRPV1-

expressing neurons but no action potentials in non-transfected

neurons (Figure 1C and 1D; N = 15 transfected and 5 non-

transfected neurons). From the same cells, 30 mM KCl application

caused 1–6 action potentials in both transfected and non-

transfected neurons (Figure 1C and 1D; N = 19 neurons).

Hippocampal neurons are capable of sustaining action potential

firing for periods of at least as long as our 5 s agonist application

shown in Figure 1C, but spiking typically ceased soon after the

start of capsaicin application. This may result from small or

rapidly desensitizing capsaicin-induced currents or from very large

currents that cause strong inactivation of the sodium channels

necessary for spiking. This latter explanation almost certainly

applied to the effects of KCl, a strong depolarizing stimulus

[31,32,33].

To determine if rapid desensitization of capsaicin-induced

current is responsible for abbreviated spiking in response to

capsaicin, we examined capsaicin- and KCl-elicited currents in

voltage-clamped neurons. YFP-positive neurons, unlike non-

transfected neurons (5.364.4 pA; N = 4), reliably responded to

the TRPV1 agonist capsaicin with robust (21385.76574.8 pA;

N = 6) currents measured via whole-cell voltage clamp (Figure 1E

and 1F). As a comparison, we examined the response to current

induced by 30 mM KCl application, which is known to clamp the

membrane potential at steady state near 220 mV [32]. Non-

transfected neurons responded with a KCl-induced current

amplitude of -159.5662.3 pA (N = 4) while transfected neurons

responded with a similar amplitude of -204.0630.8 pA (N = 6).

The capsaicin current desensitized but remained large during the

application period, suggesting that rapid desensitization of

capsaicin-induced current is not likely to be responsible for the

abbreviated spiking observed in cell-attached patch experiments.

The robust sustained current in capsaicin, however, does implicate

voltage-gated sodium channel inactivation or other voltage-

dependent processes as a possible explanation. We conclude that

currents elicited by capsaicin in transfected neurons are similar to

or larger on average than those elicited by KCl and, therefore, that

500 nM capsaicin elicits a strong yet selective depolarization in

TRPV1-transfected neurons.

These observations were confirmed by neuronal responses to

exogenous compounds recorded in whole-cell current-clamp,

where transfected neurons produced a burst of 4–6 action

potentials in response to 5 s 500 nM capsaicin and depolarized

to a steady state of 24.061.7 mV (N = 5) while non-transfected

neurons did not respond to capsaicin (N = 5; Figure S1A, S1B;

Text S1). Both transfected and non-transfected neurons produced

a burst of 0 (in 1/10 cells) to 9 action potentials in response to 5 s

30 mM KCl while the membrane potential depolarized to a non-

steady state value of 233.963.4 mV during application. These

results support the conclusion that acute application of capsaicin to

transfected neurons can meet or exceed the strength of

depolarization achieved by a calibrating KCl stimulation.

We noticed that TRPV1-transfected neurons tended to have

larger basal holding currents (2177.7660.9 pA; N = 30) than

control neurons (251.1610.0 pA; N = 32; Student’s unpaired t

test, p,0.05) when voltage-clamped at 270 mV. We wondered

whether this observation could reflect non-ligand-gated channel

opening of TRPV1. We tested this explicitly by applying the non-

competitive TRPV1 antagonist ruthenium red (10 mM), which

blocked 91.865.3% of the capsaicin-gated current in our TRPV1-

transfected (500 nM capsaicin; N = 11) but caused no effect in

non-transfected (N = 8) neurons (Figure 2A). When we applied

10 mM ruthenium red to agonist-naı̈ve, TRPV1-transfected

neurons at the holding potential of 270 mV, we noticed that

ruthenium red blocked standing inward current, especially in the

leakiest (.2200 pA) TRPV1-transfected cells (Figure 2B). Ru-

thenium red blocked 12.363.1% (N = 15) of standing inward

current in TRPV1-transfected neurons while not affecting non-

transfected neurons (1.561.8%; N = 9; Student’s unpaired t test,

p,0.05). This suggests that at least some TRPV1-transfected

neurons exhibit capsaicin-independent channel openings, even in

defined recording media, which could be detrimental to the goal of

controlling TRPV1-mediated depolarization.

TRPM8 transfection
We also transfected cultured hippocampal neurons with the

ligand-gated nonselective cation channel TRPM8 (Figure 3A and

3B). At a 1:3 Syn-YFP:TRPM8 DNA ratio, we confirmed that

transfected neurons responded to acute application of the TRPM8

Heterologous TRPV1 and TRPM8
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agonist menthol at a saturating concentration (100 mM; N = 38)

[28,34], once again chosen to maximize effects of channel

activation, while non-transfected cells did not respond (N = 10).

Similar to the experiments above with TRPV1, transfection

efficiency was 1.260.4% as assessed by YFP fluorescence (N = 3

dishes).

YFP-positive neurons recorded in the cell-attached patch

configuration responded with a pattern of 1–7 action potentials

during 100 mM menthol application, as they did during KCl

application (Figure 3C; N = 13 transfected neurons). These action

potential responses were similar to those seen in TRPV1-

transfected neurons (Figure 1C), and non-transfected neurons

responded to KCl with 1–8 action potentials but did not respond

to menthol (Figure 3D; N = 26 non-transfected neurons). When we

applied these exogenous compounds while recording from

TRPM8-transfected neurons in current-clamp, we again observed

bursts of 1–6 action potentials and a steady state membrane

potential of 213.166.2 mV elicited by 5 s 100 mM menthol

Figure 1. TRPV1-transfected neurons respond strongly to the agonist capsaicin. (A) Fluorescence image of a neuron in mass culture
transfected with synaptophysin-YFP (Syn-YFP) and TRPV1. Scale bar denotes 100 mm. (B) Phase contrast image of the same field as (A). (C) Example of
a Syn-YFP/TRPV1-transfected neuron recorded in cell-attached patch configuration in voltage-clamp mode during 5 s 500 nM capsaicin application
(top trace) or 5 s 30 mM KCl application (bottom trace). Note that action potentials could be elicited by both treatments in the same cell. The
suboptimal seal, evident in the slow current excursions, was characteristic of nearly all TRPV1-transfected neurons. (D) Example of a non-transfected
neuron recorded under the same conditions as (C). Note that action potentials were only elicited during KCl application. (E) Example of a Syn-YFP/
TRPV1-transfected neuron recorded in whole-cell voltage-clamp mode during 10 s acute 500 nM capsaicin or 30 mM KCl application. TRPV1-
transfected neurons responded with robust currents to both capsaicin and KCl application. (F) Example of a non-transfected neuron recorded under
the same conditions as (E). Non-transfected neurons never responded to capsaicin but always responded with robust KCl-induced currents.
doi:10.1371/journal.pone.0008166.g001

Heterologous TRPV1 and TRPM8
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application (N = 6; Figure S1C; Text S1). Non-transfected neurons

did not respond to menthol application (N = 5; Figure S1D). In

these experiments, 30 mM KCl consistently elicited 1–3 action

potentials in all cells and a membrane potential after 5 s, though

not yet at steady state, of 237.161.9 mV. TRPM8-transfected

neurons exhibited large inward currents measured in voltage-

clamp during acute menthol application (2396.4669.6 pA;

N = 28) while YFP-negative neurons did not respond with inward

current (23.9620.1 pA; N = 10) at 270 mV (Figure 3E and 3F).

As seen with TRPV1-transfected neurons, these menthol-induced

currents in TRPM8-transfected neurons were similar to or larger

than currents induced by 30 mM KCl (2153.4627.8 pA; N = 8

transfected neurons; 2326.6696.2 pA; N = 10 non-transfected

neurons). We conclude that both TRPV1 and TRPM8 generate

sufficiently large currents in transfected hippocampal neurons to

cause strong, sustained (for several seconds) depolarization with

acute agonist application, equivalent to or larger than the effects of

30 mM KCl application.

Standing inward current in TRPM8-transfected neurons

(244.7616.9 pA; N = 32) was not significantly different from

non-transfected cells (257.2636.5 pA; N = 8), suggesting that

TRPM8 does not suffer from the same non-ligand-gated channel

opening as TRPV1. However, in some non-transfected cells held

at 0 mV, we observed a small sustained outward current in the

presence of 100 mM menthol (13.161.3 pA; Figure 3G; N = 8).

This current was observed even in the presence of 0.5 mM TTX

and changed direction appropriately with alterations in the

chloride gradient (Figure S2; Text S1). This latter result excludes

the possibility that the current is mediated by endogenous TRPM8

in non-transfected neurons, and no published evidence currently

indicates endogenous TRPM8 expression in rodent hippocampus.

A previous report suggests, however, that menthol can directly

gate GABAA receptor-mediated chloride currents in hippocampal

neurons [35]. Picrotoxin (100 mM), a noncompetitive GABAA

receptor antagonist, reduced the outward current in non-

transfected neurons by 85.4612.9% (Figure 3G; N = 8 neurons).

Therefore, these data provide evidence that menthol may weakly

gate endogenous GABAA receptors in cultured neurons.

Prolonged channel activation
To control neuronal activity and evaluate the effects on

development, synaptic function, or network activity, it may be

desirable to depolarize neurons for long periods of time. For this

reason, we activated TRPV1 and TRPM8 in cultured neurons for

4 hr to determine if depolarization was sustained throughout the

period of agonist exposure. We chose to activate these channels for

hours, instead of a shorter time period, to account for slow forms

of channel desensitization or inactivation that may be induced (i.e.

by cellular adaptation). These slower changes may be important

considerations for studies using heterologous channels in vivo or for

studies of neuronal circuit activity that utilize changes in activity of

subsets of neurons for long periods. To activate TRPV1, we added

500 nM capsaicin to the culture media in the presence of D-APV

(25 mM) and NBQX (1 mM) while the neurons remained at 37uC

Figure 2. Capsaicin-induced and capsaicin-independent currents are blocked by ruthenium red in TRPV1-transfected neurons. (A)
Examples of TRPV1-transfected (left panel) and non-transfected (right panel) neurons exposed to acute application of 500 nM capsaicin for 15 s with
10 mM ruthenium red added during the last 5 s. TRPV1-transfected neurons, but not non-transfected neurons, respond to capsaicin with a robust
current that is blocked by ruthenium red. (B) Examples of TRPV1-transfected (left panel) and non-transfected (right panel) neurons exposed to acute
application of 10 mM ruthenium red in the absence of capsaicin. Leaky (more than 2200 pA standing inward current) TRPV1-transfected neurons
reliably responded to ruthenium red while non-leaky TRPV1-transfected neurons and non-transfected neurons did not.
doi:10.1371/journal.pone.0008166.g002

Heterologous TRPV1 and TRPM8
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Figure 3. Menthol induces large depolarizing currents in TRPM8-transfected neurons. (A) Fluorescence image of a neuron in mass culture
transfected with synaptophysin-YFP (Syn-YFP) and TRPM8. Scale bar denotes 50 mm. (B) Phase contrast image of the same field as (A). (C) Example of
a Syn-YFP/TRPM8-transfected neuron recorded in cell-attached patch configuration in voltage-clamp mode during 5 s 100 mM menthol application
(top trace) or 5 s 30 mM KCl application (bottom trace). Note that action potentials were elicited by both treatments in the same cell. (D) Example of
a non-transfected neuron recorded under the same conditions as (C). Note that action potentials were only elicited during KCl application. (E)
Example of a Syn-YFP/TRPM8-transfected neuron recorded in whole-cell voltage-clamp during 10 s acute 100 mM menthol or 30 mM KCl application.
TRPM8-transfected neurons responded with robust currents to both menthol and KCl application. (F) Example of a non-transfected neuron recorded
under the same conditions as (E). Non-transfected neurons did not respond to menthol but always responded with robust currents to KCl at the
holding potential of 270 mV. (G) A non-transfected neuron recorded in whole-cell voltage clamp held at 0 mV during 15 s acute application of
100 mM menthol with 100 mM picrotoxin added during the last 5 s. Note that picrotoxin decreased the current gated by menthol.
doi:10.1371/journal.pone.0008166.g003

Heterologous TRPV1 and TRPM8
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in an atmospherically-controlled incubator. Similarly, TRPM8-

transfected cultures were exposed to 100 mM menthol under the

same conditions.

At the end of incubation, neurons were recorded in the

continued presence of agonist, and agonist-induced currents were

determined by removing the agonist with a fresh saline wash and

measuring the change in current amplitude. This amplitude was

then compared to the current amplitude of an acute application of

30 mM KCl in the same cell (Figure 4A and 4B). Compared to

brief (0–30 min) application of agonist, normalized current

amplitudes for both TRPV1- and TRPM8-transfected neurons

were significantly decreased after 4 hr application of their

respective agonists (Figure 4C and 4D). The ratio of capsaicin

current to KCl current in TRPV1-transfected neurons decreased

from 3.0460.73 (N = 32 neurons treated acutely with capsaicin) to

0.3260.08 (N = 11 neurons treated 4 hr with capsaicin; Student’s

unpaired t test, p,0.05). The ratio of menthol current to KCl

current in TRPM8-transfected neurons decreased from 8.2863.24

(N = 7 neurons treated acutely with menthol) to 1.5660.40 (N = 10

neurons treated 4 hr with menthol; Student’s unpaired t test,

p,0.05). The inward current present after 4 hr, however, was still

comparable to the current induced by acute 30 mM KCl. In both

acute and prolonged protocols, the average KCl-normalized

menthol current in TRPM8-transfected neurons trended toward

being larger than the corresponding normalized capsaicin current

in TRPV1-transfected cells. In summary prolonged agonist

application produced sustained, effective depolarization for both

channels, although the amplitude was reduced with time.

The smaller average agonist-gated current after prolonged

exposure probably results partly from receptor desensitization.

However, it is also possible that strong, prolonged channel

activation is toxic to neurons, and the smaller average currents

arise as a result of selective survival of cells with weaker channel

expression and smaller currents. Indeed, especially in TRPV1-

transfected cultures, prolonged agonist exposure resulted in many

unsuccessful electrophysiological recordings of cells with abnormally

Figure 4. Agonist-induced currents in both TRPV1- and TRPM8-transfected neurons are decreased after prolonged exposure. (A)
Examples of TRPV1-transfected neurons exposed to bath application of 500 nM capsaicin, 25 mM D-APV, and 1 mM NBQX acutely (top panel) or for
4 hr (bottom panel) prior to recording in whole-cell voltage clamp. Capsaicin was retained in the bath recording solution. After the whole-cell
recording was established, capsaicin was briefly removed by perfusing fresh recording saline for 10 s before 5 s application of 30 mM KCl. (B)
Examples of TRPM8-transfected neurons exposed to bath application of 100 mM menthol, 25 mM D-APV, and 1 mM NBQX acutely (top panel) or for
4 hr (bottom panel) prior to recording in whole-cell voltage clamp. Similar to (A), menthol was added to the bath recording solution. Menthol was
removed by perfusing fresh, menthol-free recording saline for 10 s before 5 s application of 30 mM KCl. (C) The average ratio of capsaicin current
amplitude to KCl current amplitude was calculated for acute and 4 hr applications of capsaicin. Error bars represent SEM. The ratio of capsaicin to KCl
current is significantly decreased after 4 hr capsaicin exposure (Student’s unpaired t test, p,0.05). (D) Similar to C except the ratio of menthol to KCl
currents in TRPM8-transfected neurons is depicted. Error bars represent SEM, and the menthol to KCl current ratio is significantly decreased after 4 hr
exposure to menthol (Student’s unpaired t test, p,0.05).
doi:10.1371/journal.pone.0008166.g004
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swollen morphology. To determine more systematically whether

prolonged channel activation affects neuronal health, mass cultures

were transfected with Syn-YFP control DNA with or without

TRPV1 or TRPM8. Neurons were assigned a binary (‘‘healthy’’ or

‘‘unhealthy’’) survival designation by a naı̈ve observer using cell

appearance under phase contrast optics. Healthy neurons had a

phase-bright soma and thin neurites. Unhealthy neurons had

distorted or swollen somata and neurites (Figure 5A). In some cases,

classification was verified by patch-clamp recordings; membrane

seals were never possible on neurons designated unhealthy.

Neurons were assessed for health after 4 hr of channel

activation using the same treatment protocol as the electrophys-

iology experiments in Figure 4. It is possible that transfection alone

caused some baseline toxicity; however, after 4 hr of capsaicin

exposure, the percentage of healthy TRPV1-transfected neurons

was significantly decreased from control cultures transfected with

only Syn-YFP (Figure 5B; ANOVA, p,0.01; post hoc Tukey

honestly significant difference test, p,0.05; N = 5 dishes per

condition with each dish representing 19.961.3 transfected

neurons). In contrast, a 4 hr menthol challenge to TRPM8-

transfected neurons caused no significant change in the percentage

of healthy neurons relative to sibling cultures transfected with Syn-

YFP (Figure 5C; N = 5 dishes per condition with each dish

representing 22.362.4 transfected neurons).

Calcium influx may differ between transfected neurons due to

differences in TRPV1 and TRPM8 calcium permeability [27,28].

Since calcium influx is known to contribute to some forms of

cellular toxicity [36,37,38], we wished to determine if toxicity in

TRPV1-transfected neurons after prolonged channel activation

was due to calcium influx. We assayed toxicity after 4 hr of agonist

exposure in calcium-free extracellular media supplemented with

500 mM of the calcium chelator ethylene glycol-bis (b-aminoethyl

ether)-N, N, N 9, N 9-tetraacetic acid (EGTA). Calcium-free media

protected TRPV1-expressing neurons exposed to 500 nM capsa-

icin compared to those in calcium-containing media (Figure 5B);

neurons exposed to capsaicin in calcium-free media appeared

similar to control neurons not expressing TRPV1. Survival of

TRPM8-expressing neurons exposed to 100 mM menthol in

calcium-free media did not differ from either Syn-YFP-transfected

controls or from TRPM8-transfected neurons treated in calcium-

containing media (Figure 5C). This suggests that calcium influx

during TRPV1 activation, but not during TRPM8 activation, is

toxic to neurons.

Effects of channel expression on synaptic transmission
For the utility of heterologous channels to be realized, it is

important to ensure that channel introduction alone does not alter

endogenous neuronal function outside of intended experimental

Figure 5. Agonist-induced toxicity in transfected neurons. (A) An example TRPV1-transfected neuron designated ‘‘unhealthy’’ (arrow) in the
same field as a ‘‘healthy’’ non-transfected neuron (arrowhead). Syn-YFP fluorescence (left panel) and phase contrast (right panel) images are shown.
Note the swollen cell body of the unhealthy cell. Scale bar represents 30 mm. (B) Transfected neurons treated 4 hr with 500 nM capsaicin, 25 mM
D-APV, and 1 mM NBQX in culture media with (2 mM) or without (0 mM plus 500 mM EGTA) calcium were assessed as ‘‘healthy’’ or ‘‘unhealthy’’ by a
naı̈ve observer. Significantly fewer TRPV1-transfected neurons treated in calcium were healthy than either YFP-transfected neurons treated in calcium
or TRPV1-transfected neurons treated without calcium (ANOVA, p,0.01; post hoc Tukey test, p,0.05). (C) Transfected neurons treated 4 hr with
100 mM menthol, 25 mM D-APV, and 1 mM NBQX in culture media with or without calcium were assessed as ‘‘healthy’’ or ‘‘unhealthy’’ as in (B). There
was no significant change in health of TRPM8-transfected neurons compared to YFP-transfected neurons regardless of whether or not they were
exposed to extracellular calcium. Error bars represent SEM.
doi:10.1371/journal.pone.0008166.g005

Heterologous TRPV1 and TRPM8
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manipulations. To determine if expression of heterologous ion

channels alters synaptic properties of cultured hippocampal

neurons, we transfected neurons in microisland culture with

TRPV1 or TRPM8. Microisland cultures, unlike mass cultures,

contain isolated ‘‘islands’’ of astrocytes with neurons plated on top

(Figure 6A). Measuring the autaptic responses of single neurons

that synapse only onto themselves is a useful method for studying

synaptic efficacy in the absence of polysynaptic complications [39].

Only a minority of island cultures contains a solitary autaptic cell.

Because of this low percentage, combined with low transfection

efficiency, we pooled synaptic responses from glutamatergic and

GABAergic cells. We used KCl internal pipette solution to create a

driving force of approximately 70 mV for both excitatory post-

synaptic currents (EPSCs) and inhibitory postsynaptic currents

(IPSCs) at the holding potential of 270 mV.

TRPV1-transfected autaptic neurons exhibited action potential-

evoked autaptic PSC amplitudes (2790.96228.3 pA; N = 9) that

were significantly decreased from Syn-YFP-transfected controls

Figure 6. TRPV1 transfection, but not TRPM8 transfection, alters synaptic transmission. (A) Fluorescence (left panel) and phase contrast
(right panel) images of a single-neuron (autaptic) island in microisland culture transfected with synaptophysin-YFP (Syn-YFP). Scale bar denotes
50 mM. (B) Representative examples of excitatory postsynaptic currents (EPSCs) evoked in transfected autaptic neurons 1 day after transfection.
Stimulus artifact has been blanked in each trace for clarity. Note that TRPV1-transfected neurons produced EPSCs with smaller amplitudes than
TRPM8-transfected neurons or Syn-YFP-transfected controls. (C) Quantification of average PSC amplitudes for transfected autaptic neurons. Error bars
represent SEM. TRPV1-transfected neurons produced significantly smaller evoked PSCs than Syn-YFP-transfected or TRPM8-transfected neurons
(ANOVA, p,0.01; Tukey-Kramer method, p,0.01). (D) Percentage of transfected autaptic neurons that did not respond to electrical stimulation with a
detectable PSC. When non-responders were analyzed as ‘‘failures’’ from a binomial distribution, the percentage of TRPV1-transfected neurons that
successfully responded to stimulation was significantly decreased from YFP-transfected controls (binomial test, p,0.01). Error bars represent SEM
based on the binomial distribution.
doi:10.1371/journal.pone.0008166.g006
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(23870.96444.1 pA; N = 28; Figure 6B and 6C; ANOVA, p,0.01;

Tukey-Kramer method, p,0.01). TRPM8-transfected autaptic neu-

rons, however, exhibited PSC amplitudes of 23590.86557.3 pA

(N = 17), which were comparable to Syn-YFP-transfected controls

(Figure 6B and 6C). In addition to smaller amplitudes of evoked PSCs,

we observed that more cells in TRPV1-transfected cultures exhibited

no PSC in response to action potential stimulation. In autaptic

neurons, 50% of TRPV1-transfected neurons failed to produce a

response, which was significantly more than Syn-YFP-transfected

controls (21%; Figure 6D; binomial test, p,0.01; N = 18 TRPV1-

transfected and 33 Syn-YFP-transfected autaptic neurons recorded in

microisland culture). With a failure rate of 11%, TRPM8-transfected

neurons were not significantly different from controls (N = 19

TRPM8-transfected neurons). This phenomenon appears to be an

extension of the observation of smaller evoked PSCs in TRPV1-

transfected neurons. In summary TRPV1 transfection, in the absence

of added ligand, depressed evoked synaptic transmission in autaptic

hippocampal neurons whereas TRPM8 transfection had no effect.

One possible reason that TRPM8 does not interfere with

synaptic transmission is that neurons may not express the channel

at synaptic sites. TRPM8 seems targeted robustly to the

somatodendritic compartment as evidenced by currents recorded

from the soma (Figure 3E). Whether the channel is targeted to

presynaptic terminals is less clear. If it is, axon terminal expression

of TRPM8 could also be useful for probing functional connections

between neurons of disparate brain regions. We used a functional

test of presynaptic TRPM8 expression by investigating if TRPM8

drives synaptic neurotransmitter release independent of action

potential propagation. We recorded from non-transfected target

cells apposed to Syn-YFP-positive puncta (Figure 7A). We applied

100 mM menthol to neurons in the presence of 0.5 mM TTX to

block action potential-driven transmitter release. If agonist-

induced miniature EPSCs (mEPSCs) were not observed at a

holding potential of 270 mV when using a cesium methanesul-

fonate internal pipette solution, then the holding potential was

switched to 0 mV to record miniature IPSCs (mIPSCs). Baseline

mPSC frequency, which presumably arose from mEPSCs and

mIPSCs from both transfected and non-transfected presynaptic

terminals, was highly variable in postsynaptic targets of both

TRPM8-transfected (0.1–119.8 Hz) and control (0.4–108.0 Hz)

neurons. Therefore, we expressed the changes in frequency that

occurred during menthol application as a percentage of baseline

frequency. Acute menthol application to TRPM8-transfected

neurons (N = 26) increased mPSC frequency in the postsynaptic

Figure 7. Agonist treatment in 0.5 mM tetrodotoxin (TTX) increases presynaptic transmitter release in transfected neurons. (A)
Fluorescence image of a TRPM8-transfected neuron (green) forming presumed presynaptic contacts onto a postsynaptically-recorded cell (red) filled
with Alexa Fluor 568, which was included in the recording pipette. Scale bar denotes 50 mM. (B) Example of miniature excitatory postsynaptic currents
(mEPSCs) recorded from non-transfected postsynaptic partners of TRPM8-transfected neurons (bottom panel) or from non-transfected neurons not in
contact with transfected neurons (top panel) in 0.5 mM TTX. During 100 mM menthol application, mEPSC and mIPSC frequency increased in neurons
postsynaptic to TRPM8-transfected neurons but not in control neurons. (C) Quantification of the mPSC frequency during 100 mM menthol application
compared to the baseline frequency (dashed line). Error bars represent SEM. In neurons postsynaptic to TRPM8-transfected neurons, but not in
control neurons, the mPSC frequency increased significantly in menthol (Fisher’s exact test, p,0.005). (D) Quantification of the mPSC frequency
during 500 nM capsaicin application compared to baseline frequency (dashed line) in neurons postsynaptic to TRPV1-transfected neurons or to
control neurons. Error bars represent SEM. In neurons postsynaptic to TRPV1-transfected neurons, but not to non-transfected neurons, the mPSC
frequency in capsaicin increased significantly (Fisher’s exact test, p,0.01).
doi:10.1371/journal.pone.0008166.g007
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cell to 1090.46532.1% of baseline frequency from before menthol

application. This was significantly increased from non-transfected

neurons or neurons transfected with only Syn-YFP (N = 13), which

produced a mPSC frequency in menthol of 104.166.3% of

baseline frequency (Figure 7B and 7C; Fisher’s exact test,

p,0.005). We conclude that it possible to depolarize presynaptic

terminals directly with menthol, which suggests that functional

TRPM8 protein is expressed on or very near axon terminals.

Since synaptic transmission is depressed in TRPV1-transfected

neurons (Figure 6), we tested whether TRPV1 is expressed near

synaptic sites and whether presynaptic release is hindered. The

baseline mPSC frequency, like with TRPM8 transfection, varied

greatly in the postsynaptic targets of control (0.5–93.2 Hz) and,

less so, TRPV1-transfected (1.0–35.1 Hz) neurons, although the

mean baseline mPSC frequency (9.567.1 Hz and 15.365.2 Hz,

respectively) did not differ significantly. When 500 nM capsaicin

was applied to Syn-YFP-positive puncta of TRPV1-transfected

neurons apposed to non-transfected neurons in the presence of

0.5 mM TTX, the mPSC frequency increased to 1016.86323.2%

of baseline frequency (N = 7; Figure 7D). This significantly differed

from control neurons not in contact with transfected neurons

(N = 9), for which capsaicin induced a mPSC frequency of only

121.3634.7% of baseline frequency (Figure 7D; Fisher’s exact test,

p,0.01). Like with TRPM8-transfected neurons, this suggests that

functional TRPV1 protein is expressed on or very near axon

terminals.

Discussion

In this study we compared transfection of cultured hippocampal

neurons with TRPV1 or TRPM8 nonselective cation channels,

which both allow specific activation of a small subset of neurons

within the neuronal network (Figure 1, Figure 3). Although

TRPM8 activation mediates similar current densities to TRPV1

(Figure 4), TRPV1 has larger secondary effects on cell function,

including interference with endogenous synaptic transmission in

the absence of exogenous agonist stimulation (Figure 6) and overt

calcium-dependent toxicity with agonist exposure (Figure 5). Our

results highlight substantial differences between two related

channels and suggest that care is needed in investigating secondary

effects of heterologous channels before employing them as tools.

Our observations suggest that transfection of TRPV1 alone, in

the absence of capsaicin stimulation, has important effects on

neuronal function. Although we did not detect overt cell loss or

swelling of capsaicin-naı̈ve TRPV1-transfected cells in estimates of

transfection efficiency 24 hr following transfection, cell-attached

patch recordings from TRPV1-transfected cells exhibited mark-

edly more seal instability (Figure 1C) and spontaneous rupture

compared with TRPM8-transfected cells (Figure 3C). In addition,

evidence suggests that at least some TRPV1 channels are activated

in the absence of exogenous capsaicin application (Figure 2). It is

possible that even more neurons contain activated TRPV1

channels than we measured since culture medium contains many

factors that are not included in defined recording saline. Seal

instability could represent an early sign of toxicity from low-

probability non-ligand-gated channel openings and/or from low-

level presence of endogenous activators in the culture medium (e.g.

pH, lipid compounds, or heat) in the absence of capsaicin [40].

Since the effects of TRP channel agonists are enhanced at more

depolarized membrane potentials [41], it is possible that

spontaneous activity may shift the heat sensitivity of TRPV1

enough to cause a persistent leak current while in the incubator.

However, this cannot explain the persistent current measured

electrophysiologically (Figure 2) since all recordings were per-

formed at room temperature. Alternatively, TRPV1 overexpres-

sion itself (in the absence of channel activity) could promote these

signs of compromised membrane integrity.

These same explanations (low-level channel openings or

channel overexpression itself) may account for the strong synaptic

depression observed in TRPV1-transfected neurons in the absence

of capsaicin stimulation (Figure 6). Since these synaptic changes

were measured in autaptic neurons, they could be presynaptic or

postsynaptic. Because action potential-independent transmitter

release from TRPV1-tranfected presynaptic terminals appeared

intact (Figure 7), autaptic depression may represent a postsynaptic

change, but it is also possible that TRPV1 expression disrupts

presynaptic action potential propagation (e.g. as a result of a leaky

axonal membrane) and/or action potential coupling to transmitter

release. We have previously found that neuronal depolarization in

cultured hippocampal neurons leads to a homeostatic decrease in

EPSC amplitude and mEPSC frequency [42]. It is possible that

low-level TRPV1 channel openings induce a similar phenomenon,

although we might have expected stronger evidence of reduced

mPSC frequency from TRPV1-transfected neurons (Figure 7).

One possibility is that contributions from non-transfected pre-

synaptic cells reduced the sensitivity of this experiment to detect

synaptic depression. The autaptic experiments did not suffer this

limitation. Regardless of the mechanism, this autaptic depression

in the absence of added exogenous agonist is a poorly controlled,

unintended consequence of TRPV1 overexpression and represents

a major disadvantage of heterologous TRPV1 expression.

Prolonged capsaicin-induced TRPV1 activation led to increased

overt signs of cell toxicity (Figure 5B). This again contrasted with

TRPM8-transfected cells (Figure 5C) despite similar normalized

depolarizing currents (Figure 4). By activating TRPV1 in the absence

of extracellular calcium, we determined that the toxicity most likely

results from calcium influx into the cell (Figure 5B). Since ionotropic

glutamate receptor blockers were present during these experiments,

toxicity cannot be attributed to calcium influx through NMDA

receptors via indirect increases in network excitability. Thus, the high

calcium permeability of the TRPV1 channel relative to TRPM8

[27,28] is likely a strong contributor to toxicity. These results are akin

to higher toxicity of calcium-permeable NMDA receptor activation

relative to AMPA receptor activation [36,43,44,45]. It is possible that

activation-dependent pore dilation, which occurs in TRPV1 [46,47]

but not TRPM8 [48], also participates in the stronger toxicity

induced by capsaicin treatment. Using saturating concentrations of

agonists for these treatments may have exacerbated toxicity, so it is

possible that lower concentrations could be titered to produce

significant depolarizations without concurrent toxicity or other

secondary effects.

Together, the experiments in this study suggest serious

disadvantages of TRPV1 overexpression. To complicate matters,

recent evidence also suggests that functional TRPV1 is expressed

endogenously in the central nervous system (e.g. the hippocampus)

in addition to its well-known expression in the peripheral nervous

system [49,50,51]. Use of heterologous channels for selective

stimulation obviously requires the demonstrated absence of

contributions from endogenous channels. In our experiments, we

never observed capsaicin-induced effects in non-transfected neurons

(e.g. Figure 1D and 1F, Figure 2, Figure 7D, and Figure S1B),

suggesting that endogenous receptor had a negligible contribution.

This lack of detection of endogenous TRPV1 activation may be due

to differences in expression in cultured neurons or to experimental

manipulations that, for whatever reason, did not measure the effects

of endogenous channel activation.

TRPM8 appears to be a much better candidate than TRPV1

for studies utilizing heterologous channel expression. TRPM8
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activation produced robust currents (Figure 3, Figure 4) but induced

less toxicity than TRPV1 (Figure 5C) and did not alter baseline

synaptic transmission (Figure 6). Additionally, we have demonstrat-

ed that TRPM8, like TRPV1, can be used to manipulate local

presynaptic function. Agonist application to transfected neurites in

the absence of action potentials increased miniature PSC frequency

in the postsynaptic cell (Figure 7). This suggests that agonist

application stimulates calcium entry into presynaptic terminals

through the TRP channel and/or through local voltage-gated

calcium channels to cause neurotransmitter release. Using menthol

as a TRPM8 agonist, however, has its caveats; menthol induced a

small current mediated by GABAA receptors (Figure 3G, Figure S2).

This current, however, was easily reduced by applying the GABAA

antagonist picrotoxin, and other agonist choices for TRPM8

activation exist [28]. We conclude that TRPM8 is superior for

most purposes and has fewer caveats than TRPV1.

Our study has shown how two related ligand-gated ion

channels, TRPV1 and TRPM8, behave differently when ex-

pressed in the same neuronal preparation. Although we have

shown that these channels, but especially TRPM8, are useful tools

for controlling neuronal activity, this study also emphasizes the

care needed in characterizing the nature of a newly introduced

tool like heterologous channel expression. In the future, it will be

important to ensure that other heterologous channels or proteins

used to manipulate neuronal activity behave as predicted,

especially after long periods of activation. Controlling neuronal

activity in subsets of neurons within a network will facilitate studies

of neuronal development, functional anatomy, synaptogenesis, and

synaptic plasticity as well as provide a framework for studies

manipulating neuronal populations in vivo.

Materials and Methods

Tissue culture and transfection
All experimental procedures involving animals were performed

using protocols approved by the Washington University in St. Louis

School of Medicine Animal Studies Committee as well as the Guide for

the Care and Use of Laboratory Animals published by the U.S. National

Institutes of Health. Primary hippocampal neuron cultures were

prepared as previously described (Mennerick et al., 1995). Briefly,

postnatal day 0–3 rat pups were anesthetized with isofluorane and

decapitated. Hippocampi were removed, cut into 500 mM-thick

transverse slices, and treated enzymatically with 1 mg/mL papain.

Cells were then mechanically dissociated and plated as mass cultures

(,650 cells/mm2 onto a uniform layer of collagen) or as microcul-

tures (,100 cells/mm2 onto ‘‘islands’’ made of collagen droplets). The

plating medium used was Eagle’s medium (Invitrogen, Carlsbad, CA,

USA) supplemented with heat-inactivated horse serum (5%), fetal

bovine serum (5%), 17 mM D-glucose, 400 mM glutamine, 50 U/mL

penicillin, and 50 mg/mL streptomycin. Cultures were housed in a

humidified incubator at 37uC under controlled atmospheric condi-

tions (5% CO2/95% air). To inhibit cell division 3–4 days after

plating, 6.7 mM cytosine arabinoside was added. Half of the culture

medium was replaced with Neurobasal medium (Invitrogen) with B27

supplement 4–5 days after plating. Transfections were performed 8–

12 days after plating using a DNA:Lipofectamine 2000 (Invitrogen)

ratio of 1:1.5–2 according to the manufacturer’s protocol. Dishes were

transfected with synaptophysin-YFP (0.5–2.5 mg), TRPV1 (2 mg),

and/or TRPM8 (1.5 mg). Experiments were performed usually 1 day,

but up to 3 days, after transfection.

Electrophysiology
Whole-cell voltage-clamp and cell-attached patch experiments

were performed using an Axopatch 200B amplifier (Molecular

Devices, Sunnyvale, CA, USA), Digidata 1322A acquisition board

(Molecular Devices), and pClamp software (Molecular Devices).

All recordings were made in voltage-clamp mode at room

temperature (,25uC). Whenever solutions were acutely applied

to neurons, a multi-barrel perfusion system was used with the

perfusion port placed ,0.5 mm from the neuron under study. For

all experiments, controls consisted of either neurons from sibling

cultures plated the same day or non-transfected neurons within the

same dish as the transfected neurons under study unless otherwise

described. All experiments, except for those depicted in Figure 6,

were performed in conventional mass cultures.

Membrane potential was typically held at 270 mV for

experiments, unless otherwise indicated. Electrode resistances of

6–11 MV were used for cell-attached patch recordings. For all

other recordings, electrode resistances were 2.5–6 MV. A 5 kHz

low-pass filter was used for all experiments except cell-attached

patches in which 1 kHz filtering was utilized. Access resistance was

compensated 85–100% for all experiments except where small

currents were measured: cell-attached patches, miniature postsyn-

aptic current recordings, acute agonist applications to non-

transfected neurons, and acute ruthenium red applications to

transfected and non-transfected neurons. Action potential stimu-

lation for the autaptic recordings was achieved by 1.5 ms voltage

pulses from 270 mV to 0 mV [39].

Extracellular recording media consisted of 138 mM NaCl,

4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose, 10 mM

HEPES, and 25 mM D-APV (Tocris, Bristol, UK) with a pH of

7.25. For all agonist-induced current recordings (i.e. excluding

microisland autaptic current and miniature postsynaptic current

recordings), 1 mM NBQX (Tocris) was added to the extracellular

media to inhibit secondary glutamate-mediated synaptic currents.

For most experiments, internal pipette solution consisted of

130 mM cesium methanesulfonate (CsMeSO4), 4 mM NaCl,

0.5 mM CaCl2, 5 mM EGTA, and 10 mM HEPES at a pH of

7.25. For cell-attached patch experiments, however, 140 mM K-

gluconate was substituted for CsMeSO4, and for microisland

autaptic recordings, 140 mM KCl was substituted for CsMeSO4

to provide similar driving force on excitatory and inhibitory

postsynaptic currents (PSCs) at the holding potential of 270 mV.

For some experiments, agonist-induced responses were com-

pared with responses elicited by 30 mM KCl application.

Prolonged exposure (4 hr) to 30 mM KCl has been shown to

induce strong synaptic change in cultured hippocampal neurons

and clamps the membrane potential near 220 mV [32,42].

Normalizing the agonist-induced current to the KCl current,

therefore, controls for variability in absolute current size due to

neuronal geometry and provides a within-cell comparator to a

calibrated depolarizing stimulus.

Epifluorescence imaging and cell counts
All imaging was performed using an Eclipse TE2000-S inverted

microscope (Nikon, Melville, NY, USA) with epifluorescence

provided by a metal halide lamp. Light was routed through

Chroma filter set 41001 (Chroma Technology Corp., Rock-

ingham, VT, USA), with an HQ480/40 nm excitation filter and

an HQ535/50 nm emission filter, and through Chroma filter set

41002 (Chroma Technology Corp.), with an HQ535/50 nm

excitation filter and an HQ610/75 nm emission filter. Images

were acquired using Metamorph software (Universal Imaging,

Downingtown, PA, USA) with a cooled 12-bit CCD camera

(Photometrics, Tucson, AZ, USA) through a 40X objective (0.6

numerical aperture). To determine transfection efficiency, the

number of transfected and non-transfected neurons was counted in

10 randomly-selected fields for each culture dish by an observer
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naı̈ve to the DNA combination. For cell health experiments, dishes

were fixed for 10 min in 4% paraformaldehyde/0.2% glutaralde-

hyde after agonist treatments. After washing 3 times in phosphate-

buffered saline, transfected neurons were assessed for health under

406 magnification by an observer naı̈ve to both the treatment

conditions and the DNA combination.

Data analysis
For all electrophysiological experiments, data were analyzed using

Clampfit 9.2 (Molecular Devices) and Excel (Microsoft, Redmond,

WA, USA) software. Graphs and traces were plotted using

SigmaPlot software (SPSS Science, Chicago, IL, USA). Transfection

efficiency was calculated by averaging the percentage of transfected

neurons in each dish. This percentage was determined by dividing

the number of transfected neurons by the total number of neurons

counted in 10 fields and multiplying by 100. For Figure 1 and

Figure 3, an action potential was counted if there was a 1–10 pA

transient and primarily negative current deflection above noise

lasting $1 ms. Except for electrically-evoked currents elicited in

autaptic neurons in microisland culture, current amplitudes were

measured by averaging ,500 ms of baseline and subtracting this

from the average of ,500 ms around the peak and/or steady state

amplitude. For Figure 4, the current ratio is measured by dividing

the agonist-induced current amplitude by the KCl-induced current

amplitude. For Figure 6, the baseline leak amplitude was subtracted

from the peak amplitude for at least 3 traces from each cell and

averaged. For autaptic experiments, cells with leak currents

.300 pA were excluded from analysis. To determine the percentage

of healthy transfected neurons after agonist treatment, the number of

healthy neurons was divided by the total number of transfected

neurons counted in a particular culture dish and multiplied by 100.

Miniature postsynaptic current frequency was calculated from 10 s

of recording using MiniAnalysis software (Synaptosoft, Decatur, GA,

USA). Baseline frequency was measured before application of

agonist while the frequency in agonist was measured beginning ,1 s

after application onset. The percentage of baseline frequency was

calculated by dividing the frequency in agonist by the frequency at

baseline and multiplying by 100. Data are presented in the text and

figures as mean6SEM unless otherwise stated. Student’s unpaired t

test, ANOVA, post hoc Tukey honestly significant difference test for

multiple comparisons, Tukey-Kramer method for unequal sample

sizes, binomial test, and Fisher’s exact test were used to determine

statistical significance where described in the text. A p-value of less

than 0.05 was required for significance.

Materials
Alexa Fluor 568 was purchased from Invitrogen. Synaptophysin-

YFP and TRPV1 constructs were graciously provided by Dr. Ann

Marie Craig (University of British Columbia) and Dr. David Julius

(University of California San Francisco), respectively. TRPM8 has

been used previously [52,53]. The calcium-free culture medium

used for toxicity experiments was made by the Tissue Culture

Support Center at Washington University by excluding 1.8 mM

calcium chloride from Neurobasal medium recipe [54]. Unless

otherwise stated, all other chemicals and reagents were purchased

from Sigma (St. Louis, MO, USA). When DMSO concentration in

experimental solutions was .0.1% after addition of reagents from

DMSO stock solutions, control and experimental conditions were

matched for final DMSO concentration.

Supporting Information

Figure S1 Agonist application to transfected neurons causes action

potentials and strong depolarization. (A) Example of a TRPV1-

transfected neuron exposed to 5 s acute 30 mM KCl (black trace) or

500 nM capsaicin (red trace). Neurons were recorded in whole-cell

current-clamp as described in Text S1 after adjusting the baseline

membrane potential to 265 mV with small bias current when

necessary. Although capsaicin-induced voltage changes were slow to

return to baseline, they did so within ,20 s. (B) The same as A except

recording from a non-transfected neuron in the same culture. (C)

Example of a TRPM8-transfected neuron exposed to 5 s acute

30 mM KCl (black trace) or 100 mM menthol (red trace). Neurons

were recorded in current clamp after adjusting the baseline membrane

potential to 265 mV as described in (A). (D) The same as (C) except

recording from a non-transfected neuron in the same culture.

Found at: doi:10.1371/journal.pone.0008166.s001 (0.24 MB TIF)

Figure S2 Menthol application to non-transfected neurons

induces a current that changes direction with the chloride

gradient. (A) Example of a non-transfected neuron recorded in

whole-cell voltage-clamp as described in Text S1 in the presence of

0.5 mM tetrodotoxin (TTX) with a cesium methanesulfonate

internal pipette solution held at various membrane potentials

during a local 5 s 100 mM menthol application. Note the change

in current direction with potentials above and below ,260 mV.

(B) Example of a non-transfected neuron recorded in the presence

of 0.5 mM TTX with a cesium chloride internal pipette solution

held at various membrane potentials during a local 5 s 100 mM

menthol application. Note the change in current direction with

potentials above and below ,220 mV. These data are consistent

with menthol gating a small GABAA receptor-mediated current in

non-transfected hippocampal neurons (see Figure 3G).

Found at: doi:10.1371/journal.pone.0008166.s002 (0.30 MB TIF)

Text S1 Supporting methods.

Found at: doi:10.1371/journal.pone.0008166.s003 (0.03 MB

DOC)
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