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Abstract: Wearable and Internet of Things (IoT) technologies in sports open a new era in athlete’s
training, not only for performance monitoring and evaluation but also for fitness assessment. These
technologies rely on sensor systems that collect, process and transmit relevant data, such as biomark-
ers and/or other performance indicators that are crucial to evaluate the evolution of the athlete’s
condition, and therefore potentiate their performance. This work aims to identify and summarize
recent studies that have used wearables and IoT technologies and discuss its applicability for fitness
assessment. A systematic review of electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE,
RSCI, SCIELO, IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) was undertaken
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. From the 280 studies initially identified, 20 were fully examined in terms of hardware
and software and their applicability for fitness assessment. Results have shown that wearable and
IoT technologies have been used in sports not only for fitness assessment but also for monitoring the
athlete’s internal and external workloads, employing physiological status monitoring and activity
recognition and tracking techniques. However, the maturity level of such technologies is still low,
particularly with the need for the acquisition of more—and more effective—biomarkers regarding
the athlete’s internal workload, which limits its wider adoption by the sports community.

Keywords: wearables; smart wearables; IoT; IoT in sports; fitness assessment

1. Introduction

The concept of Internet of Things (IoT) emerged back in 1990 when the first device,
a toaster, was connected to the internet to enable its remote control [1]. If in those days
internet connectivity was the novelty, 30 years later, the term IoT represents a huge ecosys-
tem that is far beyond connectivity, including multiple technologies (communications,
computation, control, interaction), within several application domains, such as health, au-
tomation, industry and agriculture, but also in sports, where several studies have already
been conducted [2–5] and where innovation and technology have been pushing the entire
sports industry [6].

Bringing the IoT into sports opens a new era in athlete’s training, not only for per-
formance monitoring/assessment but also for fitness assessment [2]. Typically, this is
achieved through the inclusion of IoT wearable technologies that rely on sensor systems to
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collect, process and communicate information, such as biomarkers and/or other relevant
indicators, that can be used to estimate the athlete’s capacity and evaluate the evolution of
its physical and health conditions and therefore potentiate its performance.

Specifically, the application of IoT solutions in sports and fitness has allowed simpli-
fying data acquisition processes with the use of wearables that allow a faster and more
efficient improvement in the athlete’s training. These devices are carried by athletes in
the form of clothing or accessories and are designed to include sensors, a microprocessor
and a communication unit that enables connectivity within a personal area network (PAN)
where the smartphone plays a central role, not only for data storage and processing but
also to operate as a gateway, empowering wearable devices with ubiquitous connectivity
to the internet.

The use of biomarkers in sports and fitness allows the use of specific characteristics that
are measured and used as an indicator of normal biological processes, pathogenic processes,
or responses to a specific external exposure or intervention. There are several biomarker
subtypes that can be defined as an identity, a biologic plausibility and its measurement
method [7]. In this sense, IoT technologies make the collection, processing, communication
and storage of these biomarkers easier, empowering the digital transformation in sports and
fitness, and making digital biomarkers more objective, due to their real-time nature, real-
world applicability and data availability [8]. Biomarkers are often collected by wearables
and aggregated by smartphones, and given the recent advances of machine learning
and Artificial Intelligence (AI), new avenues for knowledge extraction from biomarkers
data arise, pushing research and technology towards a new era in sports and fitness
assessment [8].

Fitness assessment and training load monitoring have become a popular topic of
research in sports sciences [9–11]. These areas help the coaches to better understand
the status of the player, as well as the functional adaptations over time [12,13]. While
fitness assessment represents a moment in time (picture), the monitoring process occurs
in a continuum over the period of intervention/exposure. Usually, fitness assessment
in athletes covers the main physical abilities, namely, aerobic capacity (also known as
cardiorespiratory fitness), anaerobic capacity and power, neuromuscular capacity (strength
and power), speed and change-of-direction and mobility [14]. Additionally, anthropometric
and postural assessments are also common in a complete battery of fitness assessments
commonly performed in athletes [15].

Regarding athletes’ monitoring, normally, four main areas are covered [16]: (i) internal
load, (ii) external load, (iii) well-being and (iv) readiness. Internal load represents the
psychophysiological responses to a given external load, while external load represents the
physical demands associated with a given stimulus provided by the coach [17]. Internal
loads are typically monitored using oxygen uptake, blood lactate concentration, heart rate,
or rate of perceived exertion [18]. The external loads are typically monitored using global
navigation satellite systems, inertial measurement units (IMU) [19], or linear transducers
that provide measures related to distances covered at different speed thresholds, accel-
erations/decelerations and changes-of-direction [20]. Well-being is typically monitored
using subjective scales related to fatigue, stress, quality of sleep, delayed onset muscle
soreness, or mood. However, sleep can also be measured using accelerometry [21]. Readi-
ness is normally assessed using the heart rate variability, heart rate recovery, variations on
neuromuscular tests (using force plates, or contact platforms), or variations in maximal
efforts (such as cycling or sprinting) [22,23].

Current wearable and IoT technologies are used in sports for monitoring both the
internal and external workload of athletes. However, there is still a need to obtain more
information about the athlete’s internal workload, which is crucial to adjust training and
increase the athlete’s performance. For example, the possibility to monitor physiological
biomarkers, such as saliva or sweat, in a non-invasive and continuous manner, enables
the possibility for optimal hydration adjustment, enhancing the overall athlete’s perfor-
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mance [24]. Furthermore, the use of such technologies opens new possibilities regarding
activity recognition [25–30] and activity tracking [31–34] in sports.

Both processes, fitness assessment and athlete monitoring, can provide a great amount
of data, pending the type of instruments used. However, the way that these data are
connected and exported is relevant, namely to make the process of information extraction
and report.

Thus, considering the importance of wearables and IoT technologies for fitness assess-
ment, this systematic review presents the following main contributions: (i) identification
and summarization of studies that have used wearables and IoT technologies for fitness
assessment and (ii) discussion of the examined studies in terms of applicability of the used
technologies for fitness assessment.

The remainder of this article is organized as follows: Section 2 presents the materials
and methods used in this study. Section 3 presents the results obtained. Section 4 presents
the results discussion, and lastly, in Section 5 the main conclusions are undertaken.

2. Materials and Methods

This systematic review was prepared according to the guidelines defined in PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-analysis), cf. [35]. The adopted
protocol has been registered on the International Platform of Registered Systematic Review
and Meta-Analysis (https://inplasy.com/), accessed on 13 June 2021, with the number
INPLASY202160041 and the DOI number 10.37766/inplasy2021.6.0041.

2.1. Eligibility Criteria

The search protocol was conducted independently by two authors (F.M.C. and M.R.-G.)
to identify potentially relevant studies, which consisted of the evaluation of the title, ab-
stract and reference list of each study. The inclusion and exclusion criteria can be found in
Table 1. Moreover, the full versions of papers included in the study were revised in detail
to identify—and consequently remove—the articles that do not meet the selection criteria.
An additional search within the list of references of the included papers was conducted
to retrieve additional relevant studies, and a final discussion was made in the cases of
discrepancies regarding the selection process with a third author (S.I.L). Possible errata for
the included articles has also been considered.

Table 1. Eligibility criteria.

Inclusion Criteria Exclusion Criteria

Applications of wearable and IoT in fitness assessment (i.e.,
assessment of cardiorespiratory level, neuromuscular

status, balance, sprint and change-of-direction, body mass
or body composition) and health monitoring in athletes or

sports (e.g., hearth rate, sleep quality).

Applications of wearables and IoT in other human activities not
related to fitness assessment or health monitoring in athletes (e.g.,

healthcare monitoring, well-being monitoring not related with
sports, clinical populations, medical devices.

Only original and full-text studies written in English.
Written in other language than English. Other articles types than

original (e.g., reviews, letters to editors, trials registrations,
proposals for protocols, editorials, book chapters and conference abstracts).

The studies must specify the hardware and software of the
wearable/IoT device and include the adopted fitness

assessment method.

2.2. Information Sources and Search

Several electronic databases (WOS, CCC, DIIDW, KJD, MEDLINE, RSCI, SCIELO,
IEEEXplore, PubMed, SPORTDiscus, Cochrane and Web of Science) have been searched for
relevant publications prior to 9 March 2021, the day when all the searches were performed.
Keywords and synonyms were entered in various combinations in the title, abstract,
or keywords: (sport OR exercise OR “physical activity”) AND (“wireless body sensor

https://inplasy.com/
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network” OR WBSN OR smartwatch* OR watch OR clothing OR tracker* OR footwear OR
wearable* OR “inertial measurement unit” OR IMU OR MEMS OR microelectromechanical
OR accelerometer OR gyroscope OR barometer) AND (IoT OR “Internet of Things”) AND
(performance OR movement* OR behavior* OR fitness OR cardio* OR aerobic* OR strength
OR neuromuscular OR sprint* OR agility OR change-of-direction OR “heart rate” OR HR).

Further, the reference lists of the selected studies were manually screened to identify
potentially eligible works not identified during the search in the electronic databases.
Subsequently, an external expert was contacted to verify the final list of references included
in this scoping review to identify possible relevant studies not detected by our search.
Possible errata were searched for each included study.

2.3. Data Extraction

A spreadsheet was prepared for data extraction following the guidelines of Cochrane
Consumers and Communication Review Group’s [36]. The spreadsheet was used to identify
the accomplishment of inclusion or exclusion criteria and to support the selection of the
articles. The process was made by two of the authors (F.M.C. and M.R.G.) independently.
Following, both authors compared the results, and in case of any disagreement regarding
the eligibility of a specific work, a discussion was undertaken and a final decision was
made upon agreement.

2.4. Data Items

In the analysis performed on the selected articles, the following data items were
extracted: type of study design, number of participants (N), age group (mean ± SD), sex
(male, female, or both), experimental protocol and type of exercise; characteristics of the
wearable device (sensors, actuators, microcontroller, processor, network topology), (iii)
characteristics of the software tools (software, ML algorithms, IA mechanisms).

2.5. Methodological Assessment

The STROBE assessment was applied by two authors (F.M.C. and M.R.-G.) to evaluate the
methodological bias of the eligible articles by following the adaptation of O´Reilly et al. [37].
Each of the included articles was scored for ten items, cf. [37]. The assessment was made
independently, and in case of disagreement, a discussion was undertaken and a decision
was made upon consensus among the authors. Following this, both authors compared the
results obtained, and any disagreement regarding the scores was discussed and a decision
was made according to agreement by consensus. Each study was rated qualitatively
following the O´Reilly et al. methodology [37]: from 0 to 6 points, the study was considered
at risk of bias (low quality), and, from 7 to 10 points, the study was considered as having a
low risk of bias (high quality).

3. Results

This section is divided into four subsections that include the study identification
and selection; the assessment of the methodological quality; the identification of the
individual characteristics of the studies; and finally, the extraction of the final results of the
individual studies.

3.1. Study Identification and Selection

The database searching identified a total of 280 titles (IEEExplore = 132; Cochrane = 2;
PubMed = 36; SPORTDiscus = 1; Web of Science = 61). These studies were then exported
to a reference manager software (EndNoteTM X9, Clarivate Analytics, Philadelphia, PA,
USA), and 48 duplicates were removed either automatically or manually. Following this,
the remaining 232 articles were screened for their relevance based on their title and abstract,
which resulted in the elimination of 177 additional studies. After the screening procedure,
55 articles were selected for in-depth reading and analysis. After reading the full texts,
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a further 35 studies that did not meet the eligibility criteria were excluded. The PRISMA
Flow Diagram that represents the adopted search methodology is presented in Figure 1.

Figure 1. PRISMA Flow Diagram.

3.2. Methodological Quality

The methodological assessment revealed that seven (35%) articles had low overall
quality, while 13 (65%) had high quality. The specific scores can be observed in Table 2.
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Table 2. Methodological assessment of the included studies.

References 1 2 3 4 5 6 7 8 9 10 Quality

Akpa et al. [38] 1 1 1 1 1 1 1 1 1 1 High
Barricelli et al. [39] 1 1 0 1 1 1 1 1 1 0 High
Bruek et al. [40] 1 0 0 1 1 0 1 1 1 1 High
Guo et al. [41] 1 0 0 1 1 0 1 0 0 1 Low
Huang et al. [42] 1 0 0 1 1 0 1 1 1 0 Low
Huynh-The et al. [43] 1 0 0 1 1 0 1 0 1 1 Low
Municio et al. [44] 1 0 0 1 1 1 1 0 0 1 Low
Muñoz-Organero et al. [45] 1 0 1 1 1 1 1 0 1 1 High
Qi et al. [46] 1 0 1 1 1 1 1 1 1 0 High
Roslan & Ahmad [47] 1 0 0 1 1 0 1 1 1 0 Low
Sun et al. [48] 1 0 1 1 1 0 1 0 1 1 High
Wang et al. [49] 1 0 1 1 1 1 1 0 0 1 High
Wang & Gao [50] 1 0 0 1 1 1 1 0 0 0 Low
Wilkerson et al. [51] 1 0 1 1 1 1 1 1 1 0 High
Xia et al. [52] 1 0 1 1 1 1 1 1 1 1 High
Xiao et al. [53] 1 0 0 1 1 0 1 1 1 1 High
Zhang et al. [54] 1 0 1 1 1 1 1 1 1 1 High
Zhang et al. [55] 1 0 0 1 1 0 1 1 1 0 Low
Zhao et al. [56] 1 1 1 1 1 1 1 0 1 1 High
Zou et al. [57] 1 0 1 1 1 0 1 1 0 1 High

Note: Provide in the abstract an informative and balanced summary of what was done and what was found (item 1). Give state-specific
objectives, including any prespecified hypotheses (item 2). Give eligibility criteria and the sources and methods of selection of participants
(item 3). For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of
assessment methods if there is more than one group (item 4). Explain how quantitative variables were handled in the analyses. If applicable,
describe which groupings were chosen and why (item 5). Give characteristics of study participants (item 6). Summarize key results with
reference to study objectives (item 7). Discuss limitations of the study, considering sources of potential bias or imprecision. Discuss both
direction and magnitude of any potential bias (item 8). Give a cautious overall interpretation of results considering objectives, limitations,
multiplicity of analyses, results from similar studies and other relevant evidence (item 9). Give the source of funding and the role of the
funders for the present study and, if applicable, for the original study on which the present article is based (item 10).

3.3. Characteristics of the Individual Studies

After a review of the included studies, information was collected regarding the wear-
able/IoT device (sensors, processors, memory, etc.), the software(s) used, the machine
learning algorithms and finally the fitness assessment method used in each study. Of the
devices presented, the one with the most studies was the wristband, while the remaining
studies covered wearables such as gloves, t-shirts, watches, waistband, chestband and
calfband. Of the devices presented, the one with the most studies was the wristband,
while the remaining studies covered wearables such as gloves, t-shirts, watches, waistband,
chestband and calfband. Only four studies presented commercial devices. Of the studies
that used Machine Learning algorithms, nine used Support Vector Machine, four used
Convolutional Neural Network, another four used Decision Tree and another four used
K-Nearest Neighbor and in some studies more than one algorithm was used. More details
on the characteristics of the studies are presented in Table 3.
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Table 3. Study Characteristics.

Wearable/IoT Hardware Software Tools (Edge/Cloud Computing) Fitness Assessment

Study
Device
Type

Commercial/
Prototype

Sensors/
Atuators

Processor/
Memory/DevBoard

Communication
Protocols

Network
Topology

Autonomy
Online/
Offline

Biomarkers Analytics/ML/AI Software
Type of
Exercise

Experimental
Protocol

Population
N/Sex/Age

Akpa et al.
(2019) [38]

Glove Prototype
Force-sensitive
resistor (FSR)

MCU
Adafruit Feather:

Processor:
Atmega32u4

Memory:
32 kB Flash
2 kB RAM

BLE Star 6 h Offline
Hand Pressure

Distribution

Algorithms:
Decision tree

SVM
k-NN

UI for data display

Bench dips
Climber

Dumbbell curl
Knee-pull-in
Knee-twist-in
Plank leg raise

Pilate dips
Push-up

Side-to-side lunge
Wall push-up

1 h workout
10 exercises

3 sets p/ exercise
1–2 min. rest

N = 10
S: both

A: 25.9 ± 3.21

Barricelli et al.
(2020) [39]

Wristband
FitBit

Charge HR
Commercial n.d. n.d. n.d. P2P n.d. Offline

Heart rate
number of steps

per day
physical activity sleep

ML classifiers:
svm-based
knn based

n.d.
Soccer, strength and

conditioning

3-day measurements
w/1 training session

at the 3rd day

N = 10
S: male
A: 19

Brueck et al.
(2018) [40]

Wristband Prototype

Calorimetric
flow rate sensor
w/a Macroduct
sweat collector

Processor:
32-bit ARM
Cortex-M0
Memory:

128 kB Flash
24 kB RAM
DevBoard:

Raspberry Pi

BLE Star n.d. Both Sweat n.d.
ThingSpeak

Cloud
Cycling

80 % of HRmax
18 to 30 min

N = 5
S: both
A: n.d.

Guo et al.
(2019) [41]

Wristband Prototype PPG Sensor n.d. Bluetooth Star n.d. Online
Heart rate

Blood oxygen
saturation

Optimized XGBoost
based classification

algorithm
k-nearest neighbor
Decision tree SVM

Random Forest
Gradient boosting

decision tree

n.d.
Running

Boys: 1000 m
Girls: 800 m

- 3 min. warmup
running stage

- 2 min. recovery

N = 513
S: both
A: 14

Huang et al.
(2018) [42]

Calf band Prototype Motion Sensor n.d. Wireless P2P
Wearable

self-sustained
Offline Tribo-electrification

Algorithms:
SVM

Logistic Regression
n.d.

Sitting or
Standing,
walking,

climbing up
and downstairs

or running

5 sets of:
Sitting and standing

Walking
Climbing up

Climbing down
Running

N = 3
S: n.d.
A: n.d.

Hutnh-The et al.
(2020) [43]

n.d. Prototype Inertial sensor
AMD CPU 3.7-GHz

16 GB RAM
NVIDIA GTX 1080Ti

n.d. P2P n.d. Offline
Human posture
and kinematics

CNN
SVM

Matlab Misc.

3 Datasets:
Daily and Sport

Activities
Daily Life
Activities

Real World

N = 19
S: both
A: n.d.

Municio et al. (2019) [44] Bicycle Prototype
GNSS (GPS)
Speed sensor

HR sensor

CC2538:
6TiSCH connectivity

nRF52:
sensor data collection

6LoWPAN
BLE
SPI

Mesh network n.d. Online
Heart rate

Speed
n.d. n.d. Cycling

First 17 min.
of exercise

N = 17
S: both
A: n.d.
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Table 3. Cont.

Wearable/IoT Hardware Software Tools (Edge/Cloud Computing) Fitness Assessment

Study
Device
Type

Commercial/
Prototype

Sensors/
Atuators

Processor/
Memory/DevBoard

Communication
Protocols

Network
Topology

Autonomy
Online/
Offline

Biomarkers Analytics/ML/AI Software
Type of
Exercise

Experimental
Protocol

Population
N/Sex/Age

Munoz-Organero
(2019) [45]

Waist band Prototype
Tri-axial

accelerometer
n.d. n.d. n.d. n.d. Offline

Human
kinematics

Algorithm: CNN n.d.

Climbing stairs
Jumping

Lying
Standing

Sitting
Running/jogging

Walking

Each exercise
performed
for 10 min.
(except for
jumping)

N = 15
S: both

A: 31.9 ± 12.4

Qi et al.
(2019) [46]

Chest band
Wrist band

Commercial Shimmer3 n.d. Bluetooth P2P n.d. Offline
Acceleration

Heart rate

Two layer recognition
First layer:

SVM criteria for free and
non-free weight activities

Second layer:
CNN for aerobic

and sedentary activities.
Hidden Markov Model

to provide further
classification in free

weight activities

n.d.
Aerobic

Free weight
Posture

Aerobic and
posture:

- 5 min. each
- 3 sets

Free weight:
- 12 sets

N = 10
S: both

A: 30 ± 5

Roslan & Ahmad
(2020) [47]

Smartwatch Prototype
GNSS (GPS)
Force sensor

Vibrator Motor
MCU n.d. WiFi Star n.d. Online

Jump Force
and speed

OpenHAB myOpenHAB High Jump n.d. n.d.

Sun et al.
(2019) [48]

Smartphone
sport belt

Prototype
Accelerometer

Gyroscope
Depth sensor

x-OSC WiFi P2P n.d. Online
Human

kinematics

Long Short-term
memory (LSTM)

SVM

Microsoft
Kinect

SDK 2.0

Baseball:
on-field behavior
off-field warm up
Daily life behavior

n.d. n.d.

Wang et al.
(2018) [49]

Wrist band Prototype

Tri-axial
accelerometer

Tri-axial
gyroscope

Basler acA2000
camera

Smart Bond
DA14583
Processor:
Cortex M0
Memory

1 MB Flash

BLE
WiFi

Star n.d. Online
Human

kinematics

ML:
SVM

Principle Component
Analysis

Evothings
framework

Cordova HTTP
plugin

for Cloud
recognition

Racket sports

20 min. warm up
20 smashes

20 short clears
20 long clears

N = 12
S: male
A: n.d.

Wang & Gao
(2020) [50]

T-shirt Prototype
ECG sensor
Heart rate

Arduino UNO WiFi Star n.d. Online Heart rate

Radial-basis
function network

Probabilistic
neural network

n.d. Volleyball N/A
N = 100
S: n.d.
A: n.d.

Wilkerson et al.
(2018) [51]

Chest band Prototype n.d. Smartphone Wireless P2P n.d. n.d.
Human
posture

n.d. n.d.
Unilateral forefoot

squat
Single-leg test

N = 45
S: n.d.

A: 20 ± 1.5

Xia et al.
(2020) [52]

Wristband Prototype

MPU6050:
Tri-axial

accelerometer
Tri-axial

gyroscope

STM32F103
ARM Cortex M3

BLE Mesh n.d. Online
Human

kinematics

Algorithms:
ASMV, VSMV, DSMV
K-means Clustering

Density-Based Spatial
Clustering of

Applications with
Noise (DBSCAN)

Mobile APP
LiteOS

Table tennis
Badminton

Walking

Four type ofTable
tennis movements

Four types of
badminton 20 tests
for each movement

N = 5
S: both

A: 25 ± 5
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Table 3. Cont.

Wearable/IoT Hardware Software Tools (Edge/Cloud Computing) Fitness Assessment

Study
Device
Type

Commercial/
Prototype

Sensors/
Atuators

Processor/
Memory/DevBoard

Communication
Protocols

Network
Topology

Autonomy
Online/
Offline

Biomarkers Analytics/ML/AI Software
Type of
Exercise

Experimental
Protocol

Population
N/Sex/Age

Xiao et al.
(2020) [53]

Wristband Prototype
Pulse sensor
(photoeletric)

ARM processor
Bluetooth

HTTP
ZigBee

Star n.d. Online Heart rate
DT algorithm
MT algorithm

Android APP
Web APP

Matlab
n.d.

ECG simulation
via Matlab

n.d.

Zhang et al.
(2019) [54]

Smartwatch Commercial Inertial sensor n.d.
Bluetooth

WiFi
P2P n.d. Offline

Human
kinematics

Recognition model:
K-nearest Neighbor

Support Vector Machine
Naive Bayes

Logistic Regression
Decision Tree

Random Forest
CNN

PyCharm
scikitlearn

TensorFlow
Table tennis Table tennis games

N=12
S: both

Zhao et al. (2020) [56] n.d. Prototype
GNSS (GPS)
Temperature

Heart rate

Arduino Mini MCU
LinkIt Smart 7688

4G mobile
WiFi

Mesh n.d. Online
Physiological

status
Algorithm:

Kalman Filter
MediaTek Cloud Hiking

Hiking trail
2.1 km long

N = 1
S: male
A: 26

Zou et al. (2020) [57] Smart Glove Prototype Inertial sensor MCU:n.d. n.d. P2P n.d. Offline
Human

kinematics

Recognition model:
Dynamic time warping

(DTW)
FastDTW
Half-DTW

Mobile APP Weight lifting
15 exercises
20 sets each

10 reps per set

N = 8
S: n.d.
A: n.d.

AI: Artificial Intelligence; APP: Application; BLE: Bluetooth Low Energy; CNN: Convolutional Neural Networks; DT: Decision Tree; ECG: Electrocardiogram; GNSS: Global Navigation Satellite Systems; GPS:
Global Positioning System; k-NN: K-nearest neighbors; MCU: Microcontroller Unit; ML: Machine Learning; P2P: Peer-to-Peer; SPI: Serial Port Interface; SVM: Support Vector Machine; n.d.: not defined.
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3.4. Results of Individual Studies

The results extracted from the studies, cf. Table 4, are based on the characteristics of
wearable and/or machine learning algorithms. After the analysis, it was found that only
three of the included studies were not conducted with the scope of the wearable but rather
on the effectiveness of the ML algorithm.

Table 4. Study Results.

Study Device Type Application
Processing/

ML Approach
Accuracy Main Conclusions Type of Load

Akpa2019 [38] Glove
Indoor Fitness

Activity Tracking
k-NN

Person-dependent: 88%
F score: 0.889

Person-independent: 82%
F score: 0.830

The device allows one to automatically count the repetition
of an exercise, by analyzing the time series of the
pressure distribution applied to the hand palm

External

Barricelli2020 [39] Wristband Athlete monitoring SVM-based SVM-based: n.d.
The Digital Twins applied to SmartFit helped to provide

trustable predictions related to twin’s conditions and make
easier the optimization of training process.

Digital

Brueck2018 [40] Wristband
Athlete Hydration

Detection
n.d. n.d.

The real-time sweat rate watch allowed detecting sweat rate
with an average error accuracy of 18% compared to manual
sweat rate. Future developments using IoT interfaces and
physiological sensor may increase the tracking of exercise

routines and acute and individualized strategies for hydration.

Internal

Guo2019 [41] Wristband
Running

monitoring
XGBoost-based

97.26%
F score = 0.973

The proposed model revealed effectiveness and feasibility
compared to previous ones, providing an interesting solution

for fitness assessment while running.
External

Huang2018 [42] Calf band
Physical Activity

Recognition
SVM SVM: more than 80%

The accuracy reach up to 90% for certain activities, while saving
25% of energy in comparison with other sensors. The recognition

of human motion was achieved using the proposed approach.
External

Huynh-The2021 [43] n.d.
Human activity

recognition
DeepFusionHAR DeepFusionHAR: 97.4%

The DeepFusionHAR achieved an accuracy of 97.4% for
recognition sport activities. This will help to easily recognize

important activities made by humans while exercising.
External

Municio2019 [44] Bicycle Cycle-cross training n.d. n.d.
The proposed approach help to easily track

cycling without the use of 4G coverage,
just using an infrastructure-less IoT based platform.

External

Munoz-Organero2019 [45] Waistband
Human activity

recognition
CNN

P-fold cross validation:
F score: 0.87

The results presented outperform 8% of those obtained by a
p-fold cross validation. The human activity recognition

may help future identification of motion and improve the
understanding of the quality of movement.

External

Qi2019 [46]
Wristband
Chest band

Repetition counting
and exercise

detection
Neural Networks Neural Networks: 95.2%

The proposed approach allowed classifying 19 gym
activities with a good accuracy. This may help to
track exercise and help to design individualized

exercises for people, while identifying the load imposed.

External

Roslan2020 [47] Smartwatch
High jump
monitoring

n.d. n.d.
The validation process was confirmed and the accuracy

was improved.
External

Sun2019 [48]
Smartphone

attached
to belt

On and off-field
baseball recognition

LSTM w/
Decision Fusion:

SVM w/
Accelerometer:

97.33%
87.33%

The proposed method allowed classifying on- and off-field
behaviors of baseball players. This represents a step forward
for assessing player’s performance and making decisions to

improve the behaviors and design new strategies for each player.

External

Wang2018 [49] Wristband
Classify at least three
different badminton

strokes
SVM

97% in stroke recognition
90.3% in clear recognition

The sensors allow capturing motion during playing of badminton,
which may help to improve technical skills and individualize

the training to fit to each player’s needs.
External

Wang2020 [50] T-shirt
Hearth rate
monitoring

RBFN-LMPN: 73.58%
The monitoring process provided by the solution will help

to control the health status of players in real time and
detect risk situations early.

Internal

Wilkerson2018 [51]
Upper Torso

strap
Injury recognition

& prevention
n.d. n.d.

The model revealed an important accuracy in predicting
injury. This is a step forward in injury prevention in sports

and in individualizing training strategies to reduce injury exposure.
External

Xia2020 [52] Wristband
Racquet sports

recognition
Multilayer Hybrid
Clustering Model:

86%
The wristband allowed detecting racquet movements with good
accuracy, which will help to quantify the quality and quantity of

movements during training and match scenarios.
External

Xiao2020 [53] Wristband/Bracelet
Hearth rate
monitoring

R-wave recognition: 98.95%
The wearable device will help to detect alert situations early

related to health status of players.
Internal

Zhang2019 [54] Smartwatch
Ping pong
movement
recognition

Random Forest:
k-NN:

Decision Tree:

97.8%
95.02%

94%

A great accuracy for recognition of ping-pong movements was
found using wearables. This will help to identify the amount and

quality of movements and better design training scenarios and
manage load.

External

Zhao2020 [56] n.d.
Physiological

status
monitoring

Kalman Filter n.d.
The wristband allowed detecting racquet movements with good
accuracy, which will help to quantify the quality and quantity of

movements during training and match scenarios.
External

Zou2020 [57] Glove
Real-time athlete

monitoring
n.d. 90.66%

iCoach allows recognizing 15 sets of training programs, and
also detecting nonstandard behaviors. This will help to improve

the training design
External

CNN: Convolutional Neural Networks; k-NN: K-nearest neighbors; LSTM: Long short-term memory; ML: Machine Learning; RBFN: Radial
basis function network; SVM: Support Vector Machine; n.d.: not defined.
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4. Discussion

This systematic review aimed to identify and summarize studies that have examined
the applicability of wearable and IoT devices for fitness assessment.

Overall, eleven distinct wearable/IoT devices types have been evaluated for fitness assess-
ment. The examined studies were conducted using a glove [38,57], wristband [39–41,46,49,52,53],
calf band [42], bicycle [44], waistband [45], chest band [46], smartwatch [47,54], smart-
phone attached to belt [48], T-shirt [50], upper torso strap [51] and bracelet [53]. Two
studies did not report any results regarding the use of wearable/IoT devices for fitness
assessment [44,47]. To discuss the technologies under analysis, we opted to evaluate the
examined works based on the study characteristics presented in Table 3, taking into account
relevant criteria for the implementation of the devices and their impact on the application
side. The discussion will be based on the next four criteria:

A. Sensing: suitability of the used sensors for biomarkers acquisition;
B. Processing: computational capacity and its impact on the device’s autonomy;
C. Communications: communications protocols and their impact on the device’s auton-

omy and security and privacy;
D. Applicability: applicability of the wearable/IoT technology for fitness assessment.

Typically, wearable and IoT devices are carried by athletes in the form of clothing or
other accessories designed to include sensors, a microprocessor and a communication unit
that enables connectivity with a smartphone or a third-party service provider, and demand
for small footprint, a powerful CPU for intermittent processing (i.e., quick data processing
with fast return to a deep sleep state) with low-power consumption and low-power com-
munications for ubiquitous interoperability. In such architectures, the smartphone plays
a central role, not only for data storage and processing but also to operate as a gateway,
empowering wearable devices with ubiquitous connectivity to the internet.

Regarding criterion A, the suitability of the used sensors for biomarkers acquisition, it
is still important to develop integrated sensing technologies, namely with a focus on the
miniaturization at the Integrated Circuit (IC) level, which includes the design of System on
Chip (SoC) ICs for data acquisition, pre-processing and wireless communications [58,59].
Since wearables are physically attached to the athlete’s body, removing wires can be of
great value regarding the applicability of such systems in a real-world scenario. There-
fore, designing specific ICs that integrate sensor technologies (i.e., that include an analog
frontend for sensor interfacing), a powerful CPU (for intermittent processing) and a low-
power radio (for intermittent communications) is a direction that should be considered.
To achieve increased reliability, sensor technologies need to be focused on the improvement
of the signal-to-noise ratio and sensitivity, which may demand from IC manufacturers new
possibilities such as new IC SoC packaging approaches that aim to pursuit more reliable
and robust wearable devices, cf. [60,61].

Regarding criterion B, reducing the overall power consumption of wearable/IoT
technologies is crucial to achieving higher maturity levels. However, only two of the
examined works [38,42] evaluated the autonomy, which can be observed by the fact
that the majority of the evaluated works are still at the prototype stage. Additionally,
the convergence towards the design of Application Specific Integrated Circuits (ASICs)
will help to reduce the overall power consumption at the same time that integration and
miniaturization will pave the way to less invasive wearable and IoT devices in sports.
Additionally, and as a result, the overall cost of such devices will be reduced, since large-
scale production tends to reduce the overall production cost.

Regarding criterion C, the majority of the examined works use communication stan-
dards designed to operate in Local Area Networks (LAN) using Wi-Fi [47–49] and Zig-
bee [53]) protocols, or in a Personal Area Network (PAN) using the Bluetooth [41,46,53,54]
and Bluetooth Low-Energy (BLE) [38,40,44,49,52]) communication protocols. Only one
work uses a Wide Area Network (WAN), i.e., 4G mobile communications [56]. When look-
ing at the impact of the communication protocols on the device’s autonomy, it is important
to keep in mind that, from the examined protocols, only the Zigbee and the BLE protocols
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have been designed for low-power operation, meaning that all the works that rely on other
communication protocols will have a reduced autonomy mainly biased by the adopted
communication protocol. Another important factor that was not evaluated in this study
was the communication delay, which is heavily dependent on the adopted communications
technology used, due to the fact that none of the examined works addressed this issue.
Regarding security, Wi-Fi uses 256-bit encryption, whereas Bluetooth and LE use only
128-bit encryption, which is the common level of security that standard applications do
require. However, if a high level of security is required, Wi-Fi must be considered with
Wireless Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA2-AES), which make
the communications demonstrably safer [62].

Regarding criterion D, among the examined studies that have reported results for
fitness assessment, two major categories have been identified—(1) Physiological Status
Monitoring with five works [40,41,50,53,56] and (2) Activity Recognition/Tracking with
eleven works [39,42,43,45,46,48,49,51,52,54,57]—which will be discussed separately in the
following two subsections.

4.1. Wearables and IoT Technologies for Physiological Status Monitoring in Fitness Assessment

From the first category Physiological Status Monitoring, several wearable and IoT
technologies (wristband [40,41,53]; T-shirt [50]; bracelet [53]) have been used along with
distinct processing/machine learning approaches, cf. Table 4.

Three of the examined works [40,41,53] have used a wristband—all in prototype
phase—for physiological status monitoring. More specifically, in [40], Brueck et al. present
a prototype using a wristband with a calorimetric flow rate sensor that has been interfaced
with a Raspberry Pi to send sweat rate information data to the cloud for athlete hydration
monitoring. In [41], a prototype based on a calf band equipped with a motion sensor
was used along with a machine learning fitness evaluation model oriented for teenager
running monitoring. Xiao et al. in [53] use a wristband to monitor athletes’ health by
acquiring their heart rate and transmitting it to a smartphone or computer for storage and
further analysis.

The two remaining works that rely on the first category include a T-shirt [50] and a
bracelet [53]. The former introduces a prototype based on a t-shirt that was embedded with
sensors for heart rate monitoring along with acceleration. Data are acquired and transferred
to Cloud services to be further classified by a machine learning model in order to get a
prediction of an athlete’s heart rate. The latter presents a prototype that assists moun-
taineering guides in leading mountaineering teams by collecting information about those
teams such as body temperature and heart rate. Through 4G, the information is uploaded
to a Cloud network management platform to store data and enable location services.

The use of physiological status monitoring plays a determinant role in the individu-
alization of the training process. One of the most common markers used to monitor and
adjust the training intensity is the heart rate, and these new possibilities of using wristbands
or t-shirts reduce the discomfort used by chest bands traditionally associated with heart
rate monitors. Additionally, adding information about sweat rate may also indicate how
the hydration should be replaced, aiming to adjust to the environment and consequences of
exercise. The combination of these indicators with data processing using machine learning
may allow faster identification of critical zones or target zones for training in respect to each
participant, namely considering their history for similar conditions. This may, in the future,
make it possible to design training conditions or even to determine the needs of dietary
and hydration before and after exercise, making it adjusted to the participant. Possibly,
in the future, the combination between heart rate and acceleration-based data will allow
a better understanding of the dose–response relationship between external load (dose)
and the consequence in internal load (response), which may vary from athlete to athlete
considering the fitness baseline levels.
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4.2. Wearables and IoT Technologies for Activity Recognition/Tracking in Fitness Assessment

Regarding the second category Activity Recognition/Tracking several wearable and
IoT technologies (wristband [39,46,49,52]; calf band [42]; waistband [45]; chest band [46];
smartphone attached to belt [48]; upper torso strap [51]; glove [57], smartwatch [47,54]),
have been in use along with distinct processing/machine learning approaches, cf. Table 4.

Seven of the examined works [39,42,45,46,49,52] have used wearable bands (wrist,
calf, waist and chest) for activity recognition/tracking. In the first, Barricelli et al. [39]
used a commercial FitBit charge HR for heart rate monitoring, step counting, physical
activity monitoring and sleep detection. These data are then transmitted to the cloud to
create a human Digital Twin (DT) that is continuously fed by the athlete’s fitness-related
measurements. After collecting enough data, the DT predicts the athlete’s performance
during training, and, depending on its performance, changes in the athlete’s behavior
can be suggested. The second work [46], introduces a prototype developed to recognize
exercises performed in a gym. This prototype consists of a set of two devices, one placed
on the wrist and the other on the chest area. Both devices have an accelerometer, and in
addition to this, the sensor placed on the chest also allows the reading of ECG signals.
The data collected are preliminarily classified to distinguish aerobic exercises from free
weight exercises. After this distinction, and for each of the classifications, the prototype
will be able to count repetitions and series of free weight exercises, as well as recognize the
aerobic activity performed or even sedentary activity. In the third work [49] a prototype
based on a wristband was developed with inertial sensors for recognizing classic racket
sports movements. The data collected by the wristband are sent to a smartphone via
Bluetooth Low Energy, which relays them to a remote server in the Cloud for further
analysis and querying. In the fourth work, [52] a prototype is proposed consisting of
a wristband embedded with accelerometers and gyroscopes and a multilayer hybrid
clustering model to achieve regular motion recognition of racket sports. The data collected
by the wristband are sent to a smartphone via BLE for consulting or sharing with others.
In the fifth work [42], Huang et al. present a prototype based on a calf band that was
integrated with motion sensors to enable detection of physical activity by collecting the data
to a computer and then classifying them using ML-based algorithms. In [45], the authors
present a prototype that was incorporated with a three-axis accelerometer for collecting
data regarding an individual’s movement. After storage, CNN is applied for extraction
of the relevant features for recognition and characterization of the physical activity that is
performed. Lastly, in [43] the authors present a prototype designed with tri-axial sensors
for data acquisition. These data are later segmented for feature extraction, which is done
in two different ways: the first is done by encoding an image, and the second is done
manually. Both extractions are concatenated and classified using SVM.

The four remaining works that fit into the second category include a smartphone
attached to belt [48], an upper torso strap [51], a glove [57] and a smartwatch [47,54].
In [48], Sun et al. present a prototype consisting of inertial sensors and a depth camera
to recognize an athlete’s behavior on and off the field. The prototype consists of a ribbon
where a cell phone is attached for data collection. The data from both sensors are first
segmented to be later classified using ML algorithms. In the second work, [51], a prototype
based on a chest band with accelerometers was developed for injury recognition and
prevention in athletes. With previously entered data, this device is able to evaluate the
athlete’s posture when performing exercises in order to predict the risk of injury. All the
data are collected by a smartphone that later sends them to a server in the Cloud. The third
work [57], consists of a glove prototype that has embedded inertial sensors for activity
recognition and non-standard behavior detection with data being presented to a mobile
application for quality assessment and analysis. Lastly, the work [54] presents a solution
for human motion recognition during Ping Pong practice using a commercial smartwatch.
This device allows the collection of data such as acceleration, angular velocity and magnetic
field strength that are sent to a smartphone and a computer for further classification with
ML algorithms.
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Reducing the devices to differentiate the modality of exercise and quantify the external
load and impact on the athlete is one of the main priorities in the future for sports sciences
applications. The introduction of IMU allows minimizing the use of mechanical instruments
that are typically less friendly and portable. As mentioned above, the use of belts, straps,
gloves, or smartwatches is a step forward for making data quantification easier and more
friendly. However, the benefit of using these devices is, precisely, that they integrate the
capacity of establishing the connection with cloud solutions and data processing. In fact,
the adjustment of training based on this immediate process may be a great solution for
recreational athletes or even for professionals. For example, the velocity-based training
allows, currently, to determine the number of repetitions in a set with the control of
maximum loss of acceleration. This ensures higher performance, mainly for cases of
weight lifting exercises made at the maximum intention. The same for throwing exercises.
The capacity of the devices to detect these changes and make additional treatment to
determine the appropriate load and repetitions for an athlete may be a step forward, namely
using machine learning. Additionally, in the future, the capacity to recommend the weekly
frequencies, the most appropriate exercises, or the automatic adjustment of load may be a
step forward that helps anyone that works without a strength and conditioning coach.

4.3. Study Limitations, Future Research and Practical Implications

The majority of the works examined in this systematic review have been conducted
keeping in mind the application of Physiological Status Monitoring and Activity Recog-
nition/Tracking to fitness assessment. The focus of this systematic review is to evaluate
the applicability of wearable and IoT technologies for such applications in terms of their
hardware, software and processing mechanisms, such as machine learning or other relevant
tools. However, the current use of wearable and IoT technologies in sports to monitor ath-
letes’ internal and external workload is still in development. The need to obtain more—and
better quality—information about the athlete’s internal workload, is still unmet by the re-
search community [24], which can be justified by the fact that most of the studies examined
in this article are still prototypes (16 out of 19), revealing that the maturity of such technolo-
gies is still low. Moreover, the rise of machine learning in sports can improve considerably
the utility of wearable and IoT technologies and help to pave the way for the next mile into
predictive fitness analytics [63–66]. ML-based techniques, such as Regression Analysis (e.g.,
Decision Trees [54], Random Forest [54]), Classifier Methods (e.g., SVMs [39,42,48] Nearest
Neighbor [41,54]) and Clustering Methods (e.g., K-means [52], Neural Networks [46,54]
and Hierarchical Clustering [52]), are examples of mature technologies that can be applied
into predictive fitness analysis modeling and learning.

Additionally, new advances in flexible electronics and IC fabrication are transforming
the development of wearables and IoT devices. However, there are still limitations associ-
ated with measuring several biomarkers that are challenged by the limitations presented
not only at the physical sensor implementation level but also at the system’s edge com-
puting level, namely with the need for lightweight machine learning implementations for
effective data analytics at the edge. Another important issue that needs to be addressed
is related to the autonomy of such devices. For example, reducing the overall power
consumption of the device is crucial for achieving a higher maturity level and surpass the
initial prototype stage.

5. Conclusions

Wearable and IoT technologies have been used in sports to monitor both the internal
and external workloads of athletes. However, the collection of more biomarkers regarding
the athlete’s internal workload is crucial to effectively adjust training and increase the
athlete’s performance. Furthermore, another important observation of this study is that the
maturity of such technologies is still low, which ends up conditioning its adoption by the
sports community in a wide way.
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On the other hand, physiological status monitoring and activity recognition/tracking
open up new possibilities regarding fitness assessment; notably, with the recent ad-
vances in machine learning in sports, predictive fitness analytics is becoming a consistent
trend by enabling the use of predictive models to determine appropriate training and
in-game strategies.

This systematic review allowed us show that internal and external load have been col-
lected and analyzed separately. Future advances should add machine learning techniques
to determine relationships between those variables and determine the optimum and indi-
vidualized training targets for recreational and professional athletes, helping them to moni-
tor and adjust the training process to the individual conditions and environmental factors.
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