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Genomics reveals historic and contemporary
transmission dynamics of a bacterial disease
among wildlife and livestock
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Whole-genome sequencing has provided fundamental insights into infectious disease

epidemiology, but has rarely been used for examining transmission dynamics of a bacterial

pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis

have increased in cattle along with rising seroprevalence in elk. Here we use a genomic

approach to examine Brucella abortus evolution, cross-species transmission and spatial spread

in the GYE. We find that brucellosis was introduced into wildlife in this region at least five

times. The diffusion rate varies among Brucella lineages (B3 to 8 km per year) and over time.

We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results

support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir

and the source of livestock infections, and that control measures in bison are unlikely to affect

the dynamics of unrelated strains circulating in nearby elk populations.
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W
hole-genome sequencing (WGS) can provide
increased discriminatory power over traditional
molecular typing approaches for inferring population

dynamics and reconstructing transmission pathways of slowly
evolving bacterial pathogens1–3. High-resolution genomic data
have yielded novel insights into pathogen evolution4, outbreak
dynamics1,2, cross-species transmission5,6 and geographic spread
at both local7 and global1,8 spatial scales. While many studies
have applied genomic approaches to better understand infectious
disease epidemiology in humans and domestic animals, those
examining bacterial disease dynamics in wildlife are lacking
(but see refs 4,6), in part due to the challenges of achieving
sufficient high-density sampling of pathogen isolates from wild
host populations.

Bayesian phylodynamic approaches that link the evolution and
demography of a pathogen under a single-population dynamic
framework have enabled investigations of infectious disease
dynamics on timescales relevant to epidemiological and ecological
processes9. Phylodynamic inference is dependent on the ability
to detect evolutionary change in real time (over the time span
of sampling)10 and, thus, its application has been extended
to bacteria with advancements in WGS technologies3.
Reconstruction of the past population history underlying a
pathogen genealogy allows for the estimation of parameters, such
as the rate of evolution11 and spatial spread12,13. Further
incorporation of geographic or host data can elucidate outbreak
dynamics and enable identification of infection sources and
introduction dates into new hosts and locations14.

The identification of pathogen reservoirs is particularly
challenging when pathogens infect multiple hosts, with some of
the clearest evidence coming from the rare implementation
of major control actions15. Ancestral state reconstruction of
pathogen genealogies has emerged as a useful statistical approach
to address this challenge. This method involves predicting branch
and node states (for example, species and location of sampling)
back through time based on the associated states of the collected
samples16. Such an approach provided evidence that human
Salmonella typhimurium cases in Scotland did not originate from
local animal populations5. Similarly, the integration of viral
sequences and host species data revealed patterns of rabies
emergence, host shifts and cross-species transmission among bats
in North America17,18.

Bovine brucellosis, caused by the bacterium Brucella abortus,
is a zoonotic disease producing chronic infections in livestock,
wildlife and humans worldwide19. Infections can lead to
reproductive failures in female ungulates, with transmission
primarily occurring through direct contact with aborted fetuses,
placentas and birthing fluids20. Disease outbreaks can result in
considerable financial losses for ranchers and the livestock
industry. Therefore, brucellosis in cattle has been the focus of
an aggressive eradication campaign over the last half century in
the United States21. Today, the Greater Yellowstone Ecosystem
(GYE), an expansive region crossing Idaho, Montana and
Wyoming, is the last remaining reservoir of B. abortus within
the country.

The source of contemporary brucellosis outbreaks in livestock
within the GYE has been the subject of a contentious debate,
particularly in recent years as the number of livestock cases has
increased substantially across the tri-state region22. B. abortus was
likely introduced into the GYE with infected cattle before 1917,
when it was first detected in Yellowstone National Park (NP)23,24.
Today, brucellosis continues to persist in wild bison (Bison bison)
and elk (Cervus canadensis) populations, with occasional
transmission to domestic bison and cattle. Formerly, bison were
thought to be the primary wildlife reservoir, playing a more
significant role than elk in transmission to cattle25,26. This belief

emanated from serology data showing high levels of B. abortus
exposure (that is, seroprevalence) in bison (approximately
40–60%) from Yellowstone NP, Grand Teton NP and the
National Elk Refuge (NER)26–31. However, bison rarely move
outside of conservation areas and are subject to rigorous
management practices (for example, hazing, culling and
hunting) that limit migration, dispersal and commingling with
cattle32. In contrast, elk populations generally have lower levels of
B. abortus seroprevalence (approximately 0–30%) throughout the
GYE26,33. Elk are more numerous and widespread, have greater
overlap with the distribution of livestock, and often make long-
distance migrations between summering and wintering
grounds34,35, thereby increasing the likelihood of contact with
livestock.

Winter supplemental feeding of elk occurs at 23 sites in
western Wyoming to reduce the loss of food stored for livestock
and commingling of elk with cattle during the brucellosis
transmission period36. B. abortus seroprevalence in elk using
these high-density feeding areas has historically been elevated
(10–30%) relative to populations using native wintering areas
(2–3%) (refs 29,33). More recently, however, B. abortus sero-
prevalence has been on the rise in some elk populations wintering
on native ranges, in association with changes in population size
and density29,33,37–39. In these populations, B. abortus exposure is
comparable to elk using feedgrounds and expanding into new
regions, which suggests elk may be a developing reservoir for
brucellosis in the absence of feedgrounds and bison33,39. Genetic
studies have also demonstrated elk are the most likely source of
infections in livestock22,40,41. However, the role of elk in spatial
spread and persistence in the GYE remains equivocal.

In this study, we evaluate the spatial and temporal dynamics of
brucellosis transmission among wildlife and livestock in the GYE.
Because the Brucella genus is highly conserved and has low
genetic variation42, we use a WGS approach to create highly
resolved time-calibrated phylogenies. We generate a robust
genomic data set from B. abortus isolates collected from the
three host species (cattle, bison and elk) over a 30-year period in
the GYE, and apply phylodynamic methods that integrate
pathogen genomic data with temporal, spatial and host
phenotypic data. Our objectives are to (i) investigate the history
and evolution of B. abortus in the GYE, (ii) identify B. abortus
lineages associated with hosts and/or geographic localities and
(iii) quantify brucellosis transmission across host species and
populations. We present evidence for five genetically distinct
B. abortus lineages in GYE wildlife with variable distributions and
rates of spread. While elk-associated lineages historically derive
from the feedgrounds, B. abortus is presently being self-sustained
in elk independent of the feedgrounds or bison populations. This
study demonstrates the value of WGS for examining bacterial
pathogen transmission at a wildlife–livestock interface.

Results
B. abortus evolution and introduction history in the GYE.
WGS of the 245 B. abortus isolates from multiple hosts
(Supplementary Table 1, Supplementary Fig. 1, Supplementary
Data 1) enabled the identification of 1,463 single-nucleotide
polymorphisms (SNPs; Supplementary Data 2). The time-
measured B. abortus phylogeny, constructed under the best-fit
relaxed lognormal clock and Bayesian skyline demographic
models (Supplementary Table 2) indicated five divergent lineages
(L1–L5; Fig. 1a), which suggests a minimum of five introductions
of B. abortus into the GYE. Lineages shared no or few mutations
(Supplementary Tables 3 and 4). Two GYE isolates fell outside
these major clades: The first was derived from a vaccinated elk
and may represent a vaccine strain, whereas the second was a
1986 cattle isolate, which possibly represents an introduction that
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was never transmitted to or established in wildlife. The evolu-
tionary rate varied among branches, with the median rate
(weighted by branch length) estimated as 1.4� 10� 7

substitutions per site per year, which corresponds to 0.46 SNPs
per year per genome. However, branch-rate variation was low
(95% highest probability density, HPD: 1.1–1.7� 10� 7 sub-
stitutions per site per year). The predicted date of the ancestral
root of the tree was approximately 1769 (median¼ 244 years
before 2013) and this estimate was also the time to most recent
common ancestor (tMRCA) for all GYE isolates. Estimates for
tMRCA and clock rate were confirmed with the majority of clock
and demographic model combinations, with the exception of the
Bayesian skyride demographic and relaxed clock model prior,
which received little support (Supplementary Tables 2
and 5). Within each primary lineage, the tMRCA date ranged
from 1950 to 1982 (Fig. 1a, Table 1). Results from independent
analyses by lineage corroborated these results, yielding similar
tMRCAs for each lineage (Table 2). For the majority of cattle
outbreaks, the median tMRCA was r2 years (range, 0–12 years)
prior to the first detected brucellosis case in the herd
(Supplementary Table 6, Supplementary Fig. 2).

B. abortus cross-species transmission dynamics. Ancestral
host-state reconstruction predicted wildlife as the most probable

ancestral source for the current B. abortus lineages (Fig. 2).
Specifically, elk was the highest probable ancestral host state for
most lineages (L1, L4 and L5: posterior probability, PP¼ 0.99,
L3: PP¼ 0.83), with the exception of L2, for which wild bison
was predicted as the ancestral host (PP¼ 0.99). According to
reconstructions, the historical source of all GYE isolates was also
bison, however, the host-state probability was low (PP¼ 0.58).
Host-state inference of the oldest nodes generally should be taken
with caution because this analysis lacks representative isolates
from cattle infections outside the GYE; therefore, we note that
these results are expected to reflect the first wildlife species
infected by cattle in the region.

Multiple (two–three) host species were observed within all
major clades, with wildlife and livestock interspersed throughout
the tree, supporting historical and continual cross-species
transmission in the GYE (Fig. 2). However, the pattern of isolate
clustering by host species (at branch tips) and the low proportion
of host switches (B15% of nodes; Table 3) suggest that the
majority of transmission events have likely occurred within
species. We also observed clustering at the herd-level for livestock
where data on herd origin existed. Livestock herd outbreaks were
generally independent and nested within elk clades (Fig. 2), with
one exception of two genetically linked cattle outbreaks in Idaho
(Supplementary Table 6). The estimated mean number of host
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Figure 1 | Time-calibrated maximum clade credibility tree and distribution of B. abortus lineages in the GYE. (a) Five major B. abortus lineages (L1–L5)

identified through Bayesian phylogenetic analyses. Outgroups from outside the GYE (black), a vaccine-derived elk isolate (dark blue) and a single GYE

cattle isolate (yellow) fell outside the major clades. Well-supported ancestral nodes (PP40.95) are indicated by black circles (support for more recent

nodes within major lineages are not shown) with grey bars indicating the 95% HPD interval for node date estimates. (b) Spatial distributions of B. abortus

lineages are shown, with colours corresponding to the phylogeny. Pie charts represent the proportion of a particular lineage in a given location. Diagonal

line shading represents the area where elk populations chronically infected with Brucella bacteria could potentially transmit brucellosis to livestock.

The 23 elk feedgrounds (� ) and national parks (pale yellow) are indicated.
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transitions per year between each pair of species was low (range,
0.3–1.9 transitions per year) and only three of these rates (elk to
livestock, bison to elk and elk to bison) were well supported
(Bayes Factor, BF4100; Table 3). The number of host switches
along the tree, based on a Markov jump counting procedure43,
was highest from elk to livestock (median¼ 16.4) and also
substantial between wildlife species (bison to elk: 12.2, elk to
bison: 5.2; Table 3). Analyses considering domestic bison and
cattle as different host species yielded similar results
(Supplementary Table 7).

Spatial distribution and spread of B. abortus lineages. Three of
the five major clades were geographically limited to Yellowstone
NP and the adjacent Paradise Valley in Montana (L2), or the
Wyoming feedgrounds (L1, L3; Fig. 1b). The other two lineages
(L4, L5) exhibited a widespread distribution across the GYE.
Phylogeographic diffusion analysis indicated B. abortus spatial
dispersion was variable among branches. The posterior median
rate of spatial spread was 2.9 km per year (95% HPD: 2.2–3.6 km
per year) when including all isolates in a single analysis. This
analysis predicted a common ancestor for all GYE brucellosis
infections in the Jackson Hole and Grand Teton NP area, which
encompasses the NER (Supplementary Fig. 3). There were mul-
tiple epidemiological linkages between this location and other
areas, suggesting the area may be linked to long-distance bru-
cellosis dispersal through time. Northward (to Yellowstone NP
and Montana) and westward (to Idaho) spread appeared to be
older and less frequent, with subsequent transmission occurring
locally. In contrast, pathogen movement within Wyoming to the
east and southeast of the feedgrounds was more frequent and
recent (post-1990).

Spatial spread analyses by lineage, which more accurately
assumes lineages represent separate introductions, suggested a
Wyoming feedground origin for 4 out of 5 lineages (Fig. 3). The
exception was for L2, which was predicted to originate in
Yellowstone. L3 and L4 were evolving marginally faster than the
other lineages (Table 2). Parameter estimates for L3, however,
were generally imprecise with large 95% HPD intervals due to
small sample size. Lineage 2 (predominantly Yellowstone bison)
was evolving two to three times more slowly than the other
lineages. Lineage-partitioned estimates of the tMRCA (Table 2)
generally agreed with estimates from analyses including all the
data. Dispersion rates were faster in recent time (that is, within
lineages), with dispersion rate heterogeneity by lineage (range,
2.6–7.9 km per year; Table 2). Lineage 2 was dispersing the
slowest (2.6 km per year) relative to other lineages. In contrast, L4
was spreading at a considerably faster rate (7.9 km per year).
When only considering the recent GYE lineage data, the median
diffusion rate was higher (4.2 km per year) than when including
all samples in a single analysis (2.9 km per year). Lineage-specific
rates of spatial spread also varied through time, increasing for
most lineages since their estimated time of introduction (Fig. 4).

Effective number of B. abortus infections over time. Bayesian
skyline plots revealed recent increases in the effective number of
infections in four out of five lineages, with particularly steep
increases in L5 since 2000 (Fig. 4). The exception to this was the
bison-dominated lineage, L2, for which effective infections have
recently declined.

Discussion
In this study, we found genomic evidence for at least five
independent introductions of B. abortus into wildlife populations
of the GYE. Our data suggest that brucellosis is currently
persisting in some free-ranging elk populations outside of the
feedgrounds. Most Brucella strains from native winter-range elk
were genetically distinct from those infecting YNP bison and
instead were historically connected to the supplemental feed-
grounds in Wyoming. These elk-associated lineages have been
spatially expanding at approximately 4–8 km per year. In
contrast, bison from Yellowstone NP had predominantly one
lineage of B. abortus, and this lineage had the slowest spatial
diffusion rates of all five lineages. Furthermore, host-state
reconstruction confirmed previous findings22,40,41 that elk were
the most likely source of B. abortus outbreaks in livestock. This
study is one of the few genomic studies examining bacterial
transmission in a wildlife setting and highlights the important
role phylodynamic approaches can play in understanding wildlife
disease systems, even those involving slowly evolving pathogens.

Overall, the topology of the B. abortus phylogeny indicated a
fair amount of cross-species transmission over evolutionary time,
with the presence of multiple species interspersed within lineages.

Table 1 | Posterior median estimates of genetic, temporal
and spatial parameters.

Parameter Median (95% HPD)*

Clock rate (� 10� 7)w 1.40 (1.09–1.73)
Coefficient of variationz 0.63 (0.46–0.84)
Root height date 1769 (1638–1862)
MRCA date (L1) 1970 (1952–1985)
MRCA date (L2) 1981 (1973–1985)
MRCA date (L3) 1982 (1970–1990)
MRCA date (L4) 1978 (1965–1987)
MRCA date (L5) 1950 (1930–1968)
Dispersion ratey 2.9 (2.2–3.6)

HPD, highest probability density; MRCA, Most recent common ancestor for GYE lineages
(L1–L5).
*Estimated from a single analysis that included all isolates.
wClock rate represents the Mean rate estimate weighted by branch lengths in units of
substitutions per site per year.
zMeasure of the variation in evolutionary rate among branches.
yDispersion rate in units of km per year, under model assuming dispersal rate varies among
branches.

Table 2 | Posterior median estimates of Brucella abortus lineage-specific model parameters.

GYE lineage n COV (95% HPD)* Clock rate (95% HPD)w Diffusion rate (95% HPD)z tMRCA (95% HPD)y Date

L1 (pink) 30 0.13 (0.00–0.45) 1.64 (0.79–2.57) 3.5 (1.7–5.6) 34 (19–57) 1979
L2 (purple) 53 0.49 (0.09–0.89) 0.70 (0.43–0.96) 2.6 (1.6–3.6) 39 (28–60) 1974
L3 (green) 19 1.33 (0.69–2.13) 1.97 (0.07–3.87) 6.2 (0.2–12.3) 28 (13–118) 1985
L4 (orange) 52 0.97 (0.43–1.62) 2.15 (1.15–3.24) 7.9 (4.3–11.8) 31 (18–53) 1982
L5 (blue) 81 0.88 (0.40–1.46) 1.51 (1.05–2.00) 4.3 (3.0–5.7) 65 (40–105) 1948

COV, coefficient of variation; GYE, Greater Yellowstone Ecosystem; HPD, highest probability density; tMRCA, time to most recent common ancestor.
*COV: a measure of the variation in evolutionary rate among branches, 95% HPD interval.
wMean rate estimate weighted by branch lengths in units of 10� 7 substitutions per nucleotide per year.
zUnits in km per year.
ytMRCA reported in number of years prior to 2013.
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Even so, the clustering of isolates by host species in recent time
implies the majority of transmission events are occurring within
species. Using ancestral state reconstruction, we quantified the
proportion of cross-species to within-species node transitions
(as a proxy for relative transmission) and showed that only about

15% of phylogenetic nodes displayed a predicted host switch
(Table 3).

Our data support the hypothesis that elk in the GYE are
currently a significant source of brucellosis infections in livestock,
adding to the accumulating evidence from recent ecological and
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Figure 2 | Ancestral host-state reconstruction over the B. abortus phylogeny. Maximum clade credibility tree under a model of asymmetric host species

transitions. Host-state posterior probabilities (PP) are reported for ancestral nodes up to the MRCA for each lineage (L1–L5). Branches and nodes (squares)

are annotated with their most probable (PP40.5) host species states using colour labels (red¼ bison; blue¼ elk; green¼ livestock (that is, cattle and

domestic bison)). Branches shown with dashed lines represent states that cannot be predicted accurately with the data used here given that the identified

lineages likely represent separate introductions. Cattle were the original source of introduction into the GYE, and thus, are the hypothesized MRCA host

state for all isolates (shown in circle at root).

Table 3 | Model estimates for host-state transitioning between pairs of hosts.

From To Rate (95% HPD)* No. of Jumps (95% HPD)w Jump proportionz BFy

Elk Bison 0.59 (0.02–1.42) 5.24 (2.05–7.71) 0.021 110
Livestock 1.68 (0.25–3.46) 16.36 (14.23–19.16) 0.070 44,206

Bison Elk 1.85 (0.27–3.79) 12.24 (7.26–18.50) 0.053 44,206
Livestock 0.33 (0.00–2.32) 0.00 (0.00–1.56) 0.002 o3

Livestock Bison 0.31 (0.00–2.30) 0.00 (0.00–0.29) 0.000 o3
Elk 0.36 (0.00–1.96) 0.06 (0.00–2.41) 0.002 o3

BF, Bayes Factor; HPD, highest probability density.
*Rate represents the mean number of host transitions per year.
wMedian estimate of the total number of Markov jumps over the phylogeny.
zProportion of transition nodes to total nodes in the phylogeny.
yBF support values.
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genetic-based studies22,33,40,41. Over the past decade, in particular,
there has been a substantial increase in documented transmission
events from elk to livestock (n¼ 17), standing in contrast to none
recorded in the previous decade22. We also demonstrated that the
quantity of predicted elk to livestock transitions (that is, Markov
jumps over B. abortus evolution in the GYE) was greater than
between any other host pair (Fig. 2, Table 3). In contrast, the
predicted number of bison to livestock transitions was close to zero
and no transmissions of brucellosis from wild bison to cattle have
been detected. These results are not surprising given elk are more
numerous and widely distributed than bison, which may increase
their probability of contact with livestock.

These data also reveal significant transmission between bison
and elk in areas of sympatry, suggesting that eradication efforts in
one host population may be complicated by the probable
reinfection from the alternative host species. Cross-species
transmission was asymmetric with more than twice as many
phylogenetic transitions from bison to elk than the reverse
scenario. This asymmetry is perhaps expected given that
B. abortus seroprevalence is typically much higher in bison than
in elk26–30,33, which may in part be explained by differences in
population densities among hosts and/or B. abortus tropism for
bovines44. Transmission from elk to bison could be driven by
management given that bidirectional host transitions were only

1993 2003 2013

Figure 3 | Spatiotemporal diffusion of B. abortus in the GYE. The spatial dispersion of B. abortus is shown at three time points (1993, 2003 and 2013),

with coloured branches representing spatial projection of the B. abortus phylogeny on the first day of the calendar year. Five lineages are indicated by

colours corresponding to Fig. 1. Feedgrounds (� ) and conservation areas (pale yellow) are shown. Diagonal line shading represents the area where elk

populations chronically infected with Brucella bacteria could potentially transmit brucellosis to livestock. Star indicates a documented long-distance cattle

movement.
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Figure 4 | Brucella lineage-specific Bayesian skyline plots and diffusion rates over time. Skyline plots show the effective number of infections (Net) over
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observed in the NER where both species are fed in close proximity
during the winter; whereas, host transitions were primarily
unidirectional (from bison to elk) in Yellowstone NP where both
species are free ranging and not artificially concentrated by
supplemental feeding. However, because sympatric populations of
bison and elk only occur within and near the national parks and
the NER, any possible role for bison as a reservoir may only be
relevant at small geographic scales. Thus, management actions
(for example, vaccination, culling) directed towards bison in
Yellowstone NP may not affect brucellosis prevalence elsewhere
in the GYE. Also, B. abortus appears to be persisting in elk
outside of these locations, so under present conditions it is
unlikely that bison are a necessary host for brucellosis persistence.

Evolutionary rate predictions based on heterochronically
sampled genetic data provide a unique opportunity to estimate
the timing of disease introductions or emergence. The MRCA
of all GYE isolates likely existed in the late 1700s (95% HPD:
1638–1862, Table 1). This ancestral root is probably more
representative of the arrival of B. abortus to North America with
European cattle than its introduction into the GYE. However, the
arrival of B. abortus to North America could be much older than
the MRCA due to the extinction of early lineages. In addition, the
ages of the oldest divergence events may be underestimated if the
total sampling interval of the study was too short (that is, sparse
historical sampling), thus biasing the evolutionary rate prediction
high45. Even though considerable genetic information was
obtained in this study, the short sampling time frame relative
to the depth of the tree may remain problematic for historical
inferences in this and other disease investigations for which
sampling may not be feasible across the entire time span of the
phylogeny. If they can be found, then historical isolates and/or
genomes of B. abortus from North America would likely improve
these estimates. Despite this, we can conclude that our predicted
MRCA likely predates the introduction of B. abortus into the
GYE given that all outgroup isolates also share this ancestor.

The B. abortus genealogical structure provided evidence for
multiple introductions (with 5 lineages) of brucellosis into the
GYE (Fig. 1a). In 4 of 5 lineages, the MRCAs existed within a
short time span (1970–1982), even though brucellosis was
documented in the GYE as far back as 1917 (ref. 24). These
earlier lineages may not have persisted or were present at low
frequencies when isolates were sampled. Lineage disappearance
may have been the result of stochastic extinction at low wildlife
population sizes46. The three GYE States were not brucellosis free
in their respective livestock populations until the mid to late
1980s, and extensive testing of cattle that entered the area was not
routine. Therefore, multiple livestock-related introductions before
and including the 1980s with spillover into elk wintering on cattle
ranches is plausible, particularly since transmission has been
observed in the reverse direction (from elk to cattle) 17 times
between 2002 and 2012 (ref. 22).

Contemporaneous lineage MRCAs may alternatively reflect a
time period of brucellosis expansion following a bottleneck
because of lower bacterial prevalence and/or host population
sizes. The tMRCAs for these lineages align with the cessation of
large-scale management removals of bison and elk in the late
1960s, after which ecological processes such as competition and
predation were allowed to prevail in national parks and
wilderness areas with minimal human intervention. Under
this new management paradigm, bison and elk numbers in
Yellowstone NP increased rapidly from the 1970s through 1990s
(refs 26,28). Bison abundance rose from about 400 to 3,500
individuals, and elk abundance from 3,000 to 18,000 in
Yellowstone from 1968 to 1990. Furthermore, in the late 1960s,
a brucellosis-free bison herd was reintroduced in the Jackson
Hole Wildlife Park. However, in 1975 this herd began spending

winters on the nearby NER with infected elk and, by the late
1980s, 76% of culled bison tested positive for B. abortus31.
Similarly, in Montana, some elk populations in the Madison and
Paradise Valleys have increased five- to ninefold in abundance
since 1975 (ref. 33). In contrast, the NER has supported large elk
population sizes from the 1950s to present and, interestingly, this
location also had the highest B. abortus lineage diversity.
Therefore, we hypothesize that the predicted lineage MRCA
dates may relate to a genetic bottleneck in B. abortus diversity due
to lower wildlife host population sizes followed by geographic
spread as elk populations increased in areas outside of the NER.

The time from brucellosis introduction to detection within
livestock outbreaks was generally short (r2 years; Supplementary
Table 6, Supplementary Fig. 2), assuming that the MRCA
represents the first case in the herd. This finding implies
transmission opportunities among herds are limited, likely due
to the strict quarantine and testing procedures required following
a brucellosis diagnosis. This was corroborated by data showing
the majority of domestic bison and cattle outbreaks were
independent and nested within elk lineages, further supporting
that livestock infections are primarily the result of spillover from
elk. There was only one exception, where two cattle outbreaks in
Idaho appeared to be genetically linked (Supplementary Table 6).
Linked cattle herds could imply direct cattle-to-cattle transmis-
sion, or alternatively, that both herds were infected from the same
unsampled elk source. In a few cases the time to detection was
surprisingly longer (45 years) than would be expected under the
brucellosis surveillance regime. However, testing was only
required for cattle being sent to slaughter and, thus, a delay in
detection may be plausible under the situation where infection
prevalence was low and only a small proportion of the herd was
slaughtered.

Spatial structure among B. abortus lineages varied, with two
widespread lineages and three lineages limited in geographic
distribution (Figs 1b and 3). The lack of spatial expansion in some
lineages may be explained by time, limited host movements
and/or low transmissibility as a result of genetic differences
among strains. Most notably, B. abortus cases within Yellowstone
NP and directly north of the park in Montana (that is, L2)
appeared to be genetically distinct, having little spatial overlap
with the other lineages. This implies that pathogen dispersal in or
out of this area is likely rare, particularly in recent time.

Spatial spread analyses by lineage identified the Wyoming
feedgrounds as an ancestral source for the majority of GYE
isolates sampled within the past three decades (Fig. 3,
Supplementary Fig. 3). The most widespread lineages (L4, L5),
in particular, originated from the NER and exhibited multiple
long-distance linkages with other areas in the GYE. Interestingly,
the most probable dates of the oldest lineage MRCA (L5, 95%
HPD: 1930–1968) immediately follows the first diagnosis of
brucellosis in NER elk in 1930 (ref. 47). The bison-dominated
lineage, however, was predicted to originate within Yellowstone
NP, and may represent the remnants of the first reported
introduction of brucellosis into the GYE in the early 1900s
(ref. 23).

The overall rate of Brucella dispersal in the GYE was relatively
low (B3 km per year). This estimate was comparable to the
overall phylogenetic dispersal rate of the bacterium Myco-
bacterium bovis in cattle of Northern Ireland, which was
estimated at B2 km per year (ref. 7). Similar to M. bovis, we
observed heterogeneity in diffusion rates among Brucella lineages
(3–8 km per year; Table 2), and dispersal rates increased in recent
time within most lineages (Fig. 4). Elk are capable of long-
distance migratory movements and are the likely determinants of
B. abortus spread throughout the GYE. Some of this spatial
spread may be due to increased sampling effort in elk populations
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farther away from Yellowstone NP or the NER. We believe,
however, that the sampling of isolates is itself driven by the spatial
spread of Brucella. Obviously, one cannot recover isolates from
regions where the pathogen does not yet exist. If we assume a
constant rate of future spread of 8 km per year, the fastest lineages
could be detected in the Bitterroot Valley of Montana or
northeastern Utah within B20 years, or even sooner given that
dispersal rates could presently be much higher in the two
widespread lineages (L4, L5: 410 km per year; Fig. 4).

Coalescent-based analyses of lineage demographic histories
indicated that there has been an increase in the effective number
of infected hosts within most Brucella lineages since their
estimated time of introduction (Fig. 4). Lineage 5 exhibited a
particularly rapid increase since around 2000. In contrast, the
effective number of infections in L2 has decreased since 2005,
a finding that is contradictory with the lack of a coincident
decrease in the seroprevalence of YNP bison48. The rate of
coalescence, however, has been shown to be more reflective of
new transmissions (that is, incidence rate)49, and because
incidence and prevalence are theoretically out of phase, we may
expect to see a corresponding lagged response in prevalence.

We identified B1,200 SNPs in B. abortus of the GYE and the
median evolutionary rate was 1.4� 10� 7 substitutions per
site per year. While there is substantial variation in estimated
molecular clock rates across bacterial species, this estimated rate
is comparable to other bacteria for which WGS data are available
(for example, Salmonella: 3.4� 10� 7 substitutions per site per yr;
ref. 5). A more realistic relaxed clock model best fit our data,
indicating heterogeneity in branch-specific evolutionary rates.
However, lineage-specific analyses suggested the overall variation
is likely low (range, 0.7–2.2� 10� 7 substitutions per site per
year). Variable rates of molecular evolution among bacterial
lineages could be explained by natural selection, host demography
or pathogen transmission history (for example, Yersinia pestis8).
Thus, the observation that the bison-dominated lineage is
evolving the slowest (Table 2) may in part be a result of
host-specific strain adaptation, differences in the extent of spatial
expansion, and/or the number of transmission bottlenecks.

Molecular techniques based on pathogen genetic data can
provide valuable insights into disease transmission dynamics.
However, these data are only capable of quantifying relative
transmission at the population level and over evolutionary
timescales, whereas specific epidemiological reconstructions of
‘who-infected-whom’ cannot be determined unless nearly 100%
of infections are sampled (but see ref. 50). Benavides et al.51

showed that phylogeny-based inferences regarding the quantity
and directionality of transmission are sensitive to the total
proportion of infections sampled and ability to obtain a balanced
sample, respectively. Balanced sampling that is proportional to
disease prevalence, however, is difficult to attain because the true
prevalence within host populations is not known and sampling
from wildlife is more difficult than from livestock. Despite this
issue, we predicted contemporary livestock outbreaks in the GYE
were the result of spillover from elk. Recent studies have
presented some solutions for dealing with the problem of
estimating infection probabilities and transmission from
pathogen phylogenies in situations where there is incomplete
sampling (for example, ref. 50). The implications of partial and
unbalanced sampling to transmission inferences derived from
genealogies remains an important focal area for future research.

This study demonstrates the value of WGS and phylodynamics
for epidemiological inferences of bacterial pathogens at the
wildlife/livestock interface. The additional resolution allowed us
to identify multiple historical introduction events into wildlife
and makes a compelling case for a new reservoir status of elk that
is independent from bison in several regions. Integration of

spatial and temporal information enabled the estimation of
diffusion rates on a lineage-by-lineage basis, suggesting the fastest
lineage is moving at B8 km per year. Future work connecting this
spatial diffusion to habitat covariates, host movement and genetic
connectivity, and serology may allow for predictive models that
forecast not only the speed, but also the directionality of pathogen
spread.

Methods
Sampling and isolate datasets. B. abortus isolates were obtained from
naturally infected livestock (cattle, domestic bison) and wildlife (elk, bison) tissue
samples collected over 48 years (1965–2013, n¼ 245, Supplementary Table 1,
Supplementary Data 1) using standard isolation protocols52. Briefly, each tissue
was dipped in 95% ethanol and flamed, then homogenized with an equal volume of
PBS. This suspension was then swabbed onto non-selective and selective agars
including trypticase soy agar with 5% serum, trypticase soy agar with 5% serum
and antibiotics, trypticase soy agar with 5% serum, antibiotics and ethyl-violet,
Ewalt’s media and Farrell’s media with 5% serum. Agar plates were incubated at
37 �C and 10% CO2 for a minimum of 10 days, with observations typically at 5 and
10 days.

The majority of B. abortus isolates were derived from animals within the GYE
(n¼ 237) during 1985 to 2013 (Supplementary Table 1, Supplementary Fig. 1). We
set the GYE isolates in a broader context by including eight additional samples
from outside the region. Livestock samples were submitted to the National
Veterinary Services Laboratories (Ames, IA, USA) through the National Brucellosis
Eradication Program managed by the Animal and Plant Health Inspection Service
of the U.S. Department of Agriculture (USDA). Wildlife-derived isolates were
contributed by Federal and State wildlife agencies (see Acknowledgements). All
samples were collected under the guidelines of the program as outlined in
regulations 9CFR, Brucellosis Uniform Methods and Rules, and various APHIS
Veterinary Services Memoranda.

Whole-genome sequencing and SNP analysis. Total genomic DNA was
extracted enzymatically from cultured B. abortus isolates using a commercial kit
(MasterPure, Epicentre, Madison, WI, USA). Libraries for Illumina sequencing
were prepared as previously described53. Briefly, genomic DNA was processed with
a NexteraXT kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions. Alternatively, some samples were fragmented with a Matrical
SonicMan microplate sonicator and processed with a KAPA Illumina Library
Preparation Kit ‘With-bead’ (KAPA Biosystems, Woburn, MA, USA). Paired-end
libraries were sequenced with an Illumina GAIIx to produce 2� 100 bp reads, or
with an Illumina MiSeq to produce either 2� 250 bp or 2� 300 bp reads. SNP
analysis was conducted using the NASP v. 0.9.1 pipeline (https://github.com/
TGenNorth/NASP), using default settings for each analysis package implemented
by the pipeline. Briefly, B. abortus genomes in FASTA format were aligned to the
Brucella abortus 2308 reference genome (GenBank accession codes NC_007618,
NC_007624) and analysed for SNPs with MUMmer 3.23 (ref. 54), whereas shotgun
sequence reads were aligned with the Burrows-Wheeler Aligner 0.7.5a mem
algorithm55 and SNPs called with the Genome Analysis Toolkit 2.5.2 Unified
Genotyper56. Orthologous SNPs were selected for phylogenetic analysis with the
following criteria. SNP loci were required to have a base call in all samples. SNPs in
samples represented by sequence reads had a minimum of 10� read coverage at a
locus, and 90% of the base calls in agreement. SNP loci in duplicated regions,
determined by an alignment of the reference to itself with MUMmer, were
eliminated from further analysis.

Phylogenetic reconstruction of B. abortus over time. We reconstructed
evolutionary relationships among B. abortus isolates using a Bayesian coalescent
Markov chain Monte Carlo (MCMC) analysis in BEAST v1.8 (ref. 57), integrating
molecular sequence and temporal information on the sampling dates of the
bacterial genomes to reconstruct a time-measured phylogeny. Data alignments
included only SNPs to reduce computational time, but invariant sites (A: 700,366;
C: 936,543; G: 938,280; T: 701,655) were accounted for by adjusting the pattern
block to a total genome size of B3.28 Mbp. Because recombination can lead to
erroneous estimations of phylogenetic relationships58, a F-test was conducted in
SplitsTree59. Results were not significant (P¼ 0.99) suggesting that recombination
did not affect our interpretations.

We applied a General Time Reversible nucleotide substitution model with
gamma-distributed rate variation (GTRþG) in phylogenetic analyses. We used a
marginal likelihood estimation (MLE) model selection approach60 to determine
the best-fit clock and demographic models. Two molecular clock models (strict
and lognormal relaxed) were evaluated in combination with three coalescent
demographic models: (1) constant population size11,61; (2) Bayesian skyline62; and
(3) Gaussian Markov random field Bayesian skyride63. Model performance was
evaluated by MLE based on path and stepping-stone sampling60 and paired
comparisons of marginal likelihoods using BF64. The best-fit clock model prior was
determined to be the uncorrelated lognormal relaxed clock model (Supplementary
Table 2), which allowed for the evolutionary rate to vary among branches of the
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tree, with a continuous-time Markov chain65. The best tree model prior was
the coalescent flexible Bayesian skyline model of demographic growth62, for which
we specified 10 partitions with piecewise linear change.

Four independent MCMC analyses were each run for 100 million generations,
utilizing the BEAGLE library66 to improve computational performance. Posterior
distributions were sampled every 10,000 generations, and model parameters were
assessed for convergence and satisfactory effective sample sizes (4200) in Tracer
v1.6 (ref. 67). Trees were subsampled in LogCombiner and a maximum clade
credibility tree was identified in TreeAnnotator57 after discarding the first 10%
of trees as burn-in.

We estimated B. abortus evolutionary rates and MRCA dates for all samples
and individual lineages. We defined a phylogenetic lineage as being the largest
monophyletic cluster of individual GYE isolates that excludes outgroup samples
and that is also highly supported (PP40.95). The number of distinct lineages was
assumed to reflect the minimum number of B. abortus introductions into the GYE;
this operational definition assumes the GYE is not a source for recent (post-1985)
infections outside of the system, which is reasonable due to the rigorous testing of
exported animals. The number of fixed differences within and polymorphic
differences among Brucella lineages was calculated in DNAsp v.5 (ref. 68).

Bayesian estimation of host transition rates. We modelled host species as a
discrete trait for each B. abortus lineage over the genealogy by ancestral state
inference using a discrete phylogenetic diffusion model69 in BEAST v1.8 (ref. 57).
This approach estimates the probability of the internal nodes and branches being
associated with a specific host, based on relationships among host states of samples
at the branch tips. Following ancestral state reconstruction over the genealogy, rate
changes between discrete host states may be estimated over time by incorporating
isolate sampling date. We considered three host species states: elk, bison and
livestock (combining domestic bison and cattle into one group assuming a similar
epidemiological role in the transmission process). We repeated these analyses
considering four states (elk, bison, cattle and domestic bison) to account for the
possibility of unknown species-specific transmission properties. Both analyses only
included samples collected within the GYE (N¼ 237; elk¼ 85, bison¼ 58,
domestic bison¼ 38 and cattle¼ 56).

We assumed a diffusion model with asymmetric rates between pairs of host
states after evaluating both symmetric and asymmetric models with MLE model
selection60. A Bayesian stochastic search variable selection procedure69 was
employed to allow for transitions between specific host pairs to be included or
excluded from the model, and enable appraisal of the support for specific host
transitions through BF calculations. Results from the multiple runs were combined,
from which we identified well-supported (BF410) non-zero host transition rates.
We quantified the magnitude of host transitions using a robust Markov jump
counting procedure that determines the posterior expectations of the number of
host transitions along the branches of the tree43. For each host pair, the node
transition proportion was quantified as the number of host species jumps divided
by the total number of nodes in the tree (n¼ 265). Four independent MCMC
analyses were run for 100 million generations, sampling every 10,000, and
combined. Convergence diagnostics were assessed. The quantified transition rates
reflect relative rates of cross-species transmission, but do not enumerate true
transmission rates because unobserved transmission events may occur along
branches of the phylogeny.

Lineage-specific evolution and spatial dispersion. We modelled the spatial
dispersion of B. abortus GYE lineages over time and over a continuous landscape
with a phylogeographic approach that accommodates branch-specific variation in
dispersal rates16. This approach reconstructed two-dimensional character states in
latitude/longitude coordinates of ancestral phylogenetic nodes. Using the MLE
model selection procedure, we evaluated models that assume no branch-specific
rate variation in dispersal rate (homogeneous Brownian diffusion) versus relaxed
random walk (RRW) models (cauchy RRW, lognormal RRW and gamma RRW)
that assume different distributions for rate variation among branches. The
lognormal RRW best fit the data, and therefore, was applied to final analyses.
We conducted and combined multiple MCMC runs (3 per lineage) of 100 million
chains, sampled posterior distributions every 1,000 generations, subsampled to a
total of B20,000 trees, and identified the maximum clade credibility tree after a
10% burn-in.

Analyses were run using all data and partitioned by lineage, to account
for possible multiple introductions from sources outside the GYE. From
lineage-partitioned models, we estimated lineage-specific evolutionary rates,
tMRCAs, spatial dispersion rates and the effective number of infections as a
product of the bacterial effective population size (Ne) and generation time (t)
in years. The demographic history of each Brucella lineage (that is, change in Net
over time) was evaluated using a coalescent-based flexible Bayesian skyline plot62,
after pruning each livestock outbreak to only one isolate. We visualized spatial-
temporal projections of B. abortus spatial spread in the GYE using the SPREAD
program70.
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