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Abstract

Motivation: Ribosome profiling is a useful technique for studying translational dynamics and quan-

tifying protein synthesis. Applications of this technique have shown that ribosomes are not uni-

formly distributed along mRNA transcripts. Understanding how each transcript-specific distribu-

tion arises is important for unraveling the translation mechanism.

Results: Here, we apply kernel smoothing to construct predictive features and build a sparse model

to predict the shape of ribosome footprint profiles from transcript sequences alone. Our results on

Saccharomyces cerevisiae data show that the marginal ribosome densities can be predicted with

high accuracy. The proposed novel method has a wide range of applications, including inferring

isoform-specific ribosome footprints, designing transcripts with fast translation speeds and dis-

covering unknown modulation during translation.

Availability and implementation: A software package called riboShape is freely available at

https://sourceforge.net/projects/riboshape

Contact: yss@berkeley.edu

1 Introduction

Gene expression is a fundamental biological process consisting of

two parts: transcription of mRNAs from DNAs and translation of

proteins from mRNAs. Studying the genome-wide dynamics of both

processes is crucial for understanding how cells function and re-

spond to various environmental conditions, thereby giving rise to

the impressive complexity of living organisms. Due to technological

challenges, translation has not been studied as extensively as tran-

scription, but recent advances in experimental protocol and

sequencing technology are providing an unprecedented opportunity

to examine the translation process at base-pair resolution.

Ribosome profiling (Ingolia et al., 2009; Ingolia, 2014) applies ei-

ther translation inhibitors or a flash-freeze protocol to immobilize the

ribosomes ‘walking’ along the transcript, and the ribosome-occupied

regions (each of length 28–30 nucleotides) can then be extracted and

sequenced, providing detailed positional information about ribosomes.

Such snapshots of ribosome footprints enable quantitative monitoring

and analysis of translational dynamics, making ribosome profiling an

important technique for studying protein synthesis. In particular, it has

been shown that protein abundance correlates better with ribosome

densities than with mRNA abundance (Ingolia et al., 2009).

Various factors may influence the translation mechanism. It has

been proposed that the differential usage of synonymous codons,

also known as the codon usage bias, is driven by evolutionary forces

to facilitate translation speed (Burgess-Brown et al., 2008; Gardin

et al., 2014; Maertens et al., 2010; Qian et al., 2012; Tuller et al.,

2010b). This hypothesis is supported by the finding that transcripts

with wobble base-pairing encounter slower elongation (Stadler and

Fire, 2011), and also by the analysis of tRNA-adaptation index (tAI)

(Tuller et al., 2010a, 2011). Another hypothesis associates the

mRNA secondary structure with translation efficiency, in particular

near initiation sites (Kertesz et al., 2010, 2012; Kudla et al., 2009;

Gu et al., 2010; Tuller et al., 2010b, 2011; Zur and Tuller, 2012).

Studies have found that initiation is the rate-limiting factor of trans-

lation and that ribosome densities tend to be higher near initiation

sites in Saccharomyces cerevisiae (Ingolia et al., 2009; Shah et al.,

2013). Also, positively charged residues on nascent peptides have

been found to influence the footprint abundance (Charneski and

Hurst, 2013; Lareau et al., 2014; Tuller et al., 2011). We refer the

reader to Ingolia (2014) for a review of the major findings from uti-

lizing ribosome profiling.

Although the debate surrounding the main determinant of trans-

lational dynamics remains open, the above-mentioned hypotheses

have one thing in common; that is, the transcript sequence context

plays an important role in governing the efficiency of translation.

Hence, investigating how transcript-specific distributions arise and

to what extent they depend on the transcript sequence is essential to
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understanding the translation mechanism. Motivated by this obser-

vation and the fact that ribosome footprint profiles are generally not

uniformly distributed, we consider here the statistical problem of

predicting marginal densities of ribosome footprints from the tran-

script sequence information alone.

We first apply wavelet analysis to decouple global shapes from

local patterns of ribosome marginal densities. Then, by building

sparse models to predict the marginal densities projected onto the

subspace corresponding to each scale and using asymmetric kernel

smoothing, we identify the codon features that best associate with a

given scale and estimate the extent to which they influence the ribo-

some densities. Results on S. cerevisiae ribosome footprints show that

the sequence content is highly predictive of the marginal densities at

steady state. The ability to predict the marginal densities based solely

on transcript sequences has many potential applications. For example,

it can be used to guide the design of transcripts with optimal transla-

tion speeds in synthetic biology; comparing the steady-state prediction

with profiles under various conditions may help to uncover unknown

post-transcriptional regulation factors; and the predicted marginal

density can serve as a prior in probabilistically mapping reads in the

inference of isoform-specific ribosome footprints.

This paper is organized as follows. In Section 2, we describe our

proposed method, which consists of the ‘A’ site (decoding site where

the aminoacyl tRNA arrives) identification, wavelet decomposition,

kernel smoothing and sparse regression model. In Section 3, we test

the performance of our method on ribosome profiling data of S. cer-

evisiae. We then conclude with a discussion of our findings.

2 Methods

2.1 Ribosome footprint alignment and the ‘A’ site

identification
The first step of ribosome profiling is immobilizing the ribosomes

on transcripts, which can be accomplished by the application of

cycloheximide (CHX), proposed by Ingolia et al. (2009). Then, by

nuclease digestion, the fragments of the transcript protected by the

ribosomes are retained. After converting these footprints into DNA

molecules for deep sequencing, one can measure the abundance of

footprints at each position along a transcript.

We considered four publicly available datasets of ribosome

profiling footprints of S. cerevisiae treated with CHX, available at

the NCBI Gene Expression Omnibus under accession GSE13750,

GSE52119, GSE34438 and GSE55400, and published in the recent

literature (Albert et al., 2014; Ingolia et al., 2009; McManus et al.,

2014). We analyzed the ribosome footprints of wild type S. cerevi-

siae under normal conditions to study the steady-state behavior. The

footprint reads were first processed to remove the adapters and trim

the poly-A tails, according to published protocols (Albert et al.,

2014; Ingolia et al., 2009; McManus et al., 2014). The reads were

then mapped to the yeast genome, available at the Saccharomyces

Genome Database. Reads with alignment against sequences of RNA

genes (rRNAs, tRNAs, snRNAs, snoRNAs and ncRNAs) of S. cere-

visiae were filtered out, and the remaining reads were aligned

against the ORF genomic sequences or the ORF coding sequences.

There are three active ribosomal sites: the A (arrival), P (poly-

peptide) and E (exit) sites, where aminoacyl tRNA arrives for decod-

ing, the polypeptide is created and the uncharged tRNA exits,

respectively (Fig. 1). We considered reads of length 28, 29 and 30

nucleotides, and focused on the A sites of these ribosome footprints.

For a 28-nucleotide footprint read, the A site typically starts at the

16th nucleotide downstream of the 50 end of the read (Ingolia et al.,

2009; Lareau et al., 2014). If that position does not correspond to

the first nucleotide of a codon, then, as illustrated in Figure 1, the

start position of the A site was adjusted so that it is at either the

15th or the 17th nucleotide, depending on the amount of shift. We

applied the same procedure for 29-nucleotide reads. For 30-nucleo-

tide reads, the A site was inferred to start at the 16th, the 17th, or

the 18th nucleotide downstream of the 50 end. Marginal probability

density functions of the footprints were obtained by normalizing the

histograms of the inferred A site footprint counts along each tran-

script. Figure 2 shows an example of the marginal density function

of CHX-treated ribosome footprints.

We also considered the ribosome footprints obtained using the

flash-freeze protocol without CHX pre-treatment (Weinberg et al.,

2016). These footprints are publicly available at the NCBI Gene

Expression Omnibus under accession GSE53313.

2.2 Wavelet decomposition
Wavelet transformation has been widely used for analyzing signals.

Its time-frequency localization (Daubechies, 1990) and multiresolu-

tion capability (Mallat, 1989) have proved extremely useful for ap-

plications of denoising (Donoho, 1995; Donoho and Johnstone,

1998; Donoho et al., 1995; Johnstone and Silverman, 1997), density

estimation (Donoho et al., 1996; Kerkyacharian and Picard, 1992),

data compression (Chambolle et al., 1998; Chang et al., 2000;

Villasenor et al., 1995), and so on. More recently, it has been

applied to genetic association analyses in high-throughput sequenc-

ing assays (Shim et al., 2015). In ribosome footprint profiles, there

may be noise in sequencing and alignment, as well as insufficient

sampling due to low sequencing depth. To extract reliable signals

for downstream analysis, we adopt wavelet decomposition to build

a multiresolution reconstruction of ribosome marginal densities.

Let pt denote the marginal density of ribosomes along a given

transcript t, such that ptðxÞ represents the probability that the A-site

of a randomly sampled ribosome is at position x (in units of codons).

We can decompose this function as

ptðxÞ ¼
X

k

at
j0 ;k

uj0 ;kðxÞþ
X
j�j0

X
k

bt
j;kwj;kðxÞ; (1)

where um;nðxÞ ¼ 2m=2uð2mx� nÞ and wm;nðxÞ ¼ 2m=2wð2mx� nÞ,
with uðxÞ and wðxÞ corresponding to a scaling function and its associ-

ated wavelet, respectively (Burrus et al., 1998). The coefficients at
j0 ;k

and bt
j;k are uniquely determined by inner products hptðxÞ;uj0 ;kðxÞi

and hptðxÞ;wj;kðxÞi, respectively. The spans of um;n and wm;n form a

multiresolution approximation of L2ðRÞ as

f0g � � � � � V�1 � V0 � V1 � V2 � � � � � L2ðRÞ;

where Vm ¼ spanfum;ngn2Z; Wm ¼ spanfwm;ngn2Z and Vm�Wm ¼
Vmþ1. Figure 2 shows the use of wavelet analysis to build a multire-

solution reconstruction, in which global shapes are decoupled from

local patterns. In what follows, we use pS
t to denote the projection of

pt onto subspace S. Table 1 summarizes the reproducibility of

Fig. 1. Inferring the A site of a 28-nucleotide ribosome footprint read. The start

position (shown in red) of the A site is inferred to be at the 15th, the 16th or

the 17th nucleotide downstream of the 50 end of the read, depending on the

amount of shift
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ribosome footprint profiles by examining the Pearson correlation co-

efficients between replicates projected onto different subspaces Vm.

These results indicate that wavelet decomposition is important for

denoising.

2.3 Kernel smoothing on sequence context
The marginal density at a given position may depend not only on

the codon at that position, but also on neighboring codons.

Furthermore, the extent of influence may decay as the physical dis-

tance from the position increases. We apply kernel smoothing

(Silverman, 1986; Wand and Jones, 1994) to capture these effects.

First, we represent each transcript as a collection of binary strings, a

well-used method for coding categorical variables in regression

(Hardy, 1993). Label the 64 codon types by C ¼ f1; . . . ;64g. Given

a transcript t with ‘t codons, we define a length-‘t binary strings ct
j

for each j 2 C, where the character at position x is defined as

ct
j ½x� ¼

1; if the xth codon of transcript tis codon type j 2 C;

0; otherwise:

(

Note that, for each position x 2 f1; . . . ; ‘tg, there is exactly one

codon type j 2 C such that ct
j ½x� ¼ 1; all other strings will have a 0 at

position x.

Next, we apply kernel smoothing to each string as

~ct
j ½x� ¼

X
x0

Kðx; x0Þct
j ½x0�X

x0
Kðx; x0Þ

; (2)

where Kðx;x0Þ is a suitably chosen kernel. Intuitively, if the ribo-

some marginal density is affected by sequence context, then a re-

gion with a cluster of slow translating codons is likely to become

congested with ribosomes. By smoothing ct
j with a kernel, we in-

corporate the distribution of neighboring codons into our

model. Figure 3 illustrates the method we propose, in which

the black spikes represent the decomposed codon sequences

and the red curves are the kernel smoothed estimates with a sym-

metric Gaussian kernel, kðx; xiÞ ¼ fNðx; xi;rÞ, where fNðx; l;rÞ ¼
1

r
ffiffiffiffi
2p
p exp½�ðx�lÞ2

2r2 �:
Since the flow of ribosomes is directional, a cluster of slow trans-

lating codons should have a larger impact on upstream ribosomes

than on downstream ribosomes. To take this directionality into ac-

count, we therefore employ an asymmetric kernel. An example of

asymmetric kernels is the probability density function of the gamma

distribution,

fGðx; a; bÞ ¼ xa�1e�x=b

CðaÞba
; x 2 ð0;1Þ;

where a and b are the shape and scale parameters, respectively, and

CðrÞ ¼
Ð1
0 tr�1e�tdt is the gamma function. It can be shown that the

peak of this density function is located at h ¼ ða� 1Þb, and the

standard deviation is r ¼ b
ffiffiffi
a
p

. We define a modified gamma distri-

bution fSRG, parameterized by h and r, by applying a horizontal shift

Fig. 2. Ribosome footprints marginal density on YAL021C decomposed by wavelet analysis with Daubechies-8 basis. Red: the raw ribosome footprints normal-

ized over the transcript. Blue and Green: the raw footprints projected to each subspace. As the scale (index m of Vm) increases, the reconstructed signal includes

more details

Table 1. Correlation between the replicates projected onto various

subspaces. The Pearson correlation coefficient between the repli-

cates in GSE13750 increases as the scale (index m of Vm)

decreases.

Length Subspace S

(codons) V0 V1 V2 V3 V4 V5 V6 V7 L2ðRÞ

1–250 0.53 0.56 0.49 0.42 0.37 0.34 0.31 0.28 0.26

251–500 0.59 0.55 0.46 0.38 0.30 0.26 0.22 0.19 0.17

501–750 0.49 0.46 0.39 0.32 0.25 0.21 0.18 0.15 0.13

751–1000 0.51 0.44 0.34 0.27 0.21 0.18 0.15 0.12 0.11

1001–3745 0.53 0.45 0.36 0.27 0.21 0.17 0.14 0.12 0.10

Prediction of ribosome footprint profile shapes from transcript sequences i185

Deleted Text: .


so that the peak of the function is located at 0 and by reflecting

about the y-axis:

fSRGðx; h; rÞ ¼ ð�xþ hÞa�1eðx�hÞ=b

CðaÞba
;

where a ¼ 1þ h2þh
ffiffiffiffiffiffiffiffiffiffiffiffi
4r2þh2
p
2r2 and b ¼ h

a�1. The Gamma distribution fG

and the modified gamma distribution fSRG are illustrated in Figure 4.

We also define a shifted but non-reflected function fSG to take into

account the effect of positively charged residues of nascent peptides

on the speed of downstream ribosomes (Charneski and Hurst,

2013):

fSGðx; h; rÞ ¼ ðxþ hÞa�1e�ðxþhÞ=b

CðaÞba
:

In what follows, we set the h parameter of fSG and fSRG to 5, because

a ribosome occupies 9–10 codons and there are about 5 codons

downstream. Applications of these asymmetric kernels fSRG and fSG

are depicted as blue and green curves in Figure 3 respectively.

2.4 Sparse regression model
We relate the ribosome marginal density to the transcript sequence

context by building a sparse model. In (2), we apply

Kðx;x0Þ¼ fSGðx�x0;h;rbÞ;Kðx;x0Þ¼ fSRGðx�x0;h;rbÞ or Kðx;x0Þ¼
fNðx;x0;rbÞ with B different bandwidths r1; . . . ;rB. For each codon

type j2C, let ~ct
j;r;f denote the codon feature string smoothed using

the kernel function f 2ffN;fSG;fSRGg with bandwidth r. If we use Q

distinct kernel functions f1;. . . ;fQ, then for each position x of tran-

script t, the predictors can be represented as

ztðxÞ :¼ ð~ct
r1 ;f1
ðxÞ; ~ct

r2 ;f1
ðxÞ; . . . ;~ct

rB ;f1
ðxÞ; . . . ;

~ct
r1 ;fQ
ðxÞ; ~ct

r2 ;fQ
ðxÞ; . . . ;~ct

rB ;fQ
ðxÞÞ 2 R

64�B�Q;

where ~ct
rb ;fq
ðxÞ :¼ ð~ct

1;rb ;fq
½x�; ~ct

2;rb ;fq
½x�; . . . ; ~ct

64;rb ;fq
½x�Þ 2 R

64:

We relate these sequence features to the ribosome marginal density

projected onto subspace S, by formulating a sparse regression problem:

min
b

X
t;x

pS
t ðxÞ �

ztðxÞ
‘t
� b

� �2

þ kkbk1; (3)

where b ¼ ðb1; . . . ; b64�B�QÞ denote regression coefficients. The first

part
P

t;x pS
t ðxÞ �

ztðxÞ
‘t

b
h i2

of the objective function represents the

residual sum of squares, whereas the second part kkbk1 promotes a

sparse solution. The sparsity of the solution depends on the value of

the regularization parameter k. This type of linear estimation,

known as LASSO (Tibshirani, 1996; Zhao and Yu, 2006), avoids

overfitting the data especially in scenarios where the number of pre-

dictors is much larger than the number of observations. It also pro-

vides an interpretation of the importance of each predictor, i.e., the

variables that correspond to zeros in the solution bb are not signifi-

cant to the model. Our goal is to find a significant bandwidth rb. By

training the sparse regression model with kernel smoothed codon

feature strings ~ct
j;rb ;fq

with various bandwidths, and selecting the

regularization parameter k with cross validation to minimize mean

squared error (MSE), the nonzero terms in the regression coefficients

Fig. 3. Illustration of kernel smoothing. The black stems represent the codon sequences of YBR212W, consisting of 0’s and 1’s. The first 350 codon positions of 3

out of 64 sequences are shown in this example. The red curves represent the kernel smoothed codon sequences, with Gaussian kernel. The blue and green

curves represent the asymmetric kernel smoothed codon sequences, with fSRG and fSG respectively. All the kernel smoothed sequences are scaled such that the

maximum is 1 for illustration

Fig. 4. Asymmetric kernels. Top: Gamma distribution fG. Bottom: Modified

gamma distribution fSRG
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provide insight into the extent to which sequence context affects the

ribosome marginal density.

3 Results

After the filtering step described in Section 2.1, we grouped genes

according to their length into 5 bins:�250 codons, 251–500 codons,

501–750 codons, 751–1000 codons and �1000 codons. We then

decomposed each ribosome footprint profile using wavelet analysis

with Daubechies-8 basis and eight scales, as illustrated in Figure 2.

We considered a model with both asymmetric kernels fSG and fSRG

each with eight bandwidths ðr1; r2;r3; r4;r5; r6; r7; r8Þ ¼
ð1;3; 5; 12:5;25;37:5; 50; 75Þ. For comparison, we also considered a

model with the symmetric kernel fN with the same set of band-

widths, as well as a model with no kernel smoothing. We trained the

regression model using 9n/10 randomly chosen genes, where n is the

number of genes in the corresponding bin, and chose the regulariza-

tion parameter in (3) via five-fold cross-validation using the training

data. Then the model was tested on the genes that were left out, and

the process was repeated until every gene has been tested.

Results of CHX-treated footprints in various spaces are summar-

ized in Table 2. The average performance is presented in terms of

the Pearson correlation coefficient between the predicted and the

true ribosome marginal densities. Notice that our method using

asymmetric kernels achieved high accuracy in subspaces V0 through

V4. This suggests that the global shape of transcript-specific ribo-

some footprint profile is well captured by our proposed kernel-

smoothed codon sequences. The performance in the subspace Vk de-

creases as k increases. This is partly due to noise in the read align-

ment or the sequencing noise inherent in ribosome profiling. Thus,

wavelet analysis is useful for studying the limit of the ribosome

profiling technique and focusing on the reliable signals. The results

from using non-smoothed codon sequences were the least accurate,

supporting that the neighboring codons or interference play an im-

portant role in ribosome footprint distributions. Using asymmetric

kernel smoothing produced more accurate results than using a sym-

metric kernel. The same trend also holds for flash-freeze ribosome

profiles (Table 2). The performance of our method on CHX-treated

ribosome profiles was better than that on the flash-freeze profiles.

This may be due to the large amplitude of ramps near the 50 end in

CHX-treated profiles (Weinberg et al., 2016). These ramps contrib-

ute significantly to global shapes, and can be well captured by asym-

metric kernel smoothing.

In general, our method with asymmetric kernels was able to

predict the global shape of transcript-specific ribosome density

with high accuracy. However, for the flash-freeze data, the corre-

lation in the subspace V0 was relatively poor for the genes shorter

than 250 codons. This is because the global shape of their profiles

in this subspace was rather flat for the flash-freeze data. If the

mean squared error is used as the performance measure, the results

for shorter genes are not so much worse than that for longer genes.

As an example, Figure 5 shows the ribosome density of YBR212W

in various subspaces and the corresponding predictions for both

CHX-treated and flash-freeze profiles. Figure 6 shows heatmaps

of the regression coefficients for transcripts of length �250 codons

in the space V3. This result shows that CGA (arginine), CCG (pro-

line) and CGG (arginine) have a strong influence on the global

shape of ribosome occupancy in flash-freeze data, while CGA and

CGG seem to have the dominant effect in CHX-treated data. This

may be related to wobble base pairing, which has been found to be

associated with slow elongation (Lareau et al., 2014; Stadler and

Fire, 2011). In particular, high ribosome occupancy has been

observed on wobble-paired proline CCG (G-U base pairing) and

arginine CGA (I-A pairing) by Lareau et al. (2014). Furthermore,

CGA is one of the codons with the most prolonged elongation

rates, consistent with Lareau et al.

To examine further how the distribution of codons may affect

the shape of ribosome footprint profiles, we carried out a sliding-

window analysis for each transcript, using a window size of 20

codons. For each transcript, we first identified all windows for

which the average ribosome density was larger than twice the

transcript-wide average ribosome density, and then considered those

windows for codon enrichment analysis. For each selected window,

let x ¼ ½x1;x2; . . . ;x64� denote the observed codon distribution,

where xi is the number of codons of type i within the window. We

compared this observed codon distribution with the expected

Table 2. Accuracy of the prediction of marginal densities for CHX-treated and flash-freeze ribosome footprint data. NS, SK and ASK respect-

ively denote using no kernel smoothing, using symmetric kernel (fN), and using asymmetric kernels (fSG; fSRG). The Pearson correlation co-

efficient between the prediction and the measured ribosome density was averaged over genes. The results are listed for different spaces S

and various gene lengths. The prediction achieves high accuracy in the global shape spaces, e.g. V0 and V1. As the scale increases, i.e., as

the index m of Vm increases, prediction becomes more difficult.

Length Method CHX: Subspace S Flash-freeze: Subspace S

(codons) V0 V1 V2 V3 V4 V5 V6 V7 L2ðRÞ V0 V1 V2 V3 V4 V5 V6 V7 L2ðRÞ

1–250 NS 0.06 0.11 0.11 0.10 0.10 0.12 0.14 0.19 0.09 0.02 0.03 0.04 0.08 0.12 0.16 0.20 0.23 �0.04

SK 0.33 0.44 0.46 0.41 0.37 0.33 0.33 0.33 0.13 0.03 0.13 0.20 0.29 0.38 0.42 0.41 0.39 0.10

ASK 0.65 0.73 0.69 0.61 0.53 0.50 0.46 0.45 0.17 0.19 0.35 0.35 0.38 0.42 0.45 0.45 0.44 0.15

251–500 NS 0.08 0.06 0.06 0.06 0.07 0.10 0.13 0.18 0.07 0.03 0.04 0.06 0.09 0.13 0.17 0.21 0.24 0.02

SK 0.38 0.39 0.40 0.38 0.33 0.33 0.33 0.34 0.04 0.20 0.26 0.31 0.41 0.45 0.47 0.45 0.42 0.07

ASK 0.82 0.73 0.70 0.67 0.62 0.59 0.55 0.52 0.12 0.56 0.59 0.57 0.54 0.52 0.52 0.50 0.47 0.13

501–750 NS 0.06 0.06 0.06 0.06 0.07 0.10 0.14 0.18 0.09 0.04 0.05 0.07 0.10 0.14 0.18 0.21 0.24 0.00

SK 0.33 0.35 0.36 0.38 0.37 0.35 0.36 0.35 0.03 0.23 0.28 0.33 0.43 0.47 0.48 0.46 0.43 �0.02

ASK 0.77 0.68 0.64 0.61 0.58 0.55 0.52 0.50 0.01 0.58 0.57 0.57 0.54 0.53 0.52 0.50 0.48 0.00

751–1000 NS 0.06 0.05 0.05 0.05 0.07 0.10 0.14 0.19 0.13 0.05 0.06 0.07 0.09 0.13 0.18 0.22 0.24 0.14

SK 0.32 0.28 0.35 0.29 0.30 0.30 0.32 0.34 0.07 0.25 0.33 0.39 0.45 0.48 0.48 0.46 0.43 0.04

ASK 0.66 0.58 0.55 0.52 0.49 0.47 0.45 0.46 0.07 0.55 0.59 0.55 0.54 0.52 0.52 0.50 0.48 0.03

1001–3745 NS 0.05 0.05 0.05 0.06 0.07 0.10 0.14 0.18 0.14 0.04 0.05 0.07 0.09 0.13 0.18 0.21 0.24 0.10

SK 0.25 0.26 0.28 0.29 0.29 0.31 0.31 0.33 0.00 0.25 0.30 0.36 0.45 0.47 0.49 0.47 0.44 0.05

ASK 0.62 0.59 0.56 0.54 0.51 0.49 0.48 0.46 0.03 0.52 0.56 0.55 0.53 0.51 0.52 0.50 0.47 0.03
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distribution g ¼ ½g1; g2; . . . ; g64�, where gi denotes the expected num-

ber of codons of type i within the window, assuming sampling 20

codons without replacement according to the codon distribution in

the entire transcript. Note that g follows a multivariate hypergeomet-

ric distribution. We performed a paired t-test on x and g over the se-

lected windows and identified the codons enriched in high ribosome-

occupancy regions. We then compared the P-values from the enrich-

ment analysis with the frequencies of the regression coefficients being

nonzero, as illustrated in Figure 7. The scatter plot for flash-freeze

data (Fig. 7B) shows that all of the significantly enriched codons were

selected frequently by the regression model. Codons that were se-

lected frequently but not significantly enriched in high density regions

might have been selected for prediction in low ribosomal density re-

gions. For example, it has been observed previously (Lareau et al.,

2014) that GGG and GTT are some of the codons with the least foot-

print abundance. For the CHX-treated data, there were a few codons

enriched significantly but not selected frequently (Fig. 7A); this could

be due to technical biases in the data, discussed in Section 4.

4 Discussion

Our results on S. cerevisiae data, especially the CHX-treated foot-

prints, show that the global shape of transcript-specific ribosome

A B

Fig. 5. Ribosome footprint marginal density prediction on YBR212W: (A) CHX-treated data. (B) Flash-freeze data. The marginal density was decomposed by wave-

let analysis with Daubechies-8 basis, and shown in black at various scales. The prediction is shown in blue and the Pearson correlation coefficients between the

true ribosome marginal density (black) and predicted ribosome marginal density (blue) are indicated on top of each panel

A

B

Fig. 6. Heatmaps of the regression coefficients b in the space V3 for transcripts of length �250 codons: (A) CHX-treated data. (B) Flash-freeze data. The coefficients

are scaled such that the largest absolute value among them is set to 1 for display. These regression coefficients provide insight into the influence of each codon.

In particular, they show that codons CGA, CCG and CGG strongly influence the global shape of ribosome occupancy in flash-freeze data, while CGA and CGG

seem to have the dominant effect in CHX-treated data
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density can be predicted with high accuracy. This suggests that the

ribosome distribution along a transcript indeed depends on the se-

quence context. In particular, we find a few codons that dominate

the global shape; these codons influence the ribosome density not

only at the site where they appear, but also their neighboring

positions.

There are several possible reasons why applying kernel smooth-

ing to codon sequences helps in predicting the shape of transcript-

specific ribosome occupancy profile. One possible reason is the

interference among ribosomes. Another possible explanation is that

the physical footprint of each ribosome spans multiple codons (9–10

codons). Lastly, it has been shown (Charneski and Hurst, 2013) that

positively charged amino acids on nascent peptides significantly

slow down ribosomes downstream from where the residues are

encoded. Among all the methods compared, the asymmetric kernel

smoothing performed the best. This could be due to the directional

movement of ribosomes and the aforementioned effect of positively

charged amino acids on downstream elongation speeds. Also, 50

ramps can be better predicted using asymmetric kernels, which

partly explains why the prediction accuracy for CHX-treated ribo-

some profiles was slightly better than that for flash-freeze profiles.

There are other factors not incorporated into our current model

that could also help to explain ribosome distributions, e.g. mRNA

secondary structure. Notice that in the results for CHX-treated ribo-

some footprints, we achieved better performance in shorter genes.

When applying a sliding window to genes with a prediction correl-

ation coefficient below 0.3 and of length 1001–1500 codons, we

observed that the correlation was lower near the 50 end.

Furthermore, when computing differences between the observed

ribosome densities and the predicted densities from these poorly pre-

dicted genes, we noticed a weak positive correlation (r¼0.0446) be-

tween the differences and the likelihood of double stranded

conformations, i.e., the PARS (parallel analysis of RNA structure)

scores of secondary structure defined by Kertesz et al. (2010) in a

genome-wide measurement. Although many potential factors—

including mRNA secondary structure, codon usage bias, tRNA-

adaption index, etc.—are not explicitly incorporated into our

model, most of these factors depend on the sequence context. This

may be one of the reasons why considering transcript sequences

alone enables reasonably accurate prediction of ribosome footprint

profile shapes.

It is possible that some of the features learned by our predictive

model are due to technical biases in the data. Library construction is a

possible source of bias due to technical artifacts. Artieri and Fraser

(2014) found three types of nucleotide biases by comparing mRNA

fragments (unprotected by ribosomes) with ribosome footprints to

identify shared biases. These include an enrichment of adenine at the

50 and 30 ends, and a depletion of cytosine at the fourth nucleotide pos-

ition in both the mRNA and ribosome footprint reads. However, we

note that the flash-freeze ribosome footprint data (Weinberg et al.,

2016) we analyzed were generated using a comprehensive set of

adapter sequences to avoid the biases discussed in Artieri and Fraser

(2014). Furthermore, the flash-freeze protocol avoids the ribosome

run-off phenomenon that can occur in CHX pre-treatment.

Different models have been proposed in the literature to estimate

elongation rates. Shah et al. (2013) developed a continuous-time,

discrete-state Markov model to simulate translational dynamics, in

which initiation and elongation rates were inferred using the cell

volume, ribosome abundance and tRNA abundance. These elong-

ation rates were codon dependent but not position dependent. The

model proposed by Pop et al. (2014) was based on flow conserva-

tion, and it assumed that the occurrences of the same codon within

an mRNA transcript have the same dwell time, and hence the same

elongation rate. Our results suggest that these models should take

the codon position into account. In other words, the elongation rate

at a particular position along a transcript not only depends on the

codon at that position but also the neighboring codons and how the

neighboring codons are ordered.

Fig. 7. Scatter plots of codon enrichment significance versus variable selection frequencies, for transcripts of length �250 codons. (A) For the regression coeffi-

cients of rb;fSRG
¼ 75 shown in Figure 6A for the CHX-treated data. (B) For the regression coefficients of rb;fSG

¼ 12:5 shown in Figure 6B for the flash-freeze data.

Codons that are significantly enriched and selected frequently in the regression model are shown in red; codons that are neither significantly enriched nor fre-

quently selected are shown in blue; codons that are not significantly enriched but selected frequently are shown in green; codons that are significantly enriched

but not selected frequently are shown in khaki. Note that most of the significantly enriched codons were selected frequently by the regression model
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Part of the results presented in this paper is based on combining

four publicly available datasets. This overcomes the difficulty of sparse

sampling that other work may encounter, e.g. Pop et al. (2014).

Although our study is limited to the steady-state distribution of ribo-

somes, it examines the extent to which the sequence context influences

ribosome distributions under normal conditions. One of the important

applications of our method is to examine the positions where the

steady-state prediction is significantly different from the actual meas-

urements. These positions may lead to important findings of unknown

factors that regulate translation. For example, our proposed method

can be applied to cells grown under various environmental conditions,

or to ribosome profiles obtained by different inhibitors, e.g. harringto-

nine (Ingolia et al., 2011), anisomycin (Lareau et al., 2014).

Another application is the inference of isoform-specific ribosome

footprints. It is known that many human genes have more than one

isoform, and these isoforms contribute to the complexity of pheno-

types (Johnson et al., 2003; Lander et al., 2001; Wang et al., 2008).

Studying the translation of specific isoforms requires correctly as-

signing ribosome footprints to them. However, since the footprints

of ribosomes are short (28–30 nucleotides), identifying the correct

isoform becomes challenging. Our method provides a likelihood

function for ribosome location, and can facilitate sequence align-

ment when more than one alignment exists. Synthetic biology is an-

other active research area (Endy, 2005) that can benefit from our

work: the ability to predict and compare the ribosome densities

along different transcripts under various environmental conditions

can facilitate the search for sequences with optimal translational

properties and reduce the number of experimental trials necessary to

build and test the sequences.
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