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1  |  INTRODUC TION

Aging is a multifactorial phenotype characterized by physiological 
changes with multifaceted effects or alterations causing gradual 
functional decline in a living organism (López-Otín et al., 2013). 
These age-associated alterations are also risk factors for various 

complex diseases such as cancer, diabetes, cardiovascular, and neu-
rodegenerative diseases (López-Otín et al., 2013). Given its complex 
nature, the biology of aging has not been completely elucidated yet 
(Partridge, 2010). A number of genes and proteins in diverse bio-
logic pathways have been implicated in influencing aging and lon-
gevity (Johnson et al., 1999). Some of the mechanisms that have 
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Abstract
Aging is a complex trait characterized by a diverse spectrum of endophenotypes. By 
utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity 
cohort (age range: 65–95, 55.7% females), we found that 754 of 4,265 proteins 
were associated with chronological age. Pleiotrophin (PTN; β[SE] = 0.0262 [0.0012]; 
p = 3.21 × 10−86), WNT1-inducible-signaling pathway protein 2 (WISP-2; β[SE] = 0.0189 
[0.0009]; p = 4.60 × 10−82), chordin-like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; 
p = 1.45 × 10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and 
R-spondin-1(RSPO1; β[SE] = 0.0208 [0.0011]; p  =  1.09  ×  10−70), were the proteins 
most significantly associated with age. Weighted gene co-expression network analy-
sis identified two of nine modules (clusters of highly correlated proteins) to be signifi-
cantly associated with chronological age and demonstrated that the biology of aging 
overlapped with complex age-associated diseases and other age-related traits. The 
correlation between proteomic age prediction based on elastic net regression and 
chronological age was 0.8 (p < 2.2E−16). Pathway analysis showed that inflammatory 
response, organismal injury and abnormalities, cell and organismal survival, and death 
pathways were associated with aging. The present study made novel associations be-
tween a number of proteins and aging, constructed a proteomic age model that pre-
dicted mortality, and suggested possible proteomic signatures possessed by a cohort 
enriched for familial exceptional longevity.
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been repeatedly linked to aging include DNA instability, telomere 
shortening, environment-driven epigenetic changes, cellular senes-
cence, and loss of proteostasis (Johnson et al., 1999; López-Otín 
et al., 2013).

Research into the biological mechanisms of aging experienced 
a big leap with the advent of next-generation sequencing and ge-
notyping technologies in the last decade, though major advances 
have been lacking mainly due to the complexity of the phenotype 
and apparent low heritability (Broer & van Duijn, 2015). Other 
methodologies, such as transcriptomic and epigenetic analysis, have 
provided additional insights but a comprehensive elucidation of bi-
ology of aging remains elusive (Pal & Tyler, 2016; Zierer et al., 2015). 
Furthermore, since genes, transcripts, and epigenetic modifications 
represent intermediate steps in regulation, frequently they are not 
the final determinants of phenotype. Proteins, on the other hand, 
in many cases represent the end products of epigenetic and tran-
scription regulation, reflecting the integration of system-wide bio-
logical processes. For instance, it was shown in human fibroblasts 
that 77% of age-associated changes in cell protein levels were not 
correlated with gene transcript levels (Waldera-Lupa et al., 2014). 
Proteomic research in aging has been lagging mainly due to the lack 
of advanced platforms that could facilitate discovery. Recently, the 
highly multiplexed SomaScan assay provided a major breakthrough 
by offering a tool that can measure thousands of proteins simulta-
neously in a small sample of blood (Gold et al., 2010). The principle 
of SOMAmer reagents is based on aptamer technology and uses sin-
gle-stranded DNA-based protein affinity reagents (Gold et al., 2010). 
Using this novel technology, we aimed to characterize the proteomic 
signature of aging, including protein clusters that may reflect resil-
ience to aging and different aging phenotypes.

Evidence indicates that chronological age does not directly 
correlate with the physiologic and functional status of an indi-
vidual (Anstey et al., 1996). Differential aging is characterized by 
the body's ability to maintain homeostasis across different organ 
systems over time, whereas deterioration of this balance can lead 
to rapid aging with associated decline in function and occurrence 
of complex age-associated diseases (Anstey et al., 1996) that re-
flect the biological age of an organism. We hypothesized that the 

proteome can capture the biology underlying the physiological age 
and not simply the chronological age. We tested this hypothesis 
in a homogenous community-dwelling cohort of Ashkenazi Jewish 
older adults in whom ~4,265 plasma proteins were measured by 
utilizing the SomaScan platform. As part of the study, we aimed 
to develop an age prediction model based on the proteome and to 
test whether it predicted mortality. In addition, our cohort was en-
riched with individuals with familial longevity, with approximately 
half of the cohort composed of offspring of parents with excep-
tional longevity who repeatedly demonstrated better health sta-
tus compared to age-matched controls (Ayers et al., 2014; Gubbi 
et al., 2017). Although aging is a major risk factor for many chronic 
diseases, individuals with exceptional longevity and their offspring 
often delay the onset of age-related diseases and syndromes 
(Andersen et al., 2012; Ismail et al., 2016) despite having similar 
lifestyle habits to their peers (Gubbi et al., 2017; Rajpathak et al., 
2011) suggesting that longevity is at least in part genetically deter-
mined and is heritable (Milman & Barzilai, 2016). Thus, our cohort 
was particularly suitable for identifying the proteomic signature 
of resilience to aging and we hypothesized that the offspring of 
parents with longevity will demonstrate a more youthful proteome 
compared to age-matched controls.

2  |  RESULTS

2.1  |  Study population

Of the 1,025 eligible individuals with phenotype and proteomic data 
in the LonGenity cohort, 506 (49.4%) were offspring of parents with 
exceptional longevity (OPEL), defined by having at least one parent 
who lived to age 95 or older, and the remaining were offspring of 
parents with usual survival (OPUS), defined by having neither parent 
survive to age 95. Demographic and clinical baseline characteristics 
are summarized in Table 1. The mean age of the participants at en-
rollment was 75.8 ± 6.7 years (age range: 65–95 years) and 55.7% of 
participants were women. The mean ages of male and female partici-
pants were 76.0 ± 6.8 and 75.6 ± 6.7 years, respectively.

Variables LonGenity OPEL OPUS

Participants, n (%) 1,025 506 (49.4) 519 (50.6)

Age, mean ± SD, years 75.8 ± 6.7 74.5 ± 6.1 77.1 ± 7.1

Women, n (%) 571 (55.7) 306 (60.5) 265 (51.1)

Education, mean ± SD, years 17.46 ± 2.94 17.67 ± 2.95 17.24 ± 2.91

Co-morbid conditions

Stroke, % 3.3 1.4 5.2

Diabetes, % 8.9 6.9 10.8

Myocardial infarction, % 5.3 4.3 6.2

Hypertension, % 43.2 35.9 50.4

Rockwood frailty index 
(mean ± SD)

0.163 ± 0.086 0.151 ± 0.079 0.175 ± 0.091

TA B L E  1 Cohort characteristics
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2.2  |  Association analysis with chronological age

Chronological age was significantly associated with 754 proteins 
(p  <  1  ×  10−5). Of these, the majority, 427 (56.6%) proteins, were 
positively associated with aging while the remaining 327 were 
negatively associated. The top proteins that were significantly 
positively correlated with age included pleiotrophin (PTN), WNT1-
inducible-signaling pathway protein 2 (WISP-2), chordin-like protein 
1 (CRDL1), R-spondin-1 (RSPO1), transgelin (TAGL), EGF-containing 
fibulin-like extracellular matrix protein 1 (FBLN3), and growth/dif-
ferentiation factor 15 (MIC-1; Table 2; Figure 1). On the other hand, 
epidermal growth factor receptor (ERBB1), a2-antiplasmin, and A 
disintegrin and metalloproteinase with thrombospondin motifs 13 
(ATS13), among others, were negatively associated with age (Table 2; 
Figure 1). Furthermore, we reaffirmed the associations between age 
and a number of proteins that had been previously found to corre-
lated with age by other studies, including MIC-1(GDF15), cystatin C, 
a2-antiplasmin, N-terminal pro-BNP, b2-microglobulin, growth hor-
mone receptor, and IGFBP-2 (Figure 1). Interestingly, the top most 
proteins associated with chronological age were also associated with 
age-related complex traits such as diabetes, myocardial infarction, 

stroke, hypertension, gait velocity, grip strength, and frailty (Figure 
S1).

2.2.1  |  Association analysis stratified by cohort 
status and sex

In an analysis stratified by cohort status, we identified 228 proteins 
significantly associated with age in OPEL and 568 proteins associ-
ated with age in OPUS. While most of these age-associated proteins 
were common to OPEL and OPUS (Figure 2; Tables S1 and S2), 26 
proteins were reproduced only among OPEL in the stratified analysis 
while two proteins, KLOTHO and sperm protein 17, were completely 
unique to OPEL and only emerged as significant after stratification 
(Figure 2).

In a sex-stratified analysis, there were 564 significant age-as-
sociated proteins in males compared to 274 proteins in females. In 
both sexes, 221 proteins were common (Figure 3). However, while 
PTN was most strongly associated with age among males (Table S3), 
WISP-2 was the top protein associated with age in females (Table 
S4).

TA B L E  2 Top 20 most significant SOMAmer reagents associated with chronological age in 1,025 participants

Target Target full name UniProt Estimate SE p-value

PTN Pleiotrophin P21246 0.0262 0.0012 3.21E−86

WISP-2 WNT1-inducible-signaling pathway 
protein 2

O76076 0.0189 0.0009 4.60E−82

CRDL1 Chordin-like protein 1 Q9BU40 0.0203 0.0010 1.45E−77

TAGL Transgelin Q01995 0.0215 0.0011 9.70E−71

RSPO1 R-spondin-1 Q2MKA7 0.0208 0.0011 1.09E−70

FBLN3 EGF-containing fibulin-like extracellular 
matrix protein 1

Q12805 0.0139 0.0007 2.62E−66

ERBB1 Epidermal growth factor receptor P00533 −0.0116 0.0006 2.87E−65

MIC-1 Growth/differentiation factor 15 Q99988 0.0275 0.0015 5.15E−65

SMOC1 SPARC-related modular calcium-binding 
protein 1

Q9H4F8 0.0103 0.0006 1.23E−57

HE4 WAP four-disulfide core domain protein 
2

Q14508 0.0191 0.0012 9.27E−55

PGD2 synthase Prostaglandin-H2 D-isomerase P41222 0.0161 0.0010 9.42E−53

Cystatin C Cystatin C P01034 0.0135 0.0008 1.65E−52

FSTL3 Follistatin-related protein 3 O95633 0.0133 0.0008 2.49E−50

RNase 1 Ribonuclease pancreatic P07998 0.0297 0.0019 3.66E−50

Macrophage scavenger 
receptor

Macrophage scavenger receptor types 
I and II

P21757 0.0193 0.0013 4.77E−47

URB Coiled-coil domain-containing protein 
80

Q76M96 0.0131 0.0009 1.14E−46

a2-Antiplasmin Alpha-2-antiplasmin P08697 −0.0074 0.0005 1.77E−45

sTREM-1 Triggering receptor expressed on 
myeloid cells 1

Q9NP99 0.0174 0.0012 2.54E−44

N-terminal pro-BNP N-terminal pro-BNP P16860 0.0499 0.0034 3.73E−44

SREC-II Scavenger receptor class F member 2 Q96GP6 0.0090 0.0006 8.37E−44

Model: log(SOMAmer) ~ age + gender + cohort.
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F I G U R E  1 Association of proteins with chronological age. Volcano plot showing associated proteins as red dots (p-value < 1.0 × 10−5). 
x-axis denotes the beta estimate coefficients, and y-axis, the significance level presented as −log10 (p-value) from linear model adjusted for 
sex and cohort status. Top most hit proteins have been marked

F I G U R E  2 Association of proteins with chronological age in OPEL and OPUS: (Panel a) Volcano plot showing associated proteins as red 
dots (p-value < 1.0 × 10−5). x-axis denotes the beta estimate coefficients from linear model, and y-axis shows the significance level presented 
as −log10 (p-value). Top most hit proteins have been marked. (Panel b) Venn diagram showing overlap between associated proteins in entire 
cohort (LonGenity), OPEL and OPUS
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Reactome pathway analysis found that “insulin-like growth factor 
(IGF) transport and regulation” pathway was most strongly associ-
ated with age, followed by pathways involved in extracellular matrix 
remodeling, post-translational modification and clotting (Table S5). 
Analysis using IPA identified pathways related to cell growth, devel-
opment, and survival, and inflammatory response, cancer, and cardio-
vascular diseases to be the top pathways related to aging (Table S6).

2.3  |  Co-expression network analysis and 
phenotypic association

Next, we performed an unbiased weighted gene co-expression 
network analysis (WGCNA) in order to investigate the association 
between protein networks and age. In this analysis, 4,265 proteins 
were clustered into nine modules based on co-expression analysis 
done in our subjects, with each module characterized by module ei-
gengene (ME). The nine modules include black (230 proteins), blue 
(1,026 proteins), brown (486 proteins), green (420 proteins), magenta 
(31 proteins), pink (98 proteins), red (390 proteins), turquoise (1,126 
proteins), and yellow (458 proteins) (Figures 4 and S2).

Chronological age was most significantly associated with the 
green module (Cor = 0.48, p = 1.0 × 10−60). Gene significance (GS) 
for age and module membership in green module showed significant 
correlation (Cor = 0.69, p = 1.2 × 10−60; Figure S3). Top hub gene 
in this module was tumor necrosis factor receptor 1 (TNFR1). The 
pathways enriched in this module included inflammatory response, 
ECM remodeling, IGF transport, and complement cascade (Table S7).

ME green was also associated with aging-related complex 
traits such as stroke (Cor = 0.12, p = 2 × 10−4), diabetes (Cor = 0.14, 
p = 7 × 10−6), hypertension (Cor = 0.17, p = 8 × 10−8), frailty (Cor = 0.27, 
p = 1 × 10−18), and mortality (Cor = 0.24, p = 1 × 10−14). This mod-
ule was also negatively associated with gait velocity (Cor = −0.21, 
p  =  7  ×  10−12) and overall cognition (Cor  =  −0.29, p  =  2  ×  10−21; 
Figure 4). Interestingly, this module was negatively correlated with 
OPEL status (Cor = −0.16, p = 6 × 10−7) and positively associated with 
male gender (Cor = 0.18, p = 3 × 10−9) (Figure 4).

The ME Magenta module demonstrated associations with 
age-related traits that diverged from those of the ME green. The 
Magenta module was negatively associated with age (Cor = −0.22, 
p  =  1  ×  10−12) and nominally with less frailty, death, and stroke 
(Figure 4). This module was also positively associated with higher 

F I G U R E  3 Association of proteins with Chronological age in Males and Females: (Top) Volcano plot showing associated proteins as red 
dots (p-value < 1.0 × 10−5). x-axis denotes the beta estimate coefficients from linear model, and y-axis shows the significance level presented 
as −log10 (p-value). Top most hit proteins have been marked. (Below) Venn diagram showing overlap between associated proteins in the 
entire cohort and included males and females
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cognitive scores and physical measures such as grip strength and 
gait velocity. The pathways that made up the Magenta module in-
cluded those related to metabolism–energy production, lipid metab-
olism, endocrine, and digestive system development and function 
(Table S8). The top hub gene in this module was fructose-1, 6-bis-
phosphatase 1 (F16P1).

2.4  |  Age prediction

An elastic net regression model which aimed to select proteins that 
predicted chronological age identified 162 relevant proteins from 
4,265 proteins and 61 of those proteins 162 proteins were associ-
ated with chronological age (Table S9). The correlation between 
chronological age and the age predicted by our model (proteomic 
age) was r = 0.79 (p < 2.2E−16; Figure 5). Alternatively, we success-
fully created age predictor from top significant 200, 100, and 50 
proteins associated with chronological age. 74, 67, and 35 proteins, 
respectively, were selected in elastic net regression model out of 
200, 100, and 50 proteins (Tables S10–S12). The correlation with 
chronological age and the age predicted were comparable to primary 
model with correlation of 0.79 (p < 2.2E−16), 0.80 (p < 2.2E−16), and 
0.78 (p < 2.2E−16), respectively (Figure S4).

We compared the predictive validity of chronological age, con-
structed proteomic age, and the frailty index for all-cause mortality. 
The median follow-up time was 4.79  ±  2.88, and 51 deaths were 
reported in 525 participants in the validation set. The proteomic 
age predicted all-cause mortality better than chronological age (HR 
1.21, 95% CI 1.15–1.27, p  =  3.10E−14 vs. HR 1.15, 95% CI 1.10–
1.20, p = 2.54E−10, respectively) and cumulative frailty index (HR 
1.08, 95% CI 1.05–1.11, p = 9.62E−07; Figure 6). All our secondary 

prediction models too showed similar result with mortality (Figure 6). 
When all three predictors were included in a single model, proteomic 
age predicted all-cause mortality (HR 1.12, 95% CI 1.04–1.21, 
p = 0.004) better than chronological age (HR 1.07, 95% CI 1.00–1.14, 
p = 0.04) and the frailty index (HR 1.03, 95% CI 0.99–1.06, p = 0.08) 
in the unified model.

The extended results for association analysis with chronological 
age and module classification are provided in Tables S13–S18.

3  |  DISCUSSION

The present study identified proteomic profiles associated with 
chronological age and proteomic signatures related to aging phe-
notypes in a unique population of older adults (Ayers et al., 2014; 
Gubbi et al., 2017). Maintenance of homeostasis is important in suc-
cessful aging, whereas major deviations from stable physiology that 
can be captured by changes in the proteome may reflect acceler-
ated aging and disease prevalence (Basisty et al., 2018). Our find-
ings demonstrated that individuals with a family history of longevity 
exhibit a proteome that is suggestive of delayed aging. Additionally, 
by utilizing the WGCNA approach we showed that clusters of pro-
teins, which were associated with age, were also related to complex 
diseases and other age-associated phenotypes. These findings sup-
port prior research, which demonstrated that age is a common risk 
factor for most aging-associated complex diseases, syndromes, and 
traits (Kaeberlein et al., 2015). Moreover, the proteomic age model 
developed in the present study predicted mortality more precisely 
than chronological age and frailty.

Our study was conducted in one of the largest older cohorts 
of older adults who were phenotyped with a proteomic panel 

F I G U R E  4 Module-trait associations: Each row corresponds to a module eigengene, column to a trait. Each cell contains the 
corresponding correlation and p-value. The table is color-coded by correlation according to the color legend. Green module was associated 
with age and diverse traits. Magenta module was second top hit with age in inverse direction
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consisting of 4,265 SOMAmer reagents (Menni et al., 2014; Tanaka 
et al., 2018). In addition to confirming prior findings that associated 
observations of MIC-1, PTN, CRDL1, and N-terminal pro-BNP asso-
ciations with age (Menni et al., 2014; Tanaka et al., 2018), we identi-
fied new proteins and proteomic profiles correlated with aging. The 
study carried out in BLSA and GESTALT cohorts identified 217 of 
1,301 proteins to be associated with age (Tanaka et al., 2018). The 
present study found 754 of 4,265 proteins to be correlated with 
chronological age. Interestingly, in comparison with other studies, 
we identified many more proteins that were down-regulated with 
age (<10% vs. 43%, respectively; Tanaka et al., 2018). Of note, the 
small fraction of down-regulated proteins reported by Toshiko et al. 
was much less than reported by other studies that used alternate 
methodologies for proteomic analysis and found equilibrium be-
tween the number of up-regulated and down-regulated proteins 
(Tanaka et al., 2018; Waldera-Lupa et al., 2014). Thus, it is likely that 
the expanded version of the SomaScan assay utilized here was more 

inclusive and reflected the proteomic changes that accompany aging 
in humans more comprehensively.

Pleiotrophin (PTN), also known as heparin binding growth factor, was 
the protein most strongly associated with chronological age in our study. 
PTN is secreted as a cell signaling cytokine, and as its name suggests, it is 
involved in a plethora of functions such as cell growth, migration, and sur-
vival in diverse tissues, including brain and bone. In the central nervous 
system, PTN acts as an important neuromodulator that plays a role in 
neurogenesis, learning, and long-term memory (González-Castillo et al., 
2015). In the bone, PTN is known as OSF-1, and it is involved in bone 
formation and repair, and osteoprogenitor differentiation and prolifera-
tion (Lamprou et al., 2014). These pleiotropic functions result from PTN’s 
ability to bind to different receptors, including receptor protein tyrosine 
phosphatase ζ (RPTPζ), anaplastic lymphoma kinase (ALK), neuroglycan 
C, N-syndecan receptor, and low-density lipoprotein receptor-related 
protein (LRP; González-Castillo et al., 2015). The functionality and mech-
anism of action of PTN are not completely elucidated.

F I G U R E  5 Correlation of chronological age and predicted age using proteomic data: Age prediction was carried out using elastic net 
regression method in 525 participants in the validation set. Correlation of predicted age using proteomic markers and chronological age was 
~0.8

F I G U R E  6 Prediction of all-cause mortality by chronological age, cumulative frailty index, and proteomic age derived using different 
methods (the Cox regression analysis). Analysis was adjusted for gender and cohort. *162, 74, 67, and 35 proteins were selected using elastic 
net regression for prediction from 4,265 (total proteins), top 200, 100, and 50 age-associated proteins, respectively
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Another protein associated with age in our analysis, WNT1-
inducible-signaling pathway protein 2 (WISP-2), may have pro-sur-
vival effects by contributing to Wnt3a mediated vascular smooth 
muscle survival (Brown et al., 2019). It may have a particular role 
in protection from atherosclerosis, as WISP-2 was shown to have 
anti-fibrotic effects that protect from cardiac hypertrophy and 
fibrosis (Grünberg et al., 2018). WISP-2 was also shown to pro-
mote mesenchymal precursor cell growth and to have pro-survival 
role in IGF-1 stimulated islet cell growth and survival (Chowdhury 
et al., 2014). Its potential ability to preserve tissue growth and sur-
vival suggests that WISP-2 may play an important role in longev-
ity. Other top proteins associated with age include chordin-like 1 
(CRDL1), a bone morphogenetic protein-4 antagonist, that also has 
been identified in other studies employing the SomaScan platform 
(Menni et al., 2014) and R-spondin-1, a Wnt agonist that ampli-
fies Wnt signaling. Studies have shown that reduced exposure to 
R-spondin-1 partially rescues stem cell differentiation in old mice 
(Cui et al., 2019).

The top proteins identified in relationship with age point toward 
potential novel aging mechanisms and pathways. In addition, this 
study found proteins that had been previously associated with both 
diseases and age, including growth differentiation factor-15 (GDF-
15) and NT-pro-BNP. The relationship between GDF-15 and age 
has been noted in a recent SomaScan study, as has been its asso-
ciation with diabetes, cardiovascular disease, and mortality (Tanaka 
et al., 2018). NT-pro-BNP is a known risk factor for coronary artery 
disease and is associated with mortality in patients with heart dis-
ease (Kragelund et al., 2005). Furthermore, our analysis confirmed 
associations of top age-related proteins with complex diseases and 
traits such as diabetes, myocardial infarction, stroke, hypertension, 
gait velocity, grip strength, and frailty. The overlap of age-associated 
proteins with aging-related diseases and syndromes signals to com-
mon mechanisms that potentially can be targeted by drugs such as 
metformin (Barzilai et al., 2016).

We identified more age-associated proteins in men compared 
to women and in OPUS compared to OPEL. Worldwide, women 
have longer life spans than men; however, the underlying cause of 
this difference has not been delineated (Austad, 2006). Proposed 
theories to explain the life-span difference include the effect of es-
trogen, additional X chromosome advantage, and gender specific 
effect of growth hormone/IGF-1(Ashpole et al., 2017; Christensen 
et al., 2001). Additionally, there are reports of higher incidence of 
DNA damage /mutations in males compared to females (Fischer & 
Riddle, 2017). The noted difference in the number of age-related 
proteins between men and women in this study also suggests that 
compared to males, females may maintain better proteostasis func-
tion. A similar relationship between age and proteins was observed 
in OPUS compared to OPEL. Furthermore, OPEL demonstrates bet-
ter health and physical characteristics compared to OPUS (Ayers 
et al., 2014; Gubbi et al., 2017). Interestingly, age-associated expres-
sion of KLOTHO protein was noted only in OPEL. Our earlier study 
had shown differential distribution of KLOTHO genotypes with age 
(Bergman et al., 2007).

Age is a risk factor for a wide range of complex diseases and 
traits (Kaeberlein et al., 2015). Our analysis suggested a shared eti-
ology between multiple phenotypes, with age acting as the com-
mon risk factor. For example, the Green module that was most 
strongly associated with age was also associated with age-related 
diseases and phenotypes, such as frailty, gait velocity, and cogni-
tion. Interestingly, the Green module was negatively associated with 
OPEL status, who have been shown to age more successfully than 
OPUS (Ayers et al., 2014). This module was enriched with inflamma-
tory response proteins, as well as those associated with cell death 
and survival. Inflammation plays an important role in aging and in 
complex disease pathogenesis (Furman et al., 2019). The top hub 
protein in the green module, tumor necrosis factor receptor super-
family member 1A (TNF sR-I), is a receptor for TNF-α and is involved 
in inflammation, apoptosis, and cell survival (Parameswaran & Patial, 
2010). On the other hand, the Magenta module was negatively asso-
ciated with age, as well as with most age-related diseases and phe-
notypes, with the exception of serum glucose and diabetes. Previous 
studies have suggested possibility of glucose intolerance to be pro-
tective for aging (Barzilai & Ferrucci, 2012). The Magenta module 
is enriched with proteins that are part of the energy metabolism 
pathways, which have been shown to play an important role in lon-
gevity (Barzilai et al., 2012). The top hub protein in this module was 
Fructose 1, 6 bisphosphatase 1 (FBPase1), a rate-limiting enzyme in 
gluconeogenesis. Gluconeogenesis has been shown to be enhanced 
with aging and attenuation of gluconeogenesis is known to extend 
the cellular life span (Hachinohe et al., 2013). These observations 
again highlight an important concept that targeting aging, the com-
mon cause of multiple diseases, rather than each disease individually 
may be a preferred approach for extending human health span.

Pathway analysis involving age-associated proteins showed reg-
ulation of insulin-like growth factor (IGF) transport and uptake by insu-
lin-like growth factor-binding proteins (IGFBPs) (R-HSA-381426) to be 
the top pathway related to age. IGF-1 is an endocrine and autocrine/
paracrine growth factor that has diverse effects on development, 
cell growth, differentiation, and tissue repair (Higashi et al., 2012). 
IGF-1 signaling pathway has been implicated in longevity and in 
age-related diseases (Rincon et al., 2005). Other pathways signifi-
cantly associated with age, including degradation of the extracellular 
matrix (R-HSA-1474228), post-translational protein phosphorylation 
(R-HSA-8957275), platelet degranulation (R-HSA-114608), and for-
mation of fibrin clot (Clotting Cascade; R-HSA-140877) may also 
have important implications for functional aging, as they have been 
shown to be involved in processes such as maintenance of skeletal 
muscle integrity, Alzheimer's disease, platelet function, and extracel-
lular matrix degradation (Jacob, 2003; Martin et al., 2011).

The strengths of our study include a well-characterized longi-
tudinal homogenous cohort and the largest panel of proteins tar-
geted using the SomaScan assay reported to date. However, there 
are a number of limitations in respect to the evolving SomaScan 
technology. This technology captures proteins based on the 3D 
protein structure using aptamers that bind to specific binding sites 
on the proteins. Therefore, there is a possibility that a protein that 
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has a change in this binding site may be missed or that the aptamer 
may cross-react with another protein that has a similar binding site. 
Additionally, this technology does not measure the absolute concen-
tration of proteins, but expresses the concentration as an amount of 
SOMAmer reagent captured. This precludes direct correlations with 
results derived by other methods. Moreover, we found that ~17% of 
proteins associated with age in our study that used 4,265 SOMAmer 
reagents, a similar percentage compared to another study that in-
cluded 1,301 SOMAmers (Tanaka et al., 2018). If indeed 17% of the 
entire human proteome is associated with aging, then we may be 
missing an important component of the aging proteome, with the re-
maining proteins yet to be discovered in a pool of more than 20,000 
proteins and their isoforms. In addition, although the present study 
found a unique repertoire of proteins to be associated with aging 
and have shown predicted age to be better marker than chronologi-
cal age for mortality, the results are yet to be replicated in indepen-
dent cohorts.

In conclusion, we identified a number of proteins and pathways 
significantly associated with chronological age in a population of 
older adult and showed that proteomic profiles can be better pre-
dictors of biological age—mortality and disease—than chronological 
age. These discoveries pave the way for better risk stratification for 
older adults and the identification of novel pathways that modulate 
aging, which can be targeted with the goal of delaying aging and 
age-related diseases.

4  |  METHODS

4.1  |  LonGenity cohort

The LonGenity study is an ongoing longitudinal study established in 
2007 that recruits Ashkenazi Jewish participants age 65 and older. 
The cohort consist of adults who were either offspring of parents 
with exceptional longevity (OPEL, defined by having at least one 
parent who lived to age 95 or older) or offspring of parents with 
usual survival (OPUS, defined by having neither parent survive to 
age 95). The primary goal of this longitudinal study was to identify 
genotypes that confer longevity and successful aging. Participants 
were recruited systematically using public records such as voter 
registration lists or through contacts at community organizations, 
synagogues, and advertisements in Jewish newspapers in the New 
York City area. Potential participants were contacted by telephone 
to assess interest and eligibility. Exclusion criteria include the follow-
ing: a score >2 on the AD8 (Galvin et al., 2005) and >8 on the Blessed 
Information–Memory–Concentration task (Blessed et al., 1968) at 
the initial screening interview, having a sibling in the study, and se-
vere visual impairment. Participants who were eligible were invited 
to our research center for further evaluation. Participants received 
detailed medical history evaluation, functional evaluation, and cog-
nitive testing at baseline and at annual follow-up visits. As part of 
their annual visit, participants completed neuropsychological tests 
evaluating memory, language, visuospatial functioning, attention, 

and executive function under the supervision of the study neuropsy-
chologist. An overall cognition composite score was calculated by 
transforming participant scores into a standard score adjusted for 
education, age and gender and summing the standard scores.

All participants signed written informed consents for study 
assessment and genetic testing prior to enrollment. The Albert 
Einstein College of Medicine Institutional Review Board approved 
the study protocol.

4.2  |  Proteomic assessment

Proteomic assessment was carried out in LonGenity cohort using 
SomaScan assay. Plasma was isolated from EDTA-treated blood 
acquired by venipuncture from participants at baseline wave in a 
fasting state. Plasma samples were stored at −80°C, and 150 µl of 
aliquots of plasma was sent to SomaLogic on dry ice. This study used 
5 k SomaScan Assay V4 which had 5284 SOMAmer reagents, with 
5209 SOMAmer reagents targeting human proteins and remain-
ing markers consisting of 22 non-human proteins, 12 hybridization 
control elution, 10 non-biotin, four non-cleavable, and seven dep-
recated proteins, and 20 spuriomers. SomaScan data standardiza-
tion was carried out as previously described (Candia et al., 2017) 
at SomaLogic, Inc. Three main steps included hybridization control 
normalization (HCN), median signal normalization (MSN), and cali-
bration normalization (CN). HCN removed individual sample vari-
ance on the basis of signaling differences between microarrays or 
Agilent scanners while MSN removed inter-sample variation within 
a plate for calibrator and buffer samples arising from pipetting vari-
ation or other technical issues. CN removed variance across assay 
runs. Finally, median normalization to reference was performed on 
the quality control (QC) and individual samples to control for inter-
sample technical and biological variability in total signal within and 
between runs. After implementing these QC checks, 960 sequences 
that failed QC were removed. After exclusion of non-human pro-
teins, deprecated markers, non-cleavable, non-biotin, and spuri-
omers, 4265 SOMAmer reagents were available for the proteomic 
analysis.

4.3  |  Statistical analysis

Baseline characteristics of participants were compared using de-
scriptive statistics. Relative fluorescence unit (RFU) values observed 
after data normalization procedure for each SOMAmer reagent 
were natural log-transformed. Outliers were removed using me-
dian absolute deviation method. The preliminary objective of this 
study was to identify the association of SOMAmer reagents with 
chronological age using linear regression analysis. Analyses were 
adjusted for gender and cohort status (OPUS or OPEL). Beta esti-
mate  is defined as increase or decrease in specific log (SOMAmer 
reagent) concentrations with each 1 unit (1 year) of increase in age. 
Initial normalization procedures carried out by SomaLogic adjusted 
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for changes associated with the experimental setup like inter-sample 
differences within a plate and variance across assay runs, individual 
sample variance on the basis of signaling differences between mi-
croarrays or Agilent scanners. The Bonferroni corrected p-value less 
than 1.0  ×  10−5 (0.05/4,265) were considered significant. Gender 
and cohort stratified analyses were performed to understand the 
possible differential effect of gender and cohort status on age regu-
lated proteomic profile.

4.4  |  Pathway analysis

Pathway or enrichment analyses were carried out using proteins 
associated with chronological age to discover biological pathways 
related to aging. Network analysis was carried out using Qiagen's 
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.
qiagen.com/ingen​uity; Krämer et al., 2013). For this analysis, we in-
cluded 754 proteins that were significantly associated with chrono-
logical age in our analysis. IPA network analysis output consisted of a 
list of biological functions and set of proteins, as well as a score (p-
score = −log10 (p-value)) according to the fit of the protein set. We 
also investigated top diseases and bio-functions associated with aging. 
Top networks were checked for concordance with pathway analysis 
using Reactome (www.react​ome.org/; Fabregat et al., 2017). The da-
tabase was queried with the UniProt IDs to check whether particular 
pathways were over-represented.

4.5  |  Weighted gene co-expression 
network analysis

The WGCNA R package (Langfelder & Horvath, 2008) was used 
to build unsigned protein expression networks from normalized 
and transformed RFUs of 4265 SOMAmers concentrations. The 
WGCNA methodology has been well described in previous publi-
cations and the tutorial accompanying this R package (Langfelder 
& Horvath, 2008). In our dataset, the smallest threshold satisfying 
scale free topology fit of R2 = 0.90 was found at soft threshold power 
of 2. Topological overlap matrix (TOM) is used to express network 
interconnectedness. Hierarchical clustering of proteins were based 
on topology overlap dissimilarity (1-TOM), and modules were de-
fined from branches of cluster trees using dynamic tree cut method 
(Langfelder et al., 2007). Modules were assigned with different color 
names. Minimum module size was set at default of 30 proteins.

First principle component of a module is defined as Module 
eigengene E. This is used as representative measure of module ex-
pression profile. Further association of the module to the pheno-
type of interest was carried out by correlating module eigengene 
with the outcome phenotype. We analyzed the association of the 
module with the primary phenotype of interest (chronological age) 
and other age-associated phenotypes including frailty index, death, 
stroke, diabetes, hypertension, myocardial infarction, lipid levels, 
physical measures (grip strength, and gait velocity), and cognitive 

phenotypes (language, attention, executive, memory, and visuo-
motor). We have selected all prominent age-associated phenotypes 
whose data were available in our cohort.

Each module is characterized by a highly connected gene called 
a hub gene. A hub gene was defined based on highest module mem-
bership (MM). MM is measured as correlation of individual protein 
expression profile with the module eigengene of a given module. 
Hub genes were analyzed for associated module with age.

4.6  |  Proteomic prediction of chronological age

We constructed a proteomic chronological age predictor using pe-
nalized regression model with the glmnet R package (Friedman et al., 
2009). Participants in the training set were selected using stratified 
random sampling method. Participants were selected from 5-year 
age bins (65–70, 70–75, 75–80, 80–85, 85–90 and 90–95). The 
training set included 500 participants, and the remaining 525 par-
ticipants of the cohort were used in a validation set. As a first step, 
chronological age was regressed on 4,265 log-transformed protein 
abundances. Using cv-glmnet function, optimal lambda value to 
minimize cross-validation prediction error rate was selected on the 
basis of 10-fold cross-validation using the training set. Alpha value 
was set at 0.5 for performing elastic net regression. As a secondary 
analysis, we constructed prediction model including only topmost 
age-associated proteins (200, 100, and 50) in the regression model. 
The intention of this model was to figure out possibility of modeling 
a clock consisting of only age-associated proteins. A comparison was 
carried out with the primary model which included 4,265 proteins.

4.7  |  Survival analysis

The Cox proportional hazard models were used to compute hazard 
ratios (HRs) with 95% confidence intervals (CIs) to predict incident 
all-cause mortality based on chronological age, proteomic age (pre-
dicted), and frailty index. We constructed cumulative frailty index 
in our cohort as discussed in the supplementary methods. All mod-
els were adjusted for gender and cohort status. Time scale was fol-
low-up time in years to date of death or final contact. Proportional 
hazard assumptions of all models were tested graphically and ana-
lytically and were adequately met. All survival analyses were carried 
out using coxph() function in R.

ACKNOWLEDG MENTS
This work was supported by grants from the National Institutes 
of Health (NIH) [P01AG021654 (NB), R01AG046949 (NB), 
R01AG057909 (NB), R01AG044829 (JV and NB), R01AG061155 
(SM), and K23AG051148 (SM)], the Nathan Shock Center of 
Excellence for the Biology of Aging P30AG038072 (NB), American 
Federation for Aging Research (SM), and Glenn Center for the 
Biology of Human Aging Paul Glenn Foundation Grant (NB). The 
sponsors had no role in the design and conduct of the study; 

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
http://www.reactome.org/


    |  11 of 12SATHYAN et al.

collection, management, analysis, and interpretation of the data; and 
preparation, review, or approval of the manuscript.

CONFLIC T OF INTERE S T
None declared.

AUTHOR CONTRIBUTIONS
Nir Barzilai, Joe Verghese, Sofiya Milman, and Sanish Sathyan con-
tributed to the design of the study and interpretation of the data. 
Sanish Sathyan, Erica F. Weiss, Sofiya Milman, Joe Verghese, and Nir 
Barzilai contributed to the acquisition of data and writing of the man-
uscript. Sanish Sathyan, Emmeline Ayers, Tina Gao, and Nir Barzilai 
contributed to the analysis of the data. Sanish Sathyan, Emmeline 
Ayers, Tina Gao, Erica F. Weiss, Sofiya Milman, Joe Verghese, and 
Nir Barzilai contributed to the critical revisions of the manuscript. All 
the authors approved the final version of the manuscript and agreed 
to be accountable for all aspects of the work.

DATA AVAIL ABILIT Y S TATEMENT
Proteomic data used in this study are available upon request. Please 
contact the corresponding author for further information.

ORCID
Sanish Sathyan   https://orcid.org/0000-0002-8127-1835 
Nir Barzilai   https://orcid.org/0000-0002-7787-6268 

R E FE R E N C E S
Andersen, S. L., Sebastiani, P., Dworkis, D. A., Feldman, L., & Perls, T. 

T. (2012). Health span approximates life span among many super-
centenarians: Compression of morbidity at the approximate limit of 
life span. Journals of Gerontology Series A: Biomedical Sciences and 
Medical Sciences, 67(4), 395–405. https://doi.org/10.1093/geron​a/
glr223

Anstey, K. J., Lord, S. R., & Smith, G. A. (1996). Measuring human func-
tional age: A review of empirical findings. Experimental Aging 
Research, 22(3), 245–266. https://doi.org/10.1080/03610​73960​
8254010

Ashpole, N. M., Logan, S., Yabluchanskiy, A., Mitschelen, M. C., Yan, 
H., Farley, J. A., Hodges, E. L., Ungvari, Z., Csiszar, A., Chen, S., 
Georgescu, C., Hubbard, G. B., Ikeno, Y., & Sonntag, W. E. (2017). 
IGF-1 has sexually dimorphic, pleiotropic, and time-dependent ef-
fects on healthspan, pathology, and lifespan. Geroscience, 39(2), 
129–145.

Austad, S. N. (2006). Why women live longer than men: Sex differences 
in longevity. Gender Medicine, 3(2), 79–92.

Ayers, E., Barzilai, N., Crandall, J. P., Milman, S., & Verghese, J. (2014). 
Association of exceptional parental longevity and physical function 
in aging. Age, 36(4), 9677.

Barzilai, N., Crandall, J. P., Kritchevsky, S. B., & Espeland, M. A. (2016). 
Metformin as a tool to target aging. Cell Metabolism, 23(6), 
1060–1065.

Barzilai, N., & Ferrucci, L. (2012). Insulin resistance and aging: a cause or 
a protective response? Journals of Gerontology Series A: Biomedical 
Sciences and Medical Sciences, 67(12), 1329–1331.

Barzilai, N., Huffman, D. M., Muzumdar, R. H., & Bartke, A. (2012). 
The critical role of metabolic pathways in aging. Diabetes, 61(6), 
1315–1322.

Basisty, N., Meyer, J. G., & Schilling, B. (2018). Protein turnover in aging 
and longevity. Proteomics, 18(5–6), 1700108.

Bergman, A., Atzmon, G., Ye, K., MacCarthy, T., & Barzilai, N. (2007). 
Buffering mechanisms in aging: A systems approach toward uncov-
ering the genetic component of aging. PLoS Computational Biology, 
3(8), e170.

Blessed, G., Tomlinson, B. E., & Roth, M. (1968). The association between 
quantitative measures of dementia and of senile change in the cere-
bral grey matter of elderly subjects. The British Journal of Psychiatry, 
114(512), 797–811.

Broer, L., & van Duijn, C. M. (2015). GWAS and meta-analysis in aging/
longevity. In G. Atzmon (Ed.) Longevity genes (pp. 107–125). Springer.

Brown, B. A., Connolly, G. M., Mill, C. E., Williams, H., Angelini, G. D., 
Johnson, J. L., & George, S. J. (2019). Aging differentially modulates 
the Wnt pro-survival signalling pathways in vascular smooth mus-
cle cells. Aging Cell, 18(1), e12844.

Candia, J., Cheung, F., Kotliarov, Y., Fantoni, G., Sellers, B., Griesman, 
T., Huang, J., Stuccio, S., Zingone, A., Ryan, B. M., Tsang, J. S., & 
Biancotto, A. (2017). Assessment of variability in the SOMAscan 
assay. Scientific Reports, 7(1), 14248.

Chowdhury, S., Wang, X., Srikant, C. B., Li, Q., Fu, M., Gong, Y. J., 
Ning, G., & Liu, J.-L. (2014). IGF-I stimulates CCN5/WISP2 gene 
expression in pancreatic β-cells, which promotes cell prolifera-
tion and survival against streptozotocin. Endocrinology, 155(5), 
1629–1642.

Christensen, K., Orstavik, K., & Vaupel, J. W. (2001). The X chromosome 
and the female survival advantage: An example of the intersection 
between genetics, epidemiology and demography. Annals-New York 
Academy of Sciences, 954, 175–183.

Cui, H., Tang, D., Garside, G. B., Zeng, T., Wang, Y., Tao, Z., Zhang, L., & 
Tao, S. I. (2019). Wnt signaling mediates the aging-induced differ-
entiation impairment of intestinal stem cells. Stem Cell Reviews and 
Reports, 15(3), 448–455.

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., 
Garapati, P., & May, B. (2017). The reactome pathway knowledge-
base. Nucleic Acids Research, 46(D1), D649–D655.

Fischer, K. E., & Riddle, N. C. (2017). Sex differences in aging: genomic 
instability. The Journals of Gerontology: Series A, 73(2), 166–174.

Friedman, J., Hastie, T., & Tibshirani, R. (2009). glmnet: Lasso and elas-
tic-net regularized generalized linear models. R Package Version, 
1(4).

Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, 
C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., 
Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. 
A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). 
Chronic inflammation in the etiology of disease across the life span. 
Nature Medicine, 25(12), 1822–1832.

Galvin, J. E., Roe, C. M., Powlishta, K. K., Coats, M. A., Muich, S. J., 
Grant, E., Miller, J. P., Storandt, M., & Morris, J. C. (2005). The 
AD8: A brief informant interview to detect dementia. Neurology, 
65(4), 559–564.

Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., Carter, 
J., Dalby, A. B., Eaton, B. E., Fitzwater, T., Flather, D., Forbes, A., 
Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, 
S., Halladay, D., … Zichi, D. (2010). Aptamer-based multiplexed 
proteomic technology for biomarker discovery. PLoS One, 5(12), 
e15004.

González-Castillo, C., Ortuño-Sahagún, D., Guzmán-Brambila, C., Pallàs, 
M., & Rojas-Mayorquín, A. E. (2015). Pleiotrophin as a central ner-
vous system neuromodulator, evidences from the hippocampus. 
Frontiers in Cellular Neuroscience, 8, 443.

Grünberg, J. R., Elvin, J., Paul, A., Hedjazifar, S., Hammarstedt, A., & 
Smith, U. (2018). CCN5/WISP2 and metabolic diseases. Journal of 
Cell Communication and Signaling, 12(1), 309–318.

Gubbi, S., Schwartz, E., Crandall, J., Verghese, J., Holtzer, R., Atzmon, 
G., Braunstein, R., Barzilai, N., & Milman, S. (2017). Effect of ex-
ceptional parental longevity and lifestyle factors on prevalence 

https://orcid.org/0000-0002-8127-1835
https://orcid.org/0000-0002-8127-1835
https://orcid.org/0000-0002-7787-6268
https://orcid.org/0000-0002-7787-6268
https://doi.org/10.1093/gerona/glr223
https://doi.org/10.1093/gerona/glr223
https://doi.org/10.1080/03610739608254010
https://doi.org/10.1080/03610739608254010


12 of 12  |     SATHYAN et al.

of cardiovascular disease in offspring. The American Journal of 
Cardiology, 120(12), 2170–2175.

Hachinohe, M., Yamane, M., Akazawa, D., Ohsawa, K., Ohno, M., 
Terashita, Y., & Masumoto, H. (2013). A reduction in age-enhanced 
gluconeogenesis extends lifespan. PLoS One, 8(1), e54011.

Higashi, Y., Sukhanov, S., Anwar, A., Shai, S.-Y., & Delafontaine, P. (2012). 
Aging, atherosclerosis, and IGF-1. Journals of Gerontology Series A: 
Biomedical Sciences and Medical Sciences, 67(6), 626–639.

Ismail, K., Nussbaum, L., Sebastiani, P., Andersen, S., Perls, T., Barzilai, 
N., & Milman, S. (2016). Compression of morbidity is observed 
across cohorts with exceptional longevity. Journal of the American 
Geriatrics Society, 64(8), 1583–1591.

Jacob, M. P. (2003). Extracellular matrix remodeling and matrix metal-
loproteinases in the vascular wall during aging and in pathological 
conditions. Biomedicine & Pharmacotherapy, 57(5–6), 195–202.

Johnson, F. B., Sinclair, D. A., & Guarente, L. (1999). Molecular biology of 
aging. Cell, 96(2), 291–302.

Kaeberlein, M., Rabinovitch, P. S., & Martin, G. M. (2015). Healthy aging: 
the ultimate preventative medicine. Science, 350(6265), 1191–1193.

Kragelund, C., Grønning, B., Køber, L., Hildebrandt, P., & Steffensen, R. 
(2005). N-terminal pro–B-type natriuretic peptide and long-term 
mortality in stable coronary heart disease. New England Journal of 
Medicine, 352(7), 666–675.

Krämer, A., Green, J., Pollard, J. Jr., & Tugendreich, S. (2013). Causal anal-
ysis approaches in ingenuity pathway analysis. Bioinformatics, 30(4), 
523–530.

Lamprou, M., Kaspiris, A., Panagiotopoulos, E., Giannoudis, P. V., & 
Papadimitriou, E. (2014). The role of pleiotrophin in bone repair. 
Injury, 45(12), 1816–1823.

Langfelder, P., & Horvath, S. (2008). WGCNA: An R package for weighted 
correlation network analysis. BMC Bioinformatics, 9(1), 559.

Langfelder, P., Zhang, B., & Horvath, S. (2007). Defining clusters from 
a hierarchical cluster tree: The Dynamic Tree Cut package for R. 
Bioinformatics, 24(5), 719–720.

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. 
(2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

Martin, L., Latypova, X., & Terro, F. (2011). Post-translational mod-
ifications of tau protein: Implications for Alzheimer's disease. 
Neurochemistry International, 58(4), 458–471.

Menni, C., Kiddle, S. J., Mangino, M., Viñuela, A., Psatha, M., Steves, 
C., Sattlecker, M., Buil, A., Newhouse, S., Nelson, S., Williams, S., 
Voyle, N., Soininen, H., Kloszewska, I., Mecocci, P., Tsolaki, M., 
Vellas, B., Lovestone, S., Spector, T. D., … Valdes, A. M. (2014). 
Circulating proteomic signatures of chronological age. Journals 
of Gerontology Series A: Biomedical Sciences and Medical Sciences, 
70(7), 809–816.

Milman, S., & Barzilai, N. (2016). Dissecting the mechanisms underlying 
unusually successful human health span and life span. Cold Spring 
Harbor Perspectives in Medicine, 6(1), a025098.

Pal, S., & Tyler, J. K. (2016). Epigenetics and aging. Science Advances, 2(7), 
e1600584.

Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-α signal-
ing in macrophages. Critical Reviews™ in Eukaryotic Gene Expression, 
20(2), 87–103.

Partridge, L. (2010). The new biology of ageing. Philosophical Transactions 
of the Royal Society B: Biological Sciences, 365(1537), 147–154.

Rajpathak, S. N., Liu, Y., Ben-David, O., Reddy, S., Atzmon, G., Crandall, 
J., & Barzilai, N. (2011). Lifestyle factors of people with excep-
tional longevity. Journal of the American Geriatrics Society, 59(8), 
1509–1512.

Rincon, M., Rudin, E., & Barzilai, N. (2005). The insulin/IGF-1 signaling 
in mammals and its relevance to human longevity. Experimental 
Gerontology, 40(11), 873–877.

Tanaka, T., Biancotto, A., Moaddel, R., Moore, A. Z., Gonzalez-Freire, M., 
Aon, M. A., Candia, J., Zhang, P., Cheung, F., Fantoni, G., Semba, 
R. D., & Ferrucci, L. (2018). Plasma proteomic signature of age in 
healthy humans. Aging Cell, 17(5), e12799.

Waldera-Lupa, D. M., Kalfalah, F., Florea, A.-M., Sass, S., Kruse, F., Rieder, 
V., Tigges, J., Fritsche, E., Krutmann, J., Busch, H., Boerries, M., 
Meyer, H. E., Boege, F., Theis, F., Reifenberger, G., & Stuhler, K. 
(2014). Proteome-wide analysis reveals an age-associated cellular 
phenotype of in situ aged human fibroblasts. Aging, 6(10), 856.

Zierer, J., Menni, C., Kastenmüller, G., & Spector, T. D. (2015). Integration 
of ‘omics’ data in aging research: From biomarkers to systems biol-
ogy. Aging Cell, 14(6), 933–944.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Sathyan S, Ayers E, Gao T, et al. Plasma 
proteomic profile of age, health span, and all-cause mortality in 
older adults. Aging Cell. 2020;19:e13250. https://doi.
org/10.1111/acel.13250

https://doi.org/10.1111/acel.13250
https://doi.org/10.1111/acel.13250

