
Aging Cell. 2020;19:e13250.	 		 	 | 1 of 12
https://doi.org/10.1111/acel.13250

wileyonlinelibrary.com/journal/acel

1  |  INTRODUC TION

Aging is a multifactorial phenotype characterized by physiological 
changes with multifaceted effects or alterations causing gradual 
functional decline in a living organism (López-Otín et al., 2013). 
These age-associated alterations are also risk factors for various 

complex diseases such as cancer, diabetes, cardiovascular, and neu-
rodegenerative diseases (López-Otín et al., 2013). Given its complex 
nature, the biology of aging has not been completely elucidated yet 
(Partridge, 2010). A number of genes and proteins in diverse bio-
logic pathways have been implicated in influencing aging and lon-
gevity (Johnson et al., 1999). Some of the mechanisms that have 
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Abstract
Aging is a complex trait characterized by a diverse spectrum of endophenotypes. By 
utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity 
cohort	 (age	 range:	 65–95,	 55.7%	 females),	 we	 found	 that	 754	 of	 4,265	 proteins	
were associated with chronological age. Pleiotrophin (PTN; β[SE]	=	0.0262	[0.0012];	
p = 3.21 × 10−86), WNT1-inducible-signaling pathway protein 2 (WISP-2; β[SE]	=	0.0189	
[0.0009]; p	=	4.60	×	10−82), chordin-like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; 
p	=	1.45	×	10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and 
R-spondin-1(RSPO1; β[SE]	=	0.0208	 [0.0011];	p = 1.09 × 10−70), were the proteins 
most significantly associated with age. Weighted gene co-expression network analy-
sis identified two of nine modules (clusters of highly correlated proteins) to be signifi-
cantly associated with chronological age and demonstrated that the biology of aging 
overlapped with complex age-associated diseases and other age-related traits. The 
correlation between proteomic age prediction based on elastic net regression and 
chronological	age	was	0.8	(p	<	2.2E−16).	Pathway	analysis	showed	that	inflammatory	
response, organismal injury and abnormalities, cell and organismal survival, and death 
pathways were associated with aging. The present study made novel associations be-
tween a number of proteins and aging, constructed a proteomic age model that pre-
dicted mortality, and suggested possible proteomic signatures possessed by a cohort 
enriched for familial exceptional longevity.
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been repeatedly linked to aging include DNA instability, telomere 
shortening, environment-driven epigenetic changes, cellular senes-
cence, and loss of proteostasis (Johnson et al., 1999; López-Otín 
et al., 2013).

Research into the biological mechanisms of aging experienced 
a big leap with the advent of next-generation sequencing and ge-
notyping technologies in the last decade, though major advances 
have been lacking mainly due to the complexity of the phenotype 
and apparent low heritability (Broer & van Duijn, 2015). Other 
methodologies, such as transcriptomic and epigenetic analysis, have 
provided additional insights but a comprehensive elucidation of bi-
ology	of	aging	remains	elusive	(Pal	&	Tyler,	2016;	Zierer	et	al.,	2015).	
Furthermore, since genes, transcripts, and epigenetic modifications 
represent intermediate steps in regulation, frequently they are not 
the final determinants of phenotype. Proteins, on the other hand, 
in many cases represent the end products of epigenetic and tran-
scription regulation, reflecting the integration of system-wide bio-
logical processes. For instance, it was shown in human fibroblasts 
that	77%	of	age-associated	changes	 in	cell	protein	 levels	were	not	
correlated	with	 gene	 transcript	 levels	 (Waldera-Lupa	et	 al.,	 2014).	
Proteomic research in aging has been lagging mainly due to the lack 
of advanced platforms that could facilitate discovery. Recently, the 
highly multiplexed SomaScan assay provided a major breakthrough 
by offering a tool that can measure thousands of proteins simulta-
neously in a small sample of blood (Gold et al., 2010). The principle 
of SOMAmer reagents is based on aptamer technology and uses sin-
gle-stranded DNA-based protein affinity reagents (Gold et al., 2010). 
Using this novel technology, we aimed to characterize the proteomic 
signature of aging, including protein clusters that may reflect resil-
ience to aging and different aging phenotypes.

Evidence indicates that chronological age does not directly 
correlate with the physiologic and functional status of an indi-
vidual	 (Anstey	et	al.,	1996).	Differential	aging	 is	characterized	by	
the body's ability to maintain homeostasis across different organ 
systems over time, whereas deterioration of this balance can lead 
to rapid aging with associated decline in function and occurrence 
of	 complex	 age-associated	diseases	 (Anstey	 et	 al.,	 1996)	 that	 re-
flect the biological age of an organism. We hypothesized that the 

proteome can capture the biology underlying the physiological age 
and not simply the chronological age. We tested this hypothesis 
in a homogenous community-dwelling cohort of Ashkenazi Jewish 
older	 adults	 in	whom	~4,265	plasma	proteins	were	measured	by	
utilizing the SomaScan platform. As part of the study, we aimed 
to develop an age prediction model based on the proteome and to 
test whether it predicted mortality. In addition, our cohort was en-
riched with individuals with familial longevity, with approximately 
half of the cohort composed of offspring of parents with excep-
tional longevity who repeatedly demonstrated better health sta-
tus	compared	 to	age-matched	controls	 (Ayers	et	al.,	2014;	Gubbi	
et al., 2017). Although aging is a major risk factor for many chronic 
diseases, individuals with exceptional longevity and their offspring 
often delay the onset of age-related diseases and syndromes 
(Andersen	 et	 al.,	 2012;	 Ismail	 et	 al.,	 2016)	 despite	 having	 similar	
lifestyle habits to their peers (Gubbi et al., 2017; Rajpathak et al., 
2011) suggesting that longevity is at least in part genetically deter-
mined	and	is	heritable	(Milman	&	Barzilai,	2016).	Thus,	our	cohort	
was particularly suitable for identifying the proteomic signature 
of resilience to aging and we hypothesized that the offspring of 
parents with longevity will demonstrate a more youthful proteome 
compared to age-matched controls.

2  |  RESULTS

2.1  |  Study population

Of the 1,025 eligible individuals with phenotype and proteomic data 
in	the	LonGenity	cohort,	506	(49.4%)	were	offspring	of	parents	with	
exceptional longevity (OPEL), defined by having at least one parent 
who lived to age 95 or older, and the remaining were offspring of 
parents with usual survival (OPUS), defined by having neither parent 
survive to age 95. Demographic and clinical baseline characteristics 
are summarized in Table 1. The mean age of the participants at en-
rollment	was	75.8	±	6.7	years	(age	range:	65–95	years)	and	55.7%	of	
participants were women. The mean ages of male and female partici-
pants	were	76.0	±	6.8	and	75.6	±	6.7	years,	respectively.

Variables LonGenity OPEL OPUS

Participants, n	(%) 1,025 506	(49.4) 519	(50.6)

Age,	mean	±	SD,	years 75.8	±	6.7 74.5	±	6.1 77.1	±	7.1

Women, n	(%) 571 (55.7) 306	(60.5) 265	(51.1)

Education,	mean	±	SD,	years 17.46	±	2.94 17.67	±	2.95 17.24	±	2.91

Co-morbid conditions

Stroke,	% 3.3 1.4 5.2

Diabetes,	% 8.9 6.9 10.8

Myocardial	infarction,	% 5.3 4.3 6.2

Hypertension,	% 43.2 35.9 50.4

Rockwood frailty index 
(mean	±	SD)

0.163	±	0.086 0.151	±	0.079 0.175	±	0.091

TA B L E  1 Cohort	characteristics
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2.2  |  Association analysis with chronological age

Chronological	 age	 was	 significantly	 associated	 with	 754	 proteins	
(p < 1 × 10−5).	Of	 these,	 the	majority,	 427	 (56.6%)	 proteins,	were	
positively associated with aging while the remaining 327 were 
negatively associated. The top proteins that were significantly 
positively correlated with age included pleiotrophin (PTN), WNT1-
inducible-signaling pathway protein 2 (WISP-2), chordin-like protein 
1 (CRDL1), R-spondin-1 (RSPO1), transgelin (TAGL), EGF-containing 
fibulin-like extracellular matrix protein 1 (FBLN3), and growth/dif-
ferentiation factor 15 (MIC-1; Table 2; Figure 1). On the other hand, 
epidermal growth factor receptor (ERBB1), a2-antiplasmin, and A 
disintegrin and metalloproteinase with thrombospondin motifs 13 
(ATS13), among others, were negatively associated with age (Table 2; 
Figure 1). Furthermore, we reaffirmed the associations between age 
and a number of proteins that had been previously found to corre-
lated with age by other studies, including MIC-1(GDF15), cystatin C, 
a2-antiplasmin, N-terminal pro-BNP, b2-microglobulin, growth hor-
mone receptor, and IGFBP-2 (Figure 1). Interestingly, the top most 
proteins associated with chronological age were also associated with 
age-related complex traits such as diabetes, myocardial infarction, 

stroke, hypertension, gait velocity, grip strength, and frailty (Figure 
S1).

2.2.1  |  Association analysis stratified by cohort 
status and sex

In	an	analysis	stratified	by	cohort	status,	we	identified	228	proteins	
significantly	associated	with	age	 in	OPEL	and	568	proteins	associ-
ated with age in OPUS. While most of these age-associated proteins 
were	common	to	OPEL	and	OPUS	(Figure	2;	Tables	S1	and	S2),	26	
proteins were reproduced only among OPEL in the stratified analysis 
while two proteins, KLOTHO and sperm protein 17, were completely 
unique to OPEL and only emerged as significant after stratification 
(Figure 2).

In	 a	 sex-stratified	 analysis,	 there	 were	 564	 significant	 age-as-
sociated	proteins	in	males	compared	to	274	proteins	in	females.	In	
both sexes, 221 proteins were common (Figure 3). However, while 
PTN was most strongly associated with age among males (Table S3), 
WISP-2 was the top protein associated with age in females (Table 
S4).

TA B L E  2 Top	20	most	significant	SOMAmer	reagents	associated	with	chronological	age	in	1,025	participants

Target Target full name UniProt Estimate SE p-value

PTN Pleiotrophin P21246 0.0262 0.0012 3.21E−86

WISP-2 WNT1-inducible-signaling pathway 
protein 2

O76076 0.0189 0.0009 4.60E−82

CRDL1 Chordin-like protein 1 Q9BU40 0.0203 0.0010 1.45E−77

TAGL Transgelin Q01995 0.0215 0.0011 9.70E−71

RSPO1 R-spondin-1 Q2MKA7 0.0208 0.0011 1.09E−70

FBLN3 EGF-containing fibulin-like extracellular 
matrix protein 1

Q12805 0.0139 0.0007 2.62E−66

ERBB1 Epidermal growth factor receptor P00533 −0.0116 0.0006 2.87E−65

MIC-1 Growth/differentiation factor 15 Q99988 0.0275 0.0015 5.15E−65

SMOC1 SPARC-related modular calcium-binding 
protein 1

Q9H4F8 0.0103 0.0006 1.23E−57

HE4 WAP four-disulfide core domain protein 
2

Q14508 0.0191 0.0012 9.27E−55

PGD2 synthase Prostaglandin-H2 D-isomerase P41222 0.0161 0.0010 9.42E−53

Cystatin C Cystatin C P01034 0.0135 0.0008 1.65E−52

FSTL3 Follistatin-related protein 3 O95633 0.0133 0.0008 2.49E−50

RNase 1 Ribonuclease pancreatic P07998 0.0297 0.0019 3.66E−50

Macrophage scavenger 
receptor

Macrophage scavenger receptor types 
I and II

P21757 0.0193 0.0013 4.77E−47

URB Coiled-coil domain-containing protein 
80

Q76M96 0.0131 0.0009 1.14E−46

a2-Antiplasmin Alpha-2-antiplasmin P08697 −0.0074 0.0005 1.77E−45

sTREM-1 Triggering receptor expressed on 
myeloid cells 1

Q9NP99 0.0174 0.0012 2.54E−44

N-terminal pro-BNP N-terminal pro-BNP P16860 0.0499 0.0034 3.73E−44

SREC-II Scavenger receptor class F member 2 Q96GP6 0.0090 0.0006 8.37E−44

Model: log(SOMAmer) ~ age + gender + cohort.
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F I G U R E  1 Association	of	proteins	with	chronological	age.	Volcano	plot	showing	associated	proteins	as	red	dots	(p-value < 1.0 × 10−5). 
x-axis denotes the beta estimate coefficients, and y-axis,	the	significance	level	presented	as	−log10	(p-value) from linear model adjusted for 
sex and cohort status. Top most hit proteins have been marked

F I G U R E  2 Association	of	proteins	with	chronological	age	in	OPEL	and	OPUS:	(Panel	a)	Volcano	plot	showing	associated	proteins	as	red	
dots (p-value < 1.0 × 10−5). x-axis denotes the beta estimate coefficients from linear model, and y-axis shows the significance level presented 
as	−log10	(p-value).	Top	most	hit	proteins	have	been	marked.	(Panel	b)	Venn	diagram	showing	overlap	between	associated	proteins	in	entire	
cohort (LonGenity), OPEL and OPUS
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Reactome pathway analysis found that “insulin-like growth factor 
(IGF) transport and regulation” pathway was most strongly associ-
ated with age, followed by pathways involved in extracellular matrix 
remodeling, post-translational modification and clotting (Table S5). 
Analysis using IPA identified pathways related to cell growth, devel-
opment, and survival, and inflammatory response, cancer, and cardio-
vascular	diseases	to	be	the	top	pathways	related	to	aging	(Table	S6).

2.3  |  Co-expression network analysis and 
phenotypic association

Next, we performed an unbiased weighted gene co-expression 
network analysis (WGCNA) in order to investigate the association 
between	protein	networks	and	age.	In	this	analysis,	4,265	proteins	
were clustered into nine modules based on co-expression analysis 
done in our subjects, with each module characterized by module ei-
gengene (ME). The nine modules include black (230 proteins), blue 
(1,026	proteins),	brown	(486	proteins),	green	(420	proteins),	magenta	
(31	proteins),	pink	(98	proteins),	red	(390	proteins),	turquoise	(1,126	
proteins),	and	yellow	(458	proteins)	(Figures	4	and	S2).

Chronological age was most significantly associated with the 
green	module	(Cor	=	0.48,	p = 1.0 × 10−60). Gene significance (GS) 
for age and module membership in green module showed significant 
correlation	 (Cor	=	0.69,	p = 1.2 × 10−60; Figure S3). Top hub gene 
in this module was tumor necrosis factor receptor 1 (TNFR1). The 
pathways enriched in this module included inflammatory response, 
ECM remodeling, IGF transport, and complement cascade (Table S7).

ME green was also associated with aging-related complex 
traits such as stroke (Cor = 0.12, p = 2 × 10−4),	diabetes	(Cor	=	0.14,	
p = 7 × 10−6), hypertension (Cor = 0.17, p	=	8	×	10−8), frailty (Cor = 0.27, 
p = 1 × 10−18),	and	mortality	(Cor	=	0.24,	p = 1 × 10−14). This mod-
ule	was	also	negatively	associated	with	gait	velocity	 (Cor	=	−0.21,	
p = 7 × 10−12)	 and	 overall	 cognition	 (Cor	 =	 −0.29,	 p = 2 × 10−21; 
Figure	4).	Interestingly,	this	module	was	negatively	correlated	with	
OPEL	status	(Cor	=	−0.16,	p	=	6	×	10−7) and positively associated with 
male	gender	(Cor	=	0.18,	p = 3 × 10−9)	(Figure	4).

The ME Magenta module demonstrated associations with 
age-related traits that diverged from those of the ME green. The 
Magenta	module	was	negatively	associated	with	age	(Cor	=	−0.22,	
p = 1 × 10−12) and nominally with less frailty, death, and stroke 
(Figure	 4).	 This	module	was	 also	 positively	 associated	with	 higher	

F I G U R E  3 Association	of	proteins	with	Chronological	age	in	Males	and	Females:	(Top)	Volcano	plot	showing	associated	proteins	as	red	
dots (p-value < 1.0 × 10−5). x-axis denotes the beta estimate coefficients from linear model, and y-axis shows the significance level presented 
as	−log10 (p-value).	Top	most	hit	proteins	have	been	marked.	(Below)	Venn	diagram	showing	overlap	between	associated	proteins	in	the	
entire cohort and included males and females
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cognitive scores and physical measures such as grip strength and 
gait velocity. The pathways that made up the Magenta module in-
cluded	those	related	to	metabolism–energy	production,	lipid	metab-
olism, endocrine, and digestive system development and function 
(Table	S8).	The	top	hub	gene	 in	this	module	was	fructose-1,	6-bis-
phosphatase	1	(F16P1).

2.4  |  Age prediction

An elastic net regression model which aimed to select proteins that 
predicted	 chronological	 age	 identified	 162	 relevant	 proteins	 from	
4,265	proteins	and	61	of	those	proteins	162	proteins	were	associ-
ated with chronological age (Table S9). The correlation between 
chronological age and the age predicted by our model (proteomic 
age) was r = 0.79 (p	<	2.2E−16;	Figure	5).	Alternatively,	we	success-
fully created age predictor from top significant 200, 100, and 50 
proteins	associated	with	chronological	age.	74,	67,	and	35	proteins,	
respectively, were selected in elastic net regression model out of 
200,	 100,	 and	 50	 proteins	 (Tables	 S10–S12).	 The	 correlation	with	
chronological age and the age predicted were comparable to primary 
model with correlation of 0.79 (p	<	2.2E−16),	0.80	(p	<	2.2E−16),	and	
0.78	(p	<	2.2E−16),	respectively	(Figure	S4).

We compared the predictive validity of chronological age, con-
structed proteomic age, and the frailty index for all-cause mortality. 
The	median	 follow-up	 time	was	 4.79	 ±	 2.88,	 and	 51	 deaths	were	
reported in 525 participants in the validation set. The proteomic 
age predicted all-cause mortality better than chronological age (HR 
1.21,	 95%	CI	 1.15–1.27,	 p	 =	 3.10E−14	 vs.	 HR	 1.15,	 95%	CI	 1.10–
1.20, p	=	2.54E−10,	 respectively)	and	cumulative	 frailty	 index	 (HR	
1.08,	95%	CI	1.05–1.11,	p	=	9.62E−07;	Figure	6).	All	our	secondary	

prediction	models	too	showed	similar	result	with	mortality	(Figure	6).	
When all three predictors were included in a single model, proteomic 
age	 predicted	 all-cause	 mortality	 (HR	 1.12,	 95%	 CI	 1.04–1.21,	
p	=	0.004)	better	than	chronological	age	(HR	1.07,	95%	CI	1.00–1.14,	
p	=	0.04)	and	the	frailty	index	(HR	1.03,	95%	CI	0.99–1.06,	p	=	0.08)	
in the unified model.

The extended results for association analysis with chronological 
age	and	module	classification	are	provided	in	Tables	S13–S18.

3  |  DISCUSSION

The present study identified proteomic profiles associated with 
chronological age and proteomic signatures related to aging phe-
notypes	 in	a	unique	population	of	older	adults	 (Ayers	et	al.,	2014;	
Gubbi et al., 2017). Maintenance of homeostasis is important in suc-
cessful aging, whereas major deviations from stable physiology that 
can be captured by changes in the proteome may reflect acceler-
ated	aging	and	disease	prevalence	 (Basisty	et	al.,	2018).	Our	 find-
ings demonstrated that individuals with a family history of longevity 
exhibit a proteome that is suggestive of delayed aging. Additionally, 
by utilizing the WGCNA approach we showed that clusters of pro-
teins, which were associated with age, were also related to complex 
diseases and other age-associated phenotypes. These findings sup-
port prior research, which demonstrated that age is a common risk 
factor for most aging-associated complex diseases, syndromes, and 
traits (Kaeberlein et al., 2015). Moreover, the proteomic age model 
developed in the present study predicted mortality more precisely 
than chronological age and frailty.

Our study was conducted in one of the largest older cohorts 
of older adults who were phenotyped with a proteomic panel 

F I G U R E  4 Module-trait	associations:	Each	row	corresponds	to	a	module	eigengene,	column	to	a	trait.	Each	cell	contains	the	
corresponding correlation and p-value. The table is color-coded by correlation according to the color legend. Green module was associated 
with age and diverse traits. Magenta module was second top hit with age in inverse direction
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consisting	of	4,265	SOMAmer	reagents	(Menni	et	al.,	2014;	Tanaka	
et	al.,	2018).	In	addition	to	confirming	prior	findings	that	associated	
observations of MIC-1, PTN, CRDL1, and N-terminal pro-BNP asso-
ciations	with	age	(Menni	et	al.,	2014;	Tanaka	et	al.,	2018),	we	identi-
fied new proteins and proteomic profiles correlated with aging. The 
study carried out in BLSA and GESTALT cohorts identified 217 of 
1,301	proteins	to	be	associated	with	age	(Tanaka	et	al.,	2018).	The	
present	 study	 found	 754	 of	 4,265	 proteins	 to	 be	 correlated	with	
chronological age. Interestingly, in comparison with other studies, 
we identified many more proteins that were down-regulated with 
age	(<10%	vs.	43%,	respectively;	Tanaka	et	al.,	2018).	Of	note,	the	
small fraction of down-regulated proteins reported by Toshiko et al. 
was much less than reported by other studies that used alternate 
methodologies for proteomic analysis and found equilibrium be-
tween the number of up-regulated and down-regulated proteins 
(Tanaka	et	al.,	2018;	Waldera-Lupa	et	al.,	2014).	Thus,	it	is	likely	that	
the expanded version of the SomaScan assay utilized here was more 

inclusive and reflected the proteomic changes that accompany aging 
in humans more comprehensively.

Pleiotrophin (PTN), also known as heparin binding growth factor, was 
the protein most strongly associated with chronological age in our study. 
PTN is secreted as a cell signaling cytokine, and as its name suggests, it is 
involved in a plethora of functions such as cell growth, migration, and sur-
vival in diverse tissues, including brain and bone. In the central nervous 
system, PTN acts as an important neuromodulator that plays a role in 
neurogenesis, learning, and long-term memory (González-Castillo et al., 
2015). In the bone, PTN is known as OSF-1, and it is involved in bone 
formation and repair, and osteoprogenitor differentiation and prolifera-
tion	(Lamprou	et	al.,	2014).	These	pleiotropic	functions	result	from	PTN’s	
ability to bind to different receptors, including receptor protein tyrosine 
phosphatase ζ (RPTPζ), anaplastic lymphoma kinase (ALK), neuroglycan 
C, N-syndecan receptor, and low-density lipoprotein receptor-related 
protein (LRP; González-Castillo et al., 2015). The functionality and mech-
anism of action of PTN are not completely elucidated.

F I G U R E  5 Correlation	of	chronological	age	and	predicted	age	using	proteomic	data:	Age	prediction	was	carried	out	using	elastic	net	
regression method in 525 participants in the validation set. Correlation of predicted age using proteomic markers and chronological age was 
~0.8

F I G U R E  6 Prediction	of	all-cause	mortality	by	chronological	age,	cumulative	frailty	index,	and	proteomic	age	derived	using	different	
methods	(the	Cox	regression	analysis).	Analysis	was	adjusted	for	gender	and	cohort.	*162,	74,	67,	and	35	proteins	were	selected	using	elastic	
net	regression	for	prediction	from	4,265	(total	proteins),	top	200,	100,	and	50	age-associated	proteins,	respectively
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Another protein associated with age in our analysis, WNT1-
inducible-signaling pathway protein 2 (WISP-2), may have pro-sur-
vival effects by contributing to Wnt3a mediated vascular smooth 
muscle survival (Brown et al., 2019). It may have a particular role 
in protection from atherosclerosis, as WISP-2 was shown to have 
anti-fibrotic effects that protect from cardiac hypertrophy and 
fibrosis	 (Grünberg	 et	 al.,	 2018).	WISP-2	was	 also	 shown	 to	 pro-
mote mesenchymal precursor cell growth and to have pro-survival 
role in IGF-1 stimulated islet cell growth and survival (Chowdhury 
et	al.,	2014).	Its	potential	ability	to	preserve	tissue	growth	and	sur-
vival suggests that WISP-2 may play an important role in longev-
ity. Other top proteins associated with age include chordin-like 1 
(CRDL1),	a	bone	morphogenetic	protein-4	antagonist,	that	also	has	
been identified in other studies employing the SomaScan platform 
(Menni	 et	 al.,	 2014)	 and	 R-spondin-1, a Wnt agonist that ampli-
fies Wnt signaling. Studies have shown that reduced exposure to 
R-spondin-1 partially rescues stem cell differentiation in old mice 
(Cui et al., 2019).

The top proteins identified in relationship with age point toward 
potential novel aging mechanisms and pathways. In addition, this 
study found proteins that had been previously associated with both 
diseases and age, including growth differentiation factor-15 (GDF-
15) and NT-pro-BNP. The relationship between GDF-15 and age 
has been noted in a recent SomaScan study, as has been its asso-
ciation with diabetes, cardiovascular disease, and mortality (Tanaka 
et	al.,	2018).	NT-pro-BNP	is	a	known	risk	factor	for	coronary	artery	
disease and is associated with mortality in patients with heart dis-
ease (Kragelund et al., 2005). Furthermore, our analysis confirmed 
associations of top age-related proteins with complex diseases and 
traits such as diabetes, myocardial infarction, stroke, hypertension, 
gait velocity, grip strength, and frailty. The overlap of age-associated 
proteins with aging-related diseases and syndromes signals to com-
mon mechanisms that potentially can be targeted by drugs such as 
metformin	(Barzilai	et	al.,	2016).

We identified more age-associated proteins in men compared 
to women and in OPUS compared to OPEL. Worldwide, women 
have longer life spans than men; however, the underlying cause of 
this	 difference	 has	 not	 been	 delineated	 (Austad,	 2006).	 Proposed	
theories to explain the life-span difference include the effect of es-
trogen, additional X chromosome advantage, and gender specific 
effect of growth hormone/IGF-1(Ashpole et al., 2017; Christensen 
et al., 2001). Additionally, there are reports of higher incidence of 
DNA damage /mutations in males compared to females (Fischer & 
Riddle, 2017). The noted difference in the number of age-related 
proteins between men and women in this study also suggests that 
compared to males, females may maintain better proteostasis func-
tion. A similar relationship between age and proteins was observed 
in OPUS compared to OPEL. Furthermore, OPEL demonstrates bet-
ter health and physical characteristics compared to OPUS (Ayers 
et	al.,	2014;	Gubbi	et	al.,	2017).	Interestingly,	age-associated	expres-
sion of KLOTHO protein was noted only in OPEL. Our earlier study 
had shown differential distribution of KLOTHO genotypes with age 
(Bergman et al., 2007).

Age is a risk factor for a wide range of complex diseases and 
traits (Kaeberlein et al., 2015). Our analysis suggested a shared eti-
ology between multiple phenotypes, with age acting as the com-
mon risk factor. For example, the Green module that was most 
strongly associated with age was also associated with age-related 
diseases and phenotypes, such as frailty, gait velocity, and cogni-
tion. Interestingly, the Green module was negatively associated with 
OPEL status, who have been shown to age more successfully than 
OPUS	(Ayers	et	al.,	2014).	This	module	was	enriched	with	inflamma-
tory response proteins, as well as those associated with cell death 
and survival. Inflammation plays an important role in aging and in 
complex disease pathogenesis (Furman et al., 2019). The top hub 
protein in the green module, tumor necrosis factor receptor super-
family member 1A (TNF sR-I), is a receptor for TNF-α and is involved 
in inflammation, apoptosis, and cell survival (Parameswaran & Patial, 
2010). On the other hand, the Magenta module was negatively asso-
ciated with age, as well as with most age-related diseases and phe-
notypes, with the exception of serum glucose and diabetes. Previous 
studies have suggested possibility of glucose intolerance to be pro-
tective for aging (Barzilai & Ferrucci, 2012). The Magenta module 
is enriched with proteins that are part of the energy metabolism 
pathways, which have been shown to play an important role in lon-
gevity (Barzilai et al., 2012). The top hub protein in this module was 
Fructose	1,	6	bisphosphatase	1	(FBPase1),	a	rate-limiting	enzyme	in	
gluconeogenesis. Gluconeogenesis has been shown to be enhanced 
with aging and attenuation of gluconeogenesis is known to extend 
the cellular life span (Hachinohe et al., 2013). These observations 
again highlight an important concept that targeting aging, the com-
mon cause of multiple diseases, rather than each disease individually 
may be a preferred approach for extending human health span.

Pathway analysis involving age-associated proteins showed reg-
ulation of insulin-like growth factor (IGF) transport and uptake by insu-
lin-like growth factor-binding proteins (IGFBPs)	(R-HSA-381426)	to	be	
the top pathway related to age. IGF-1 is an endocrine and autocrine/
paracrine growth factor that has diverse effects on development, 
cell growth, differentiation, and tissue repair (Higashi et al., 2012). 
IGF-1 signaling pathway has been implicated in longevity and in 
age-related diseases (Rincon et al., 2005). Other pathways signifi-
cantly associated with age, including degradation of the extracellular 
matrix	 (R-HSA-1474228),	 post-translational protein phosphorylation 
(R-HSA-8957275),	 platelet degranulation	 (R-HSA-114608),	 and	 for-
mation of fibrin clot	 (Clotting	 Cascade;	 R-HSA-140877)	 may	 also	
have important implications for functional aging, as they have been 
shown to be involved in processes such as maintenance of skeletal 
muscle integrity, Alzheimer's disease, platelet function, and extracel-
lular matrix degradation (Jacob, 2003; Martin et al., 2011).

The strengths of our study include a well-characterized longi-
tudinal homogenous cohort and the largest panel of proteins tar-
geted using the SomaScan assay reported to date. However, there 
are a number of limitations in respect to the evolving SomaScan 
technology. This technology captures proteins based on the 3D 
protein structure using aptamers that bind to specific binding sites 
on the proteins. Therefore, there is a possibility that a protein that 



    |  9 of 12SATHYAN eT Al.

has a change in this binding site may be missed or that the aptamer 
may cross-react with another protein that has a similar binding site. 
Additionally, this technology does not measure the absolute concen-
tration of proteins, but expresses the concentration as an amount of 
SOMAmer reagent captured. This precludes direct correlations with 
results	derived	by	other	methods.	Moreover,	we	found	that	~17%	of	
proteins	associated	with	age	in	our	study	that	used	4,265	SOMAmer	
reagents, a similar percentage compared to another study that in-
cluded	1,301	SOMAmers	(Tanaka	et	al.,	2018).	If	indeed	17%	of	the	
entire human proteome is associated with aging, then we may be 
missing an important component of the aging proteome, with the re-
maining proteins yet to be discovered in a pool of more than 20,000 
proteins and their isoforms. In addition, although the present study 
found a unique repertoire of proteins to be associated with aging 
and have shown predicted age to be better marker than chronologi-
cal age for mortality, the results are yet to be replicated in indepen-
dent cohorts.

In conclusion, we identified a number of proteins and pathways 
significantly associated with chronological age in a population of 
older adult and showed that proteomic profiles can be better pre-
dictors of biological age—mortality and disease—than chronological 
age. These discoveries pave the way for better risk stratification for 
older adults and the identification of novel pathways that modulate 
aging, which can be targeted with the goal of delaying aging and 
age-related diseases.

4  |  METHODS

4.1  |  LonGenity cohort

The LonGenity study is an ongoing longitudinal study established in 
2007	that	recruits	Ashkenazi	Jewish	participants	age	65	and	older.	
The cohort consist of adults who were either offspring of parents 
with exceptional longevity (OPEL, defined by having at least one 
parent who lived to age 95 or older) or offspring of parents with 
usual survival (OPUS, defined by having neither parent survive to 
age 95). The primary goal of this longitudinal study was to identify 
genotypes that confer longevity and successful aging. Participants 
were recruited systematically using public records such as voter 
registration lists or through contacts at community organizations, 
synagogues, and advertisements in Jewish newspapers in the New 
York City area. Potential participants were contacted by telephone 
to assess interest and eligibility. Exclusion criteria include the follow-
ing:	a	score	>2	on	the	AD8	(Galvin	et	al.,	2005)	and	>8	on	the	Blessed	
Information–Memory–Concentration	 task	 (Blessed	 et	 al.,	 1968)	 at	
the initial screening interview, having a sibling in the study, and se-
vere visual impairment. Participants who were eligible were invited 
to our research center for further evaluation. Participants received 
detailed medical history evaluation, functional evaluation, and cog-
nitive testing at baseline and at annual follow-up visits. As part of 
their annual visit, participants completed neuropsychological tests 
evaluating memory, language, visuospatial functioning, attention, 

and executive function under the supervision of the study neuropsy-
chologist. An overall cognition composite score was calculated by 
transforming participant scores into a standard score adjusted for 
education, age and gender and summing the standard scores.

All participants signed written informed consents for study 
assessment and genetic testing prior to enrollment. The Albert 
Einstein College of Medicine Institutional Review Board approved 
the study protocol.

4.2  |  Proteomic assessment

Proteomic assessment was carried out in LonGenity cohort using 
SomaScan assay. Plasma was isolated from EDTA-treated blood 
acquired by venipuncture from participants at baseline wave in a 
fasting	state.	Plasma	samples	were	stored	at	−80°C,	and	150	µl	of	
aliquots of plasma was sent to SomaLogic on dry ice. This study used 
5	k	SomaScan	Assay	V4	which	had	5284	SOMAmer	reagents,	with	
5209 SOMAmer reagents targeting human proteins and remain-
ing markers consisting of 22 non-human proteins, 12 hybridization 
control elution, 10 non-biotin, four non-cleavable, and seven dep-
recated proteins, and 20 spuriomers. SomaScan data standardiza-
tion was carried out as previously described (Candia et al., 2017) 
at SomaLogic, Inc. Three main steps included hybridization control 
normalization (HCN), median signal normalization (MSN), and cali-
bration normalization (CN). HCN removed individual sample vari-
ance on the basis of signaling differences between microarrays or 
Agilent scanners while MSN removed inter-sample variation within 
a plate for calibrator and buffer samples arising from pipetting vari-
ation or other technical issues. CN removed variance across assay 
runs. Finally, median normalization to reference was performed on 
the quality control (QC) and individual samples to control for inter-
sample technical and biological variability in total signal within and 
between	runs.	After	implementing	these	QC	checks,	960	sequences	
that failed QC were removed. After exclusion of non-human pro-
teins, deprecated markers, non-cleavable, non-biotin, and spuri-
omers,	4265	SOMAmer	reagents	were	available	for	the	proteomic	
analysis.

4.3  |  Statistical analysis

Baseline characteristics of participants were compared using de-
scriptive statistics. Relative fluorescence unit (RFU) values observed 
after data normalization procedure for each SOMAmer reagent 
were natural log-transformed. Outliers were removed using me-
dian absolute deviation method. The preliminary objective of this 
study was to identify the association of SOMAmer reagents with 
chronological age using linear regression analysis. Analyses were 
adjusted for gender and cohort status (OPUS or OPEL). Beta esti-
mate is defined as increase or decrease in specific log (SOMAmer 
reagent) concentrations with each 1 unit (1 year) of increase in age. 
Initial normalization procedures carried out by SomaLogic adjusted 
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for changes associated with the experimental setup like inter-sample 
differences within a plate and variance across assay runs, individual 
sample variance on the basis of signaling differences between mi-
croarrays or Agilent scanners. The Bonferroni corrected p-value less 
than 1.0 × 10−5	 (0.05/4,265)	 were	 considered	 significant.	 Gender	
and cohort stratified analyses were performed to understand the 
possible differential effect of gender and cohort status on age regu-
lated proteomic profile.

4.4  |  Pathway analysis

Pathway or enrichment analyses were carried out using proteins 
associated with chronological age to discover biological pathways 
related to aging. Network analysis was carried out using Qiagen's 
Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.
qiagen.com/ingen uity; Krämer et al., 2013). For this analysis, we in-
cluded	754	proteins	that	were	significantly	associated	with	chrono-
logical age in our analysis. IPA network analysis output consisted of a 
list of biological functions and set of proteins, as well as a score (p-
score	=	−log10	(p-value)) according to the fit of the protein set. We 
also investigated top diseases and bio-functions associated with aging. 
Top networks were checked for concordance with pathway analysis 
using Reactome (www.react ome.org/; Fabregat et al., 2017). The da-
tabase was queried with the UniProt IDs to check whether particular 
pathways were over-represented.

4.5  |  Weighted gene co-expression 
network analysis

The	WGCNA	 R	 package	 (Langfelder	 &	 Horvath,	 2008)	 was	 used	
to build unsigned protein expression networks from normalized 
and	 transformed	 RFUs	 of	 4265	 SOMAmers	 concentrations.	 The	
WGCNA methodology has been well described in previous publi-
cations and the tutorial accompanying this R package (Langfelder 
&	Horvath,	2008).	In	our	dataset,	the	smallest	threshold	satisfying	
scale free topology fit of R2 = 0.90 was found at soft threshold power 
of 2. Topological overlap matrix (TOM) is used to express network 
interconnectedness. Hierarchical clustering of proteins were based 
on topology overlap dissimilarity (1-TOM), and modules were de-
fined from branches of cluster trees using dynamic tree cut method 
(Langfelder et al., 2007). Modules were assigned with different color 
names. Minimum module size was set at default of 30 proteins.

First principle component of a module is defined as Module 
eigengene E. This is used as representative measure of module ex-
pression profile. Further association of the module to the pheno-
type of interest was carried out by correlating module eigengene 
with the outcome phenotype. We analyzed the association of the 
module with the primary phenotype of interest (chronological age) 
and other age-associated phenotypes including frailty index, death, 
stroke, diabetes, hypertension, myocardial infarction, lipid levels, 
physical measures (grip strength, and gait velocity), and cognitive 

phenotypes (language, attention, executive, memory, and visuo-
motor). We have selected all prominent age-associated phenotypes 
whose data were available in our cohort.

Each module is characterized by a highly connected gene called 
a hub gene. A hub gene was defined based on highest module mem-
bership (MM). MM is measured as correlation of individual protein 
expression profile with the module eigengene of a given module. 
Hub genes were analyzed for associated module with age.

4.6  |  Proteomic prediction of chronological age

We constructed a proteomic chronological age predictor using pe-
nalized regression model with the glmnet R package (Friedman et al., 
2009). Participants in the training set were selected using stratified 
random sampling method. Participants were selected from 5-year 
age	 bins	 (65–70,	 70–75,	 75–80,	 80–85,	 85–90	 and	 90–95).	 The	
training set included 500 participants, and the remaining 525 par-
ticipants of the cohort were used in a validation set. As a first step, 
chronological	age	was	regressed	on	4,265	log-transformed	protein	
abundances. Using cv-glmnet function, optimal lambda value to 
minimize cross-validation prediction error rate was selected on the 
basis of 10-fold cross-validation using the training set. Alpha value 
was set at 0.5 for performing elastic net regression. As a secondary 
analysis, we constructed prediction model including only topmost 
age-associated proteins (200, 100, and 50) in the regression model. 
The intention of this model was to figure out possibility of modeling 
a clock consisting of only age-associated proteins. A comparison was 
carried	out	with	the	primary	model	which	included	4,265	proteins.

4.7  |  Survival analysis

The Cox proportional hazard models were used to compute hazard 
ratios	(HRs)	with	95%	confidence	intervals	(CIs)	to	predict	incident	
all-cause mortality based on chronological age, proteomic age (pre-
dicted), and frailty index. We constructed cumulative frailty index 
in our cohort as discussed in the supplementary methods. All mod-
els were adjusted for gender and cohort status. Time scale was fol-
low-up time in years to date of death or final contact. Proportional 
hazard assumptions of all models were tested graphically and ana-
lytically and were adequately met. All survival analyses were carried 
out using coxph() function in R.

ACKNOWLEDG MENTS
This work was supported by grants from the National Institutes 
of	 Health	 (NIH)	 [P01AG021654	 (NB),	 R01AG046949	 (NB),	
R01AG057909	 (NB),	 R01AG044829	 (JV	 and	 NB),	 R01AG061155	
(SM),	 and	 K23AG051148	 (SM)],	 the	 Nathan	 Shock	 Center	 of	
Excellence	for	the	Biology	of	Aging	P30AG038072	(NB),	American	
Federation for Aging Research (SM), and Glenn Center for the 
Biology of Human Aging Paul Glenn Foundation Grant (NB). The 
sponsors had no role in the design and conduct of the study; 

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
http://www.reactome.org/


    |  11 of 12SATHYAN eT Al.

collection, management, analysis, and interpretation of the data; and 
preparation, review, or approval of the manuscript.

CONFLIC T OF INTERE S T
None declared.

AUTHOR CONTRIBUTIONS
Nir	Barzilai,	Joe	Verghese,	Sofiya	Milman,	and	Sanish	Sathyan	con-
tributed to the design of the study and interpretation of the data. 
Sanish	Sathyan,	Erica	F.	Weiss,	Sofiya	Milman,	Joe	Verghese,	and	Nir	
Barzilai contributed to the acquisition of data and writing of the man-
uscript. Sanish Sathyan, Emmeline Ayers, Tina Gao, and Nir Barzilai 
contributed to the analysis of the data. Sanish Sathyan, Emmeline 
Ayers,	Tina	Gao,	Erica	F.	Weiss,	Sofiya	Milman,	Joe	Verghese,	and	
Nir Barzilai contributed to the critical revisions of the manuscript. All 
the authors approved the final version of the manuscript and agreed 
to be accountable for all aspects of the work.

DATA AVAIL ABILIT Y S TATEMENT
Proteomic data used in this study are available upon request. Please 
contact the corresponding author for further information.

ORCID
Sanish Sathyan  https://orcid.org/0000-0002-8127-1835 
Nir Barzilai  https://orcid.org/0000-0002-7787-6268 

R E FE R E N C E S
Andersen, S. L., Sebastiani, P., Dworkis, D. A., Feldman, L., & Perls, T. 

T. (2012). Health span approximates life span among many super-
centenarians: Compression of morbidity at the approximate limit of 
life span. Journals of Gerontology Series A: Biomedical Sciences and 
Medical Sciences, 67(4),	395–405.	https://doi.org/10.1093/geron	a/
glr223

Anstey,	K.	 J.,	Lord,	S.	R.,	&	Smith,	G.	A.	 (1996).	Measuring	human	func-
tional age: A review of empirical findings. Experimental Aging 
Research, 22(3),	 245–266.	 https://doi.org/10.1080/03610	73960	
8254010

Ashpole, N. M., Logan, S., Yabluchanskiy, A., Mitschelen, M. C., Yan, 
H.,	 Farley,	 J.	 A.,	 Hodges,	 E.	 L.,	 Ungvari,	 Z.,	 Csiszar,	 A.,	 Chen,	 S.,	
Georgescu, C., Hubbard, G. B., Ikeno, Y., & Sonntag, W. E. (2017). 
IGF-1 has sexually dimorphic, pleiotropic, and time-dependent ef-
fects on healthspan, pathology, and lifespan. Geroscience, 39(2), 
129–145.

Austad,	S.	N.	(2006).	Why	women	live	longer	than	men:	Sex	differences	
in longevity. Gender Medicine, 3(2),	79–92.

Ayers,	E.,	Barzilai,	N.,	Crandall,	 J.	P.,	Milman,	S.,	&	Verghese,	 J.	 (2014).	
Association of exceptional parental longevity and physical function 
in aging. Age, 36(4),	9677.

Barzilai,	N.,	Crandall,	J.	P.,	Kritchevsky,	S.	B.,	&	Espeland,	M.	A.	(2016).	
Metformin as a tool to target aging. Cell Metabolism, 23(6),	
1060–1065.

Barzilai, N., & Ferrucci, L. (2012). Insulin resistance and aging: a cause or 
a protective response? Journals of Gerontology Series A: Biomedical 
Sciences and Medical Sciences, 67(12),	1329–1331.

Barzilai, N., Huffman, D. M., Muzumdar, R. H., & Bartke, A. (2012). 
The critical role of metabolic pathways in aging. Diabetes, 61(6),	
1315–1322.

Basisty,	N.,	Meyer,	J.	G.,	&	Schilling,	B.	(2018).	Protein	turnover	in	aging	
and longevity. Proteomics, 18(5–6),	1700108.

Bergman, A., Atzmon, G., Ye, K., MacCarthy, T., & Barzilai, N. (2007). 
Buffering mechanisms in aging: A systems approach toward uncov-
ering the genetic component of aging. PLoS Computational Biology, 
3(8),	e170.

Blessed,	G.,	Tomlinson,	B.	E.,	&	Roth,	M.	(1968).	The	association	between	
quantitative measures of dementia and of senile change in the cere-
bral grey matter of elderly subjects. The British Journal of Psychiatry, 
114(512),	797–811.

Broer, L., & van Duijn, C. M. (2015). GWAS and meta-analysis in aging/
longevity. In G. Atzmon (Ed.) Longevity genes	(pp.	107–125).	Springer.

Brown, B. A., Connolly, G. M., Mill, C. E., Williams, H., Angelini, G. D., 
Johnson, J. L., & George, S. J. (2019). Aging differentially modulates 
the Wnt pro-survival signalling pathways in vascular smooth mus-
cle cells. Aging Cell, 18(1),	e12844.

Candia, J., Cheung, F., Kotliarov, Y., Fantoni, G., Sellers, B., Griesman, 
T.,	Huang,	 J.,	 Stuccio,	 S.,	Zingone,	A.,	Ryan,	B.	M.,	Tsang,	 J.	 S.,	&	
Biancotto, A. (2017). Assessment of variability in the SOMAscan 
assay. Scientific Reports, 7(1),	14248.

Chowdhury, S., Wang, X., Srikant, C. B., Li, Q., Fu, M., Gong, Y. J., 
Ning,	G.,	&	Liu,	J.-L.	(2014).	IGF-I	stimulates	CCN5/WISP2	gene	
expression in pancreatic β-cells, which promotes cell prolifera-
tion and survival against streptozotocin. Endocrinology, 155(5), 
1629–1642.

Christensen,	K.,	Orstavik,	K.,	&	Vaupel,	J.	W.	(2001).	The	X	chromosome	
and the female survival advantage: An example of the intersection 
between genetics, epidemiology and demography. Annals-New York 
Academy of Sciences, 954,	175–183.

Cui,	H.,	Tang,	D.,	Garside,	G.	B.,	Zeng,	T.,	Wang,	Y.,	Tao,	Z.,	Zhang,	L.,	&	
Tao, S. I. (2019). Wnt signaling mediates the aging-induced differ-
entiation impairment of intestinal stem cells. Stem Cell Reviews and 
Reports, 15(3),	448–455.

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., 
Garapati, P., & May, B. (2017). The reactome pathway knowledge-
base. Nucleic Acids Research, 46(D1),	D649–D655.

Fischer, K. E., & Riddle, N. C. (2017). Sex differences in aging: genomic 
instability. The Journals of Gerontology: Series A, 73(2),	166–174.

Friedman, J., Hastie, T., & Tibshirani, R. (2009). glmnet: Lasso and elas-
tic-net	 regularized	 generalized	 linear	models.	 R	 Package	Version,	
1(4).

Furman,	D.,	Campisi,	J.,	Verdin,	E.,	Carrera-Bastos,	P.,	Targ,	S.,	Franceschi,	
C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., 
Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. 
A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). 
Chronic inflammation in the etiology of disease across the life span. 
Nature Medicine, 25(12),	1822–1832.

Galvin, J. E., Roe, C. M., Powlishta, K. K., Coats, M. A., Muich, S. J., 
Grant, E., Miller, J. P., Storandt, M., & Morris, J. C. (2005). The 
AD8:	A	 brief	 informant	 interview	 to	 detect	 dementia.	Neurology, 
65(4),	559–564.

Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E. N., Carter, 
J., Dalby, A. B., Eaton, B. E., Fitzwater, T., Flather, D., Forbes, A., 
Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, 
S.,	 Halladay,	 D.,	 …	 Zichi,	 D.	 (2010).	 Aptamer-based	 multiplexed	
proteomic technology for biomarker discovery. PLoS One, 5(12), 
e15004.

González-Castillo, C., Ortuño-Sahagún, D., Guzmán-Brambila, C., Pallàs, 
M., & Rojas-Mayorquín, A. E. (2015). Pleiotrophin as a central ner-
vous system neuromodulator, evidences from the hippocampus. 
Frontiers in Cellular Neuroscience, 8,	443.

Grünberg, J. R., Elvin, J., Paul, A., Hedjazifar, S., Hammarstedt, A., & 
Smith,	U.	(2018).	CCN5/WISP2	and	metabolic	diseases.	Journal of 
Cell Communication and Signaling, 12(1),	309–318.

Gubbi,	 S.,	 Schwartz,	 E.,	 Crandall,	 J.,	 Verghese,	 J.,	Holtzer,	 R.,	 Atzmon,	
G., Braunstein, R., Barzilai, N., & Milman, S. (2017). Effect of ex-
ceptional parental longevity and lifestyle factors on prevalence 

https://orcid.org/0000-0002-8127-1835
https://orcid.org/0000-0002-8127-1835
https://orcid.org/0000-0002-7787-6268
https://orcid.org/0000-0002-7787-6268
https://doi.org/10.1093/gerona/glr223
https://doi.org/10.1093/gerona/glr223
https://doi.org/10.1080/03610739608254010
https://doi.org/10.1080/03610739608254010


12 of 12  |     SATHYAN eT Al.

of cardiovascular disease in offspring. The American Journal of 
Cardiology, 120(12),	2170–2175.

Hachinohe, M., Yamane, M., Akazawa, D., Ohsawa, K., Ohno, M., 
Terashita, Y., & Masumoto, H. (2013). A reduction in age-enhanced 
gluconeogenesis extends lifespan. PLoS One, 8(1),	e54011.

Higashi, Y., Sukhanov, S., Anwar, A., Shai, S.-Y., & Delafontaine, P. (2012). 
Aging, atherosclerosis, and IGF-1. Journals of Gerontology Series A: 
Biomedical Sciences and Medical Sciences, 67(6),	626–639.

Ismail, K., Nussbaum, L., Sebastiani, P., Andersen, S., Perls, T., Barzilai, 
N.,	 &	 Milman,	 S.	 (2016).	 Compression	 of	 morbidity	 is	 observed	
across cohorts with exceptional longevity. Journal of the American 
Geriatrics Society, 64(8),	1583–1591.

Jacob, M. P. (2003). Extracellular matrix remodeling and matrix metal-
loproteinases in the vascular wall during aging and in pathological 
conditions. Biomedicine & Pharmacotherapy, 57(5–6),	195–202.

Johnson, F. B., Sinclair, D. A., & Guarente, L. (1999). Molecular biology of 
aging. Cell, 96(2),	291–302.

Kaeberlein, M., Rabinovitch, P. S., & Martin, G. M. (2015). Healthy aging: 
the ultimate preventative medicine. Science, 350(6265),	1191–1193.

Kragelund, C., Grønning, B., Køber, L., Hildebrandt, P., & Steffensen, R. 
(2005).	 N-terminal	 pro–B-type	 natriuretic	 peptide	 and	 long-term	
mortality in stable coronary heart disease. New England Journal of 
Medicine, 352(7),	666–675.

Krämer, A., Green, J., Pollard, J. Jr., & Tugendreich, S. (2013). Causal anal-
ysis approaches in ingenuity pathway analysis. Bioinformatics, 30(4),	
523–530.

Lamprou,	 M.,	 Kaspiris,	 A.,	 Panagiotopoulos,	 E.,	 Giannoudis,	 P.	 V.,	 &	
Papadimitriou,	 E.	 (2014).	 The	 role	 of	 pleiotrophin	 in	 bone	 repair.	
Injury, 45(12),	1816–1823.

Langfelder,	P.,	&	Horvath,	S.	(2008).	WGCNA:	An	R	package	for	weighted	
correlation network analysis. BMC Bioinformatics, 9(1), 559.

Langfelder,	P.,	 Zhang,	B.,	&	Horvath,	 S.	 (2007).	Defining	 clusters	 from	
a hierarchical cluster tree: The Dynamic Tree Cut package for R. 
Bioinformatics, 24(5),	719–720.

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. 
(2013). The hallmarks of aging. Cell, 153(6),	1194–1217.

Martin, L., Latypova, X., & Terro, F. (2011). Post-translational mod-
ifications of tau protein: Implications for Alzheimer's disease. 
Neurochemistry International, 58(4),	458–471.

Menni,	 C.,	 Kiddle,	 S.	 J.,	 Mangino,	M.,	 Viñuela,	 A.,	 Psatha,	M.,	 Steves,	
C., Sattlecker, M., Buil, A., Newhouse, S., Nelson, S., Williams, S., 
Voyle,	 N.,	 Soininen,	 H.,	 Kloszewska,	 I.,	 Mecocci,	 P.,	 Tsolaki,	 M.,	
Vellas,	 B.,	 Lovestone,	 S.,	 Spector,	 T.	 D.,	 …	 Valdes,	 A.	 M.	 (2014).	
Circulating proteomic signatures of chronological age. Journals 
of Gerontology Series A: Biomedical Sciences and Medical Sciences, 
70(7),	809–816.

Milman,	S.,	&	Barzilai,	N.	(2016).	Dissecting	the	mechanisms	underlying	
unusually successful human health span and life span. Cold Spring 
Harbor Perspectives in Medicine, 6(1),	a025098.

Pal,	S.,	&	Tyler,	J.	K.	(2016).	Epigenetics	and	aging.	Science Advances, 2(7), 
e1600584.

Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-α signal-
ing in macrophages. Critical Reviews™ in Eukaryotic Gene Expression, 
20(2),	87–103.

Partridge, L. (2010). The new biology of ageing. Philosophical Transactions 
of the Royal Society B: Biological Sciences, 365(1537),	147–154.

Rajpathak, S. N., Liu, Y., Ben-David, O., Reddy, S., Atzmon, G., Crandall, 
J., & Barzilai, N. (2011). Lifestyle factors of people with excep-
tional longevity. Journal of the American Geriatrics Society, 59(8),	
1509–1512.

Rincon, M., Rudin, E., & Barzilai, N. (2005). The insulin/IGF-1 signaling 
in mammals and its relevance to human longevity. Experimental 
Gerontology, 40(11),	873–877.

Tanaka,	T.,	Biancotto,	A.,	Moaddel,	R.,	Moore,	A.	Z.,	Gonzalez-Freire,	M.,	
Aon,	M.	A.,	Candia,	 J.,	 Zhang,	P.,	Cheung,	 F.,	 Fantoni,	G.,	 Semba,	
R.	D.,	&	Ferrucci,	L.	 (2018).	Plasma	proteomic	signature	of	age	 in	
healthy humans. Aging Cell, 17(5), e12799.

Waldera-Lupa, D. M., Kalfalah, F., Florea, A.-M., Sass, S., Kruse, F., Rieder, 
V.,	 Tigges,	 J.,	 Fritsche,	 E.,	 Krutmann,	 J.,	 Busch,	 H.,	 Boerries,	 M.,	
Meyer, H. E., Boege, F., Theis, F., Reifenberger, G., & Stuhler, K. 
(2014).	Proteome-wide	analysis	 reveals	an	age-associated	cellular	
phenotype of in situ aged human fibroblasts. Aging, 6(10),	856.

Zierer,	J.,	Menni,	C.,	Kastenmüller,	G.,	&	Spector,	T.	D.	(2015).	Integration	
of	‘omics’	data	in	aging	research:	From	biomarkers	to	systems	biol-
ogy. Aging Cell, 14(6),	933–944.

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Sathyan S, Ayers E, Gao T, et al. Plasma 
proteomic profile of age, health span, and all-cause mortality in 
older adults. Aging Cell. 2020;19:e13250. https://doi.
org/10.1111/acel.13250

https://doi.org/10.1111/acel.13250
https://doi.org/10.1111/acel.13250

