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Emerging evidence revealed that the blood microbiota plays a role in

several non-communicable diseases, including cardiovascular disease.

However, the role of circulating microbes in atherosclerosis remains

understudied. To test this hypothesis, we performed this study to

investigate the microbial profile in the blood of Chines atherosclerosis

volunteers. A total of seventy Acute Coronary Syndrome patients, seventy

Chronic Coronary Syndrome patients, and seventy healthy individuals

were examined using high-throughput Illumina Novaseq targeting the

V3-V4 regions of the 16S rRNA gene. The relationship between

atherosclerosis and blood microbiome, clinical variables, and their

functional pathways were also investigated. Our study observed

significantly higher alpha diversity indices (Chao1, p = 0.001, and

Shannon, p = 0.004) in the acute coronary syndrome group compared

with chronic coronary syndrome and healthy group, although a

significantly lower alpha diversity was observed in the chronic coronary

syndrome compared to acute coronary syndrome and healthy group. Beta

diversity based on principal coordinate analysis demonstrated a major

separation among the three groups. In addition, using linear discriminant

analysis, a significant distinct taxon such as Actinobacteria _ phylum, and

Staphylococcus_ genus in the healthy group; Firmicutes_ phylum, and

Lactobacillus_ genus in the chronic coronary syndrome group, and

Proteobacteria and Acidobacteriota _ phyla in acute coronary syndrome

group were observed among three groups. Clusters of Orthologous Genes

grouped and Kyoto Encyclopedia of Genes and Genomes pathways

suggested a significant variation among all groups (p < 0.05). The blood

microbiota analysis provides potential biomarkers for the detection of

coronary syndromes in this population.
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Introduction

Coronary artery disease is a major cause of morbidity and

mortality worldwide. Chronic coronary syndrome is defined by

the different evolutionary stages of Coronary artery disease (Lyu

et al., 2021), but does not include cases with clinical

manifestations dominated by the acute coronary syndrome. It

emphasizes that the stability of non-acute coronary heart disease

is only relative, and there is a risk of progression to Acute

coronary syndrome at any time, which leads to cardiovascular

events (Steg et al., 2007). Acute coronary syndrome is also a

common subcategory of cardiovascular disease and has led to

increased mortality globally (Zheng et al., 2021). Acute coronary

syndrome is a set of signs and symptoms due to acutely

decreased blood flow in the coronary arteries, and the exact

mechanism underlying its pathogenesis remains to be fully

elucidated (Dai et al., 2020). According to 2016 statistics from

the “American College of Cardiovascular Diseases”, the

incidence of chronic coronary syndrome is about twice that of

myocardial infarction and is expected to affect 18% of adults by

2030 (Mozaffarian et al., 2016). Coronary artery diseases are

associated with increased bacterial translocation in the

gastrointestinal as well as bloodstream infection. The intestinal

microbiota and its metabolites have been implicated in the

development of atherosclerosis in several investigations (Amar

et al., 2019). However, the role of circulating microorganisms in

atherosclerosis remains unstudied. From this perspective,

developing new atherosclerosis biomarkers is crucial to

developing early targets for disease detection and treatment.

Several studies have documented an association between

chronic infections and the risk of cardiovascular disease

(Armingohar et al., 2014; Lund Håheim, 2014; Lawrence et al.,

2022). The circulation is a closed system, and the blood in healthy

individuals was earlier believed to represent a sterile environment,

which is the basis for safe blood transfusions (Damgaard et al.,

2015). However, a previous study reported the presence of

bacterial DNA in healthy human blood (Nikkari et al., 2001),

and another study defined a healthy human blood microbiome in

2008 (Moriyama et al., 2008). Furthermore, the blood

microbiome’s potential interactions with other human

microbiomes were discussed in a review of blood microbiome

studies (Castillo et al., 2019). All the biological processes by which

bacteria may influence circulation are not clarified, but the main

processes are atherosclerosis and thrombosis. Atherosclerosis is

well known as a low-grade, chronic inflammation of the arterial
02
wall, and is an important factor in the development of several

diagnoses of cardiovascular disease. For many years bacteria have

been suspected to be part of the pathogenesis of this group of

diseases, as whole bacteria, fragments, and their DNA have been

identified in blood from cardiovascular disease patients (Koren

et al., 2011; Amar et al., 2013; Armingohar et al., 2014; Dinakaran

et al., 2014; Lund Håheim, 2014). Several other key processes may

be responsible for atherosclerosis; among them accumulation of

monocyte/macrophage lineage cells within the lipid-rich

subendothelial space of the affected artery where bacterial

lipopolysaccharide (LPS) also participates in the formation of

macrophage-derived foam cells (Tabas and Lichtman, 2017; An

et al., 2018). The accumulation of lipid bodies in the foam cells is

affected by both the nutrition and gut microbiota. Bacteria are also

known to form thrombi and emboli in interaction with platelets,

and this is also seen as a complication of advanced lesions of

atherosclerosis (Armingohar et al., 2014; Lund Håheim, 2014;

Lawrence et al., 2022).

Gut bacteria may act as key “metabolic filters” of the diet.

They can convert common nutrients to metabolites, such as

specific microbia l -assoc ia ted metabol i tes , such as

trimethylamine-N-oxide and short-chain fatty acids. These

components including secondary bile acid have also been

shown to affect the progression of cardiovascular disease.

Furthermore, gastrointestinal infection or autoimmune

diseases such as gluten intolerance may contribute to the

leakage of bacteria into the circulation and promote

atherosclerosis (Kozarov, 2012; Rodrigues et al., 2012).

Bacterial DNA identified in blood or serum may represent live

bacteria, cultivable or uncultivable bacterial species as well as

dormant (non-dividing) bacteria (Potgieter et al., 2015). Live

bacteria and their membrane vesicles may enter the bloodstream

via leaking epithelial junctions or mucosal disruptions

(Delzenne et al., 2011). The lung microbiome has also been

defined and shown how it may change during disease (Dickson

and Huffnagle, 2015). The constitution of the respiratory

microbiome is determined by three factors: microbial

immigration, elimination, and the relative reproduction rates

of its members. Those factors may also influence the blood

microbiome during cardiovascular disease. In patients with

untreated advanced periodontal disease, chewing and tooth

brushing may also result in chronic bacteremia by the

migration of bacteria from the subgingival biofilm through the

junctional epithelium and into blood vessels in the connective

tissue (Könönen et al., 2019).
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Based on previous studies, a possible alteration in the

microbiota of the blood of patients with Acute coronary

syndrome and Chronic coronary syndrome has been

hypothesized. By sequencing 16S rRNA gene sequences, this

study was able to characterize and compare the blood bacterial

profiles of patients with acute coronary syndrome and chronic

coronary syndrome with those of healthy controls. Analyzing

the blood bacterial community was designed to determine

whether a particular microbiota is associated with a particular

disease. Additionally, we examined the relationship between the

microbiota in the blood of acute coronary syndrome and chronic

coronary syndrome patients and their clinical characteristics.

Blood microbiota changes could provide insight into the origin,

causes, and implications of atherosclerosis.
Materials and methods

Ethics statement

This study was approved by the Research Ethics Committee

of Northwest Minzu University and the Gansu Provincial

People’s Hospital (Approval No: XBMZ-YX-2021008), both in

Lanzhou, China. All participants were informed of the study’s

purpose and provided informed consent following the

Declaration of Helsinki.
Study subjects

In the current study, 210 volunteers were enrolled, with 70

patients undergoing acute coronary syndrome and 70 patients

with chronic coronary syndrome admitted to the Department

of Cardiology, Gansu Public Provincial Hospital, and the

physical examination center of Lanzhou University Second

Hospital in Gansu Province, China, was used to select 70

healthy individuals. Each participant’s demographic, clinical,

and biological information was documented. The following

were the patient group ’s inclusion criteria: (i) ECG

requirements include ST-segment elevation or new left

bundle-branch block in two or more standard leads, or at

least 2 mm in two or more consecutive precordial leads; and (ii)

angiographically verified coronary thrombi. Chronic viral

infections (including hepatitis C, HIV, and herpes simplex

type 2), chronic inflammatory bowel disease, renal failure, and

pregnancy were also removed from both groups. Within 15

days after the acute ischemia event, the majority of ACS (50/70;

71%) and CCS (59/70; 84%) patients were included. Healthy

people without a history of cardiovascular diseases or active

infection symptoms were considered. All volunteers were

ethnic Chinese.
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Samples collection, DNA extraction,
amplicon sequencing, and statistical
analysis

Clinically certified team members drew blood samples in

Vacutainer EDTA Blood Collection Tubes. Reagents and

materials were disinfected and wore lab clothes, masks, and

disposable gloves to avoid contamination of foreign DNA. For

each volunteer 3 ml blood sample was drawn in the morning

following overnight fasting conditions and stored at -80°C.

DNA extraction and implication of V3-V4 regions of

16Sr RNA gene were amplified by using 338F: 5’-ACTCCT

ACGGGAGGCAGCA-3 ’ and 806R: 5 ’-GGACTACHV

GGGTWTCTAAT-3’ universal primer set by following our

previous study protocols (Khan et al., 2022b). Followed by

Amplicons sequencing using Illumina Novaseq 6000. Graph

Pad Prism (V=8.0) was used to do all statistical analyses on

obtained data. The mean and standard deviation were used to

present all the data. One-way ANOVA and Tukey’s multiple

comparisons post-hoc test were used for clinical parameters such

as, High-density lipoprotein, Low-density lipoprotein,

Tryglyceride, and Body mass index. A negative control sample

of sterile water was also utilized to purify DNA libraries

(Supplementary Figure S1). The importance of several factors

was determined using a p-value less than 0.05.
Results

Clinical characteristics of the
studied groups

We recruited 70 ACS patients, 70 CCS patients, and 70

healthy subjects. (Table 1) summarizes the clinical indexes such

as age, gender, and body mass index that were compared

between the three groups. The patients with acute and chronic

coronary syndromes were older than healthy individuals (61.8 ±

12.1; 62.58 ± 11.16; 41.2 ± 10.1). Based on a one-way ANOVA

test, we found that acute coronary syndrome, chronic coronary

syndrome, and healthy groups differed significantly in age,

height, body mass index, systolic blood pressure, diastolic

blood pressure, high-density lipoprotein, fasting blood glucose,

total cholesterol, hypertension, diabetes, and smoking. In

contrast, there was no significant difference between the three

groups in terms of gender, weight, triglycerides, and low-density

lipoprotein (Table 2).
Filtering and sequencing of DNA

After sequencing 210 blood samples, a total of 16,809,565

paired-end reads were generated. Upon that, 16,786,147 clean
frontiersin.org
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reads were obtained after paired-end reads quality control and

assembly. Each sample generated a minimum of 79,267 clean

readings and an average of 79,934 clean reads. Finally, a total of

1,608 OTUs were obtained among all three groups. According to

the species accumulation curve, the predicted OTUs richness has

already exceeded saturation at this sequencing depth, suggesting

that most of the variety has been observed (Figure 1A). A Venn

diagram revealed that 1,343 of the total 1,608 OTUs were shared

throughout the three groups, with 6 OTUs being unique to acute

coronary syndrome, 21 to chronic coronary syndrome, and 32 to

healthy group (Figure 1B).
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Richness and diversity of the
blood microbiota

The alpha diversity of blood microbiota among acute

coronary syndrome, chronic coronary syndrome, and healthy

was measured using the Chao1, observed species, ACE,

Coverage, Shannon, and Simpson indices (Table 3). A

significantly higher Alpha diversity Chao1 index (Figure 1C),

and Shannon index (Figure 1D) were observed in acute coronary

syndrome compared to chronic coronary syndrome, and healthy

groups although, the chronic coronary syndrome group was
TABLE 2 P-values across Acute coronary syndrome, Chronic coronary syndrome, and Healthy groups.

Characteristics ACS Vs CCS ACS VS Healthy CCS VS Healthy

Age 0.899 0.000* 0.000*

Weight 0.667 0.297 0.801

Height 0.000* 0.757 0.000*

Body mass index 0.000* 0.511 0.012

Systolic blood pressure 0.404 0.000* 0.002*

Diastolic blood pressure 0.229 0.021* 0.553

Low-density lipoprotein 0.719 0.847 0.972

High-density lipoprotein 0.090 0.002* 0.352

Triglycerides 1.000 0.930 0.918

Fasting blood glucose 0.604 0.000* 0.000*

Total cholesterol 0.962 0.022* 0.044*

Gender 0.612 0.063 0.384

Diabetes mellitus 0.000* 0.000* 0.000*

Smoking 0.132 0.005* 0.000*

Hypertension 0.642 0.000* 0.000*
p-values were shown among the three groups by comparing their clinical characteristics using the One-way ANOVA test. The significant difference was mentioned in bold font with a star.
ACS vs CCS, Acute coronary syndrome group vs Chronic coronary syndrome; ACS vs Healthy, Acute coronary syndrome group vs Healthy; CCS vs Healthy, Chronic coronary syndrome
group vs Healthy.
TABLE 1 Demographic and clinical characteristics of subject groups.

Characteristics Healthy (n = 70) ACS (n = 70) CCS (n = 70)

Female (n, %) 26 (37.14%) 15 (21.42%) 19 (27.14%)

Male (n, %) 44 (62.86%) 55 (78.58%) 51 (72.86%)

Age (year) 41.2 ± 10.1 61.8 ± 12.1 62.58 ± 11.16

BMI (kg/m2) 24.37 ± 3.80 23.75 ± 2.94 25.97 ± 3.05

Current smoker (n, %) 0 13 (18.57%) 21 (30%)

Hypertension (n, %) 0 19 (27.14%) 23 (32.85%)

Diabetes (n, %) 0 20 (28.57%) 21 (30%)

Systolic blood pressure 116.92 ± 12.84 131.58 ± 20.08 127.6 ± 20.91

Diastolic blood pressure 72.74 ± 9.82 78.42 ± 11.94 74.94 ± 15.22

LDL (mmol/L) 2.40 ± 0.71 2.49 ± 0.85 2.36 ± 1.34

HDL (mmol/L) 1.12 ± 0.30 0.97 ± 0.19 1.06 ± 0.25

Triglycerides (mmol/L) 1.64 ± 1.06 1.71 ± 1.17 1.71 ± 0.89

Fasting blood glucose (mmol/L) 5.17 ± 0.57 7.55 ± 3.87 7.11 ± 2.68

Total cholesterol (mmol/L) 4.14 ± 0.73 3.66 ± 136 3.70 ± 0.98
Data are represented as a percentage, mean and standard deviation. ACS, Acute coronary syndrome; CCS, Chronic coronary syndrome; BMI, Body mass index; LDL, Low-density
lipoprotein; HDL, High-density lipoprotein; mmol/L, Millimoles per liter; n, Number.
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A B

DC

FIGURE 1

OTUs curve and Venn diagram of ACS, CCS, and H groups. (A) Curves illustrate species accumulation between the number of samples and the
estimated richness. In each group, the predicted OTU richness was close to saturation. (B) A Venn diagram displaying the overlaps among ACS,
CCS, and H groups. (C) Represent the Chao1 index between three groups. (D) Shows the Shannon index between three groups. OTUs,
Operational taxonomic units; ACS, Acute coronary syndrome; CCS, Chronic coronary syndrome; H, healthy. "*" represent significance "**"
shows strong significane.
TABLE 3 The comparison of blood microbiota alpha diversity between each group.

Indices Healthy individuals Acute coronary syndrome Chronic coronary syndrome p-value

Shannon 7.3217 ± 0.0564 7.6203 ± 0.0373 7.1087 ± 0.0475 0.004**

Simpson 0.9896 ± 0.0008 0.9916 ± 0.0004 0.9874 ± 0.0007 0.02*

ACE 272.6048 ± 8.7126 324.5061 ± 5.6822 244.8112 ± 7.9086 0.01*

Chao1 272.3857 ± 8.7255 324.4619 ± 5.6876 244.1786 ± 7.9358 0.01*

PD 26.0812 ± 0.7942 23.0523 ± 0.5254 23.4157 ± 0.8261 0.215
Frontiers in Cellular
 and Infection Microbiology
 05
 fronti
Alpha diversity showed significant differences among groups represented with (*) and (**). A single asterisk (*) indicates significance, and the double-asterisk (**) shows strong significance.
ACE, Abundance-based coverage estimators; PD, Phylogenetic diversity.
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significantly lower alpha diversity compared to acute coronary

syndrome and healthy groups. A higher coverage indicates that a

species in the sample is more likely to be detected. This value is

used to evaluate whether the sequencing data is adequate to

present the real situation of the microbial community in

the sample.

We performed a beta diversity analysis to examine and

contrast the differences and similarities in microbial

population structure between the groups. (Figure 2A) shows

that the three groups had different microbial compositions

(PC1 = 35.58 percent and PC2 = 7.90 percent) using Bray-

Curtis-based principal coordinate analysis (PCoA). PERMANOVA

indicated that the blood bacterial communities among the three

groups clustered significantly separated from each other (R2 = 0.191,

p = 0.001), as depicted in (Figure 2B). Finally, the investigations

demonstrated that the microbial composition of the acute coronary

syndrome and chronic coronary syndrome groups differed from

that of the healthy group, implying that the microbial ecology of the

patient’s blood is shifting.
Taxonomic comparison of blood
microbiota at the phylum and
genus levels

At the phylum level, the blood microbiota of the acute

coronary syndrome, chronic coronary syndrome, and healthy

groups was dominated by Firmicutes (39%, 45%, 43%)

Bacteroidetes (31%, 32%, 29%), and Proteobacteria (19%, 15%,

15%), (Supplementary Table S1). The relative abundance of the

top 10 blood bacterial phyla between the three groups, see

(Figure 3A), accounted for up to 95% of the relative

abundance on average. Bacterial genera Lachnospiraceae

NK4A136 group (16%, 19%, 18%), Lactobacillus (16%, 24%,

13%), and Ligilactobacillus (10%, 15%, 9%) (Supplementary
Frontiers in Cellular and Infection Microbiology 06
Table S2), the high abundance genera were observed between

three groups (Figure 3B). The phylum and genus level microbial

composition of all blood samples is shown in (Supplementary

Figures S2 and S3).
Acute coronary syndrome vs. chronic
coronary syndrome

First, we examined how microbial communities differed

between diseased groups. Proteobacteria (19% vs 9%) were

overrepresented, while Firmicutes and Bacteroidota (44% vs

38% and 32% vs 31%) were underrepresented in ACS compared

to the CCS group. The significant abundance of phylum

Acidobacteriota (0.026 ± 0.0194 vs 0.005 ± 0.009; p < 0.001),

Followed by Actinobacteriota (0.025 ± 0.014 vs 0.021 ± 0.015;

p > = 0.1), Cloacimonadota (0.0475 ± 0.0748 vs 0.0229 ± 0.0989;

p > = 0.1), Fibrobacterota (0.028 ± 0.048 vs 0.0009 ± 0.0003; p <

0.01), Fusobacteriota (0.009 ± 0.007; 0.005 ± 0.005; p < 0.001),

Latescibacterota (0.0005 ± 0.001 vs 0.00006 ± 0.00043; p < 0.01),

Myxococcota (0.0016 ± 0.002 vs 0.0010 ± 0.0017; p < 0.1),

Nitrospirota (0.0037 ± 0.0031 vs 0.0015 ± 0.0027; p < 0.001),

Proteobacteria (0.1827 ± 0.0978 vs 0.1422 ± 0.0911; p < 0.05),

Synergistota (0.0014 ± 0.0014 vs 0.0003 ± 0.0009; p < 0.001), and

Thermotogota (0.0002 ± 0.0003 vs 0.00001 ± 0.00008; p < 0.1)

were significantly increased, although Cyanobacteria (0.005 ±

0.007 vs 0.013 ± 0.013; p < 0.001), Deferribacterota (0.005 ±

0.005 vs 0.008 ± 0.005; p < 0.01), Desulfobacterota (0.014 ± 0.003

vs 0.014 ± 0.006; p > = 0.1), Firmicutes (0.375 ± 0.049 vs 0.435 ±

0.070; p < 0.001), Gemmatimonadota (0.0004 ± 0.0006 vs 0.0008 ±

0.0020), Patescibacteria (0.0028 ± 0.0024 vs 0.0042 ± 0.0034; p <

0.02), Verrucomicrobiota (0.005 ± 0.004 vs 0.007 ± 0.007; p <

0.05) were observed significantly decreased in acute

coronary syndrome group compared to chronic coronary

syndrome (Figure 3C).
A B

FIGURE 2

(A) Principal coordinate analysis (PCoA) of the overall composition of the genera communities among both groups. (B) PERMANOVA analysis
indicates variation in blood bacterial species between HC and MI groups.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.943808
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Khan et al. 10.3389/fcimb.2022.943808
At the genus level, we observed that Lachnospiraceae_

NK4A136_group (15% vs19%), and Lactobacillus (15% vs 23%)

were found to decrease in the acute coronary syndrome group than

chronic coronary syndrome. In addition, the considerable increase

proportion of Brevibacillus (0.0010 ± 0.0010 vs 0.0000 ± 0.0003; p <

0.001), followed by Brevibacterium (0.0036 ± 0.0025 vs 0.0007 ±

0.0016; p < 0.001), Candidatus_Solibacter (0.0031 ± 0.0031 vs

0.0004 ± 0.0015; p < 0.001), Chujaibacter (0.0017 ± 0.0015 vs

0.0003 ± 0.0012; p < 0.001), Clostridium_sensu_stricto_1 (0.0036 ±

0.0057 vs 0.0019 ± 0.0026; p > = 0.1),Kosakonia (0.0071 ± 0.0048 vs

0.0023 ± 0.0036; p < 0.001), Paenibacillus (0.000086 ± 0.000358 vs

0.000008 ± 0.00007; p > = 0.1) Pantoea (0.0061 ± 0.0040 vs 0.0016 ±

0.0026; p < 0.001), Parvimonas (0.0010 ± 0.0009 vs 0.0000 ± 0.0003;

p < 0.001), Phenylobacterium (0.0012 ± 0.0015 vs 0.0001 ± 0.0005;

p < 0.001), Staphylococcus (0.0217 ± 0.014 vs 0.0136 ± 0.013; p > =

0.1), while, Lachnospira (0.0008 ± 0.0017 vs 0.0030 ± 0.0045; p <

0.001) were observed decreased in acute coronary syndrome group

than chronic coronary syndrome (Figure 3D).

Acute coronary syndrome vs. healthy

Bacteroidota and Proteobacteria (31.2% vs 28% and 19% vs

15%) were the most predominant phylum in the acute
Frontiers in Cellular and Infection Microbiology 07
coronary syndrome group, while Firmicutes (43% vs 38%)

were observed enriched in healthy. Further, The proportion

of Acidobacteriota was significantly greater (0.0264 ± 0.0194 vs

0.0100 ± 0.0165; p < 0.001), Cloacimonadota (0.000475 ±

0.000748 vs 0.000081 ± 0.000247; p > 0.01), Desulfobacterota

(0.0144 ± 0.0036 vs 0.0119 ± 0.0053; p < 0.02), Fibrobacterota

(0.0002 ± 0.0004 vs 0.000088 ± 0.000286; p < 0.01),

Fusobacteriota (0.0098 ± 0.0070 vs 0.0083 ± 0.0082; p > =

0.1), Latescibacterota (0.0005 ± 0.0011 vs 0.0002 ± 0.0008; p <

0.1), Myxococcota (0.0016 ± 0.002 vs 0.0005 ± 0.0011; p <

0.001), Nitrospirota (0.0037 ± 0.0031 vs 0.0024 ± 0.0046; p <

0.1), Patescibacteria (0.0028 ± 0.0025 vs 0.0025 ± 0.0024; p > =

0.1), Proteobacteria (0.1827 ± 0.0978 vs 0.1519 ± 0.0855; p > =

0.1), and Synergistota (0.0014 ± 0.0014 vs 0.0006 ± 0.0017; p <

0.01), although, Actinobacteriota (0.0258 ± 0.0147 vs 0.0571 ±

0.0634; p < 0.001), Cyanobacteria (0.0053 ± 0.0070 vs 0.0059 ±

0.0066; p > = 0.1), Deferribacterota (0.0056 ± 0.0054 vs

0.0066 ± 0.0057; p > = 0.1), Firmicutes (0.3752 ± 0.0491 vs

0.4265 ± 0.0689; p < 0.001), Gemmatimonadota (0.0004 ±

0.0006 vs 0.0005 ± 0.0013), Thermotogota (0.0002 ± 0.000319

vs 0.0003 ± 0.0008; p > = 0.1), Verrucomicrobiota (0.0052 ±

0.0042 vs 0.0053 ± 0.0045; p > = 0.1) phyla were lower in acute

coronary syndrome group than healthy (Figure 3C).
A B

DC

FIGURE 3

Composition of blood microbiota among acute coronary syndrome, chronic coronary syndrome, and healthy groups. (A) The data shown
represent the top 10 most abundant phyla among acute coronary syndrome, chronic coronary syndrome, and healthy groups. (B) The top ten
genera among acute coronary syndrome, chronic coronary syndrome, and healthy groups are shown by the data. (C) The ANOVA test indicates
a significant change in the proportion among acute coronary syndrome, chronic coronary syndrome, and healthy groups at the phylum level.
(D) A significant change in the proportion among acute coronary syndrome, chronic coronary syndrome, and healthy groups at the genus level.
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Compared to the healthy group, Lactobacillus was observed

higher (16% vs 13%) while Bacteroides (15.1% vs 21%) and

Lachnospiraceae_NK4A136_group (16% vs 18%) were decreased

in the ACS group compared to healthy. We further observed a

significant higher proportion of Brevibacillus (0.0010 ± 0.0010 vs

0.000319 ± 0.000871; p < 0.001), Brevibacterium (0.0036 ±

0.0025 vs 0.001624 ± 0.0024; p < 0.001), Candidatus_Solibacter

(0.0031 ± 0.0031 vs 0.0009 ± 0.0019; p < 0.001), Chujaibacter

(0.0017 ± 0.0015 vs 0.000453 ± 0.000917; p < 0.001), Kosakonia

(0.0071 ± 0.0048 vs 0.0032 ± 0.004401; p < 0.001), Lachnospira

(0.0008 ± 0.0017 vs 0.000406 ± 0.000875; p > = 0.1), Pantoea

(0.0061 ± 0.0040 vs 0.0037 ± 0.0043; p < 0.001), Parvimonas

(0.0010 ± 0.0009 vs 0.00033 ± 0.00078; p < 0.001),

Phenylobacterium (0.0012 ± 0.0015 vs 0.0004 ± 0.0011; p <

0.001) while, Clostridium_sensu_stricto_1 (0.0036 ± 0.0057 vs

0.009147 ± 0.010172; p < 0.001), Paenibacillus (0.000086 ±

0.000358 vs 0.001591 ± 0.002693; p < 0.001), Staphylococcus

(0.0217 ± 0.014 vs 0.0602 ± 0.0608; p < 0.001), were found

decreased in acute coronary syndrome than healthy

group (Figure 3D).
Chronic coronary syndrome vs. healthy

Firmicutes and Bacteroidota (44% vs 43% and 15% vs 14%)

were observed slightly increased while Proteobacteria (14% vs 15%)

was found to decrease in the chronic coronary syndrome group

than the healthy. Furthermore, the significant increased level of

Cyanobacteria (0.0134 ± 0.0136 vs 0.0059 ± 0.0066; p < 0.001),

Cloacimonadota (0.0002 ± 0.0009 vs 0.0000 ± 0.0002; p > = 0.1),

Deferribacterota (0.008 ± 0.005 vs 0.006 ± 0.005; p < 0.1),

Fusobacteriota (0.005 ± 0.005 vs 0.008 ± 0.008; p < 0.05),

Desulfobacterota (0.014 ± 0.006 vs 0.0119 ± 0.0053; p < 0.01),

Firmicutes (0.435 ± 0.070 vs 0.4265 ± 0.0689; p > = 0.1),

Gemmatimonadota (0.0008 ± 0.0020 vs 0.0005 ± 0.0013),

Myxococcota (0.0010 ± 0.0017 vs 0.0005 ± 0.0011; p > = 0.1),

Patescibacteria (0.0042 ± 0.0034 vs 0.0025 ± 0.0024; p > = 0.1),

Verrucomicrobiota (0.0075 ± 0.0071 vs 0.0053 ± 0.0045; p < 0.05)

whereas, Acidobacteriota (0.005 ± 0.009 vs 0.0100 ± 0.0165; p > =

0.1), Actinobacteriota (0.021 ± 0.015 vs 0.0571 ± 0.063; p < 0.001),

Latescibacterota (0.00006 ± 0.00043 vs 0.0002 ± 0.0008; p > = 0.1),

Fusobacteriota (0.005 ± 0.005 vs 0.008 ± 0.008; p < 0.05),

Nitrospirota (0.0015 ± 0.0027 vs 0.0024 ± 0.0046; p > = 0.1),

Proteobacteria (0.1422 ± 0.0911 vs 0.1519 ± 0.0855; p > = 0.1),

Synergistota (0.0003 ± 0.0009 vs 0.0006 ± 0.0017; p > = 0.1), and

Thermotogota (0.00001 ± 0.00008 vs 0.0003 ± 0.0008; p < 0.01)

were found decreased in chronic coronary syndrome group

compare to healthy (Figure 3C).

A higher proportion of genus Lachnospiraceae_

NK4A136_group (19.3% vs 17.9%) and Lactobacillus 24% vs

13%). Additionally, the significantly higher abundance of

Chujaibacter (0.0003 ± 0.0012 vs 0.000453 ± 0.000917; p > =
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0.1), Lachnospira (0.0030 ± 0.0045 vs 0.000406 ± 0.000875; p <

0.001), although a lower proportion of Brevibacillus (0.0000 ±

0.0003 vs 0.000319 ± 0.000871; p > = 0.1), Brevibacterium

(0.0007 ± 0.0016 vs 0.001624 ± 0.0024; p < 0.05),

Candidatus_Solibacter (0.0004 ± 0.0015 vs 0.000963 ±

0.001935 vs; p > = 0.1), Clostridium_sensu_stricto_1 (0.0019 ±

0.0026; p < 0.001 vs 0.009147 ± 0.010172), Kosakonia (0.0023 ±

0.0036 vs 0.0032 ± 0.004401; p > = 0.1), Paenibacillus

(0.000086 ± 0.000358 vs 0.001591 ± 0.002693; p > = < 0.001),

Pantoea (0.0016 ± 0.0026 vs 0.0037 ± 0.0043; p < 0.01),

Parvimonas (0.0010 ± 0.0009 vs 0.00033 ± 0.00078; p < 0.1),

Phenylobacterium (0.0001 ± 0.0005 vs 0.0004 ± 0.0011; p > =

0.1), and Staphylococcus (0.0136 ± 0.013 vs 0.0602 ± 0.0608; p <

0.01) were observed in chronic coronary syndrome group

compared to healthy (Figure 3D).
Distinct blood microbiota in
three groups

As illustrated in (Figure 4), LEfSemodeling was used to confirm

both the statistical and taxonomic differences between the blood

microbiota of patients with acute coronary syndrome or chronic

coronary syndrome and those of healthy, using a logarithmic LDA

score cutoff of 3. LEfSe revealed substantial variations at several

taxonomic levels across the three groups with a threshold score of

LDA >3 after analyzing each participant’s taxonomic profile.

Meanwhile, using linear discriminant analysis, the seventeen taxa

were found significantly distinct among the three groups. Of them,

phylum_ Actinobacteria, class_ Actinobacteria, order_

Staphylococcales, and Micrococcales, family_ Staphylococcaceae

and Micrococcaceae, genus_ Staphylococcus, and Species_

Unclassified Staphylococcus in healthy group; phylum_

Firmicutes, class_ Clostridia, order_ Lactobacillales, family_

Lactobacillaceae, genus_ Lactobacillus, and Species_ Unclassified

Lactobacillus in chronic coronary syndrome group, and phyla_

Proteobacteria and Acidobacteriota, class_ Alphaproteobacteria in

acute coronary syndrome group were significantly different among

three groups (Figure 4A). Additionally, (Figure 4B) shows the

microbiome differences between the three groups at various

phylogenic levels using a cladogram.
COG annotation and analysis

The functional analysis through COG analysis among three

groups showed that significantly up-regulated pathways such as

energy production and conversion, intracellular trafficking,

secretion, and vesicular transport, coenzymes transport and

metabolism, lipid transport and metabolism, cell motility,

secondary metabolites biosynthesis, transport and catabolism,

posttranslational modification. Protein turnover, chaperones,
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chromatin structure and dynamics, amino acid transport, and

metabolism were observed in the acute coronary syndrome

group compared to the chronic coronary syndrome group.

Although nucleotide transport and metabolism, replication,

recombination and repair, cell cycle control, cell division,

chromosome partitioning, translation, ribosomal structure and

biogenesis, carbohydrates transport and metabolism, and

transcription were found significantly up-regulated in chronic

coronary syndrome patients than acute coronary syndrome

group (Supplementary Figure S4).

In addition, a comparison between the acute coronary

syndrome group with Healthy showed intracellular trafficking,

secretion, and vesicular transport, cell motility, cell wall,

membrane, envelope biogenesis, extracellular structures,

posttranslational modification. Protein turnover, chaperones,

cytoskeleton, and signal transduction mechanisms pathways were

considerably up-regulated in the acute coronary syndrome group

than healthy, while carbohydrates transport and metabolism,

inorganic ion transport and metabolism, and transcription
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pathways were significantly up-regulated in the healthy group

compared to acute coronary syndrome (Supplementary Figure S5).

Furthermore, the chronic coronary syndrome and healthy

group comparison showed that the COG functional pathways

such as, Cell cycle control, cell division, chromosome

partitioning, Nucleotide transport, and metabolism,

replication, recombination, and repair, translation, ribosomal

structure and biogenesis, cell wall, membrane, envelope

biogenesis, intracellular trafficking, secretion vesicular

transport, and cytoskeleton were significantly up-regulated in

chronic coronary syndrome group than healthy, whereas, energy

production and conversion, coenzymes transport and

metabolism, amino acid transport and metabolism, inorganic

ion transport and metabolism, general function prediction only,

lipid transport and metabolism, RNA processing and

modification functional pathways were significantly up-

regulated in the healthy group compared to chronic coronary

syndrome. The significance was judged by a p-value less than p <

0.05 (Supplementary Figure S6).
A

B

FIGURE 4

(A) LEfSe identified the most differentially abundant clades at all taxonomic levels among acute coronary syndrome, chronic coronary syndrome,
and healthy groups using the LDA score of 3. (B) Cladogram of differentially abundant bacterial taxa wherein each layer represents a different
taxonomy. The enriched taxa in acute coronary syndrome, chronic coronary syndrome, and healthy groups microbiota are represented in the
cladogram. The central point represents the root of the tree (bacteria), and each ring represents the next lower taxonomic level (phylum to
genus: p, phylum; c, class; o, order; f, family; g, genus).
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KEGG function annotation and analysis

KEGG-based functional annotations between acute

coronary syndrome and chronic coronary syndrome analysis

showed that the majority of pathways were significantly up-

regulated in the acute coronary syndrome group than chronic

coronary syndrome such as Amino acid metabolism, substance

dependence, energy metabolism, global and overview maps,

lipids metabolism, metabolism of cofactors and vitamins,

circulatory system, sensory system, cell growth and

death, aging, xenobiotic degradation and metabolism,

neurodegenerative diseases, cancers; specific types, and drug

resistance: antineoplastics. Although infectious diseases:

bacterial , immune diseases, nucleotide metabolism,

transcription, carbohydrate metabolism, replication and

repair, membrane transport, drug resistance: antimicrobial,

translation, signaling molecules and interaction, folding,

sorting and degradation, and nervous system pathways were

considerably upregulated in chronic coronary syndrome group

compared to acute coronary syndrome (Supplementary

Figure S7).

Additionally, acute coronary syndrome and healthy groups

revealed that the majority of gene pathways were significantly

up-regulated in the acute coronary syndrome group compared

to the healthy such as cell growth and death, circulatory system,

digestive system, cardiovascular diseases, drug resistance:

antineoplastics, cancers; specific types, endocrine and

metabolic diseases, sensory system, infectious diseases; viral,

cel l moti l i ty , s ignal transduction, drug resistance:

antimicrobial, and cancer: overview genes, while global and

overview maps, immune diseases, membrane transport,

carbohydrate metabolism pathways were up-regulated in the

healthy group compared to acute coronary syndrome

(Supplementary Figure S8).

Moreover, comparing chronic coronary syndrome

and healthy groups showed that the KEGG functional

genes pathways such as infectious diseases: bacterial,

drug resistance: antimicrobial, transcription, nucleotide

metabolism, endocrine, and metabolic diseases, translation,

signaling molecule and interaction, cell growth and death,

replication, and repair, folding, sorting and degradation,

cancer: overview, digestive system, biosynthesis of other

secondary metabolites, cellular community-prokaryotes, and

glycan biosynthesis and metabolism were significantly up-

regulated in chronic coronary syndrome group compare to

healthy, although global and overview maps, amino acid

metabolism, metabolism of cofactor and vitamins, aging,

lipid metabolism, substance dependence, transport, and

catabolism pathways were observe significantly up-regulated

in the healthy group than chronic coronary syndrome. The

significance was judged by a p-value less than 0.05

(Supplementary Figure S9).
Frontiers in Cellular and Infection Microbiology 10
Correlation between clinical parameters
and microbial taxa

To demonstrate pairwise comparisons of clinical variables, a

color gradient denoting Spearman’s correlation coefficient was

used (Figure 5). Clinical considerations were primarily focused

on acute coronary syndrome and chronic coronary syndrome

prognostic risk factors. Phylum-level correlations between

clinical parameters and healthy, acute coronary syndrome, and

chronic coronary syndrome taxa were used to investigate the

effect of clinical parameters on circulating microbial

composition, as depicted in (Figures 5A–C). Herein, the

current findings revealed that there was no significant

influence of clinical parameters on bacterial diversity. Hence, it

was hypothesized that acute coronary syndrome and chronic

coronary syndrome may have a major impact on the bacterial

composition of the blood.
Discussion

Advances in high-throughput sequencing, as well as the

development of a targeted metagenomics technique, can now

be used to quantify and define the taxonomic profile of the

microbiome present in tissues, particularly blood. Hence, the

blood microbiome of patients with acute coronary syndrome,

chronic coronary syndrome, and healthy controls was

characterized in this study. We observed a significant variation

in Alpha and beta diversity in the blood microbial community

composition among all groups. Regarding the unavoidable

contamination, we focused more on the differences in blood

microbiota, which assists in the identification of disease-related

changes. Hence, our negative control results revealed that

microbiota in the blood is not due to the reagent

contamination. To the best of our knowledge, no

comprehensive analysis of the microbiome in the blood of

patients with Acute and Chronic coronary syndrome has been

previously performed in China. To bridge that gap, we used

Illumina NovaSeq to analyze the blood of Acute and Chronic

Coronary Syndrome patients as well as healthy individuals.

The circulating microbiome patterns of patients with acute

and chronic syndromes and healthy controls were shown to be

significantly clustered. Differential abundance of various phyla

and genera of bacteria could explain the differences, indicating a

shift in the circulating microbiome in individuals with acute and

chronic syndrome. The bacterial phyla Firmicutes,

Bacteroidetes, Proteobacteria, and Actinobacteria dominate the

blood collected from patients and controls. This result is

somewhat similar to the findings reported by previous studies

(McLaughlin et al., 2002; Amar et al., 2011; Dinakaran et al.,

2014; Païssé et al., 2016; Gosiewski and Huminska, 2017; Li et al.,

2018; Olde Loohuis et al., 2018; Qiu et al., 2019; Whittle et al.,
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2019) . Proteobacteria , fol lowed by Actinobacteria ,

Cyanobacteria, and Verrucomicrobia, were found to be

responsible for cardiovascular disease in a prior study (Huse

et al., 2008; Hillman et al., 2017). In this regard, we discovered

that the Proteobacteria phylum was prominent in acute

coronary patients; nevertheless, little is known about the role

of changes in the microbiome’s quality and composition in

cardiovascular disease. A landmark cohort study, the study

examined the long-term relationship between circulating

microbial fingerprints and cardiovascular events in the general

population, independent of traditional cardiovascular

risk factors, larger (vs. lower) relative abundance of the

Proteobacteria phylum in peripheral blood leukocytes was

related to a higher risk of incident cardiovascular events

(Amar et al., 2013). According to a second cross-sectional

study, patients with cardiovascular disease had a substantially

higher relative abundance of the Proteobacteria phylum in their

total blood than participants who appeared to be healthy

(Rajendhran et al., 2013), which was similar to this finding. As

a result, alterations in the human blood microbiome have been

proposed as a “marker” for cardiovascular disease prediction.

Increased populations of Proteobacteria in the gut and blood

have been associated with inflammatory bowel disease,

metabolic syndrome, cardiovascular disease, chronic lung

disease, and atherosclerotic plaques (Amar et al., 2013;

Calandrini et al., 2014; Rizzatti et al., 2017).

Proteobacteria also produce Lipopolysaccharides (LPS),

which have been discovered to be a substantial component

(Amar et al., 2011), several studies have reported on the
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function of LPS in the genesis of atherosclerosis (Carnevale

et al., 2020; Hashimoto et al., 2020; Violi et al., 2020; Zhou et al.,

2020). Our data show a negative correlation between bacterial

DNA levels and baseline fasting blood glucose levels. As

demonstrated in a healthy human model of gram-negative

sepsis, we can’t rule out a transient improvement in insulin

sensitivity in the early stages of metabolic infection (Van Der

Crabben et al., 2009). This could be because the latent infection

causes the release of nitric oxide, which improves insulin

sensitivity (Perreault and Marette, 2001). In the blood of the

acute coronary syndrome group, we found a significant amount

of Proteobacteria phylum. As a result, we conclude that

circulating microorganisms may be the primary source of

microbial colonization of atherosclerotic plaques, leading to

inflammation and cardiovascular disease.

A significantly increased level of Desulfobacterota was found

in the acute coronary syndrome although its proportion was

considerably decreased in the chronic coronary syndrome

group. Desulfobacterota is a phylum of bacteria that uses the

DsrAB-dissimilatory sulfate reduction pathway to reduce sulfur

compounds (Wang et al., 2019), Desulfobacterota also

participates in butyrate breakdown via the butyrate beta-

oxidation pathway, indicating that they are involved in the

catabolic reaction’s equilibrium (Hao et al., 2020). As a result,

bacteria belonging to the Bacteroidetes and Desulfobacterota

phyla may release LPS, causing inflammatory damage or

aggravating energy metabolism irregularities, both of which

are pathological features of diabetes and linked to an increased

risk of cardiovascular disease. Herein, in the chronic coronary
A

B

C

FIGURE 5

Correlation between clinical parameters and microbial taxa at the phylum level. (A) shows a correlation between clinical parameters and
microbial taxa in the ACS group. (B) indicates a correlation between clinical parameters and microbial taxa in the CCS group. (C) indicates a
correlation between clinical parameters and microbial taxa in the Healthy group.
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syndrome group, Desulfobacterota were significantly increased

although the proportion of Proteobacteria was significantly

decreased which is oblivious different from the chronic

coronary syndrome group. However, the direct role of

Desulfobacterota in atherosclerosis is not yet been confirmed.

At the genus level, compared to that in the control, the

increased level of pathogenic genera Brevibacterium, Kosakonia,

and Lactobacillus were detected in the blood of the present

cohort, Brevibacterium, and Kosakonia were previously detected

in the bloodstream infections (Bhatti et al., 2017; Lelouvier et al.,

2017; Asai et al., 2019). Brevibacteria is gram-positive obligate

aerobic rods that relate to milk and can also be detected on

human skin. Brevibacterium has been identified as an

uncommon cause of catheter-related bloodstream infection,

primarily in immunocompromised patients with cancer or

AIDS (Asai et al. , 2019). Based on previous study,

Brevibacteria is a rare but important organism that can cause

opportunistic infections in immunocompetent people. Bacterial

translocation induces systemic inflammation, which contributes

to MI comorbidities and heart failure, as well as the risk of

bloodstream infection through different routes in patients with

MI (Zabell and Tang, 2017).

Lactobacillus is rarely a human pathogen but has also been

reported to cause dental caries (Ahirwar et al., 2019), infective

endocarditis (Husni et al., 1997), urinary tract infections (Reid

et al., 1992; Grin et al., 2013), chorioamnionitis (Martius and

Eschenbach, 1990), endometritis (Wang et al., 2018), meningitis

(Cannon et al., 2005), intraabdominal abscess (Husni et al., 1997),

liver abscess (Pararajasingam and Uwagwu, 2017), splenic abscess

(Sherman et al., 1987), and bacteremia (Antony et al., 1996; Husni

et al., 1997). Lactobacillus abundances were shown to be higher in

these STEMI patients, probably due to abnormalities in the gut

barrier’s tight junctions. (Zhou et al., 2018). Furthermore, a

significantly high abundance of Lactobacillus was found in the

gut of coronary artery disease patients (Zhu et al., 2018).

Changes in circulating microorganisms could lead to chronic

infection and inflammatory reactions, which could lead to

cardiovascular diseases.

Our study also found a slight increase level of Escherichia-

Shigella which is recently found in several diseases. A study

demonstrated the higher abundance of Escherichia-Shigella in

coronary artery disease patients (Zhu et al., 2018), Another

study discovered numerous bacteria in the hepatic vein blood

that were linked to the levels of inflammatory cytokines. The

strongest relationships with IL-8 were found in Escherichia coli

and Prevotella. This could be due to these bacteria’s propensity to

produce LPS and cause inflammation via TLR or inflammasome

cascades (Gedgaudas et al., 2022). Proteobacteria also produce

LPS which has a direct role in cardiovascular diseases, it may

suggest that phylum Proteobacteria and genus Escherichia-Shigella

might play a potential role in chronic coronary syndrome.

However, the direct role of Escherichia-Shigella in the chronic

coronary syndrome is still not clear
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Moreover, we measured alpha and beta diversity, Alpha

diversity measures the richness of bacterial taxa within each

sample (Wallenborn et al., 2021). Overall, the acute coronary

syndrome group had significantly higher alpha diversity indices

(Shannon and Chao1) than the chronic coronary syndrome and

healthy groups, while the chronic coronary syndrome group had

significantly lower alpha diversity than the healthy group.

Recently higher alpha diversity was observed in non-

communicable diseases (Vujkovic-Cvijin et al., 2020). Also,

higher alpha diversity was found in the tumor microbiome of

long-term survival patients (Riquelme et al., 2019). Additionally,

the microbiome-based Hippurate prediction score controlled the

clinical relationship pattern of microbial diversity, suggesting

that benzoate metabolism may play a role in the beneficial

connections between high alpha diversity and good health

(Hertel et al., 2022). Even though chronic coronary syndrome

groups had much lesser alpha diversity, a dysbiotic gut has been

linked to autoimmune diseases, diabetes, metabolic syndrome,

autism, and colorectal cancer, among other chronic disorders

(Mosca et al., 2016). Vascular stiffness and (Menni et al., 2018),

type 2 diabetes (Chakaroun et al., 2021), have also been linked to

a decrease in alpha diversity. According to recent research,

chronic renal disease patients’ blood has less alpha diversity

(Shah et al., 2019), than patients with myocardial infarction

(Amar et al., 2019). Our chronic coronary syndrome group’s

findings are comparable with those of prior studies, implying a

possible link between sickness and decreased bacterial diversity.

Beta diversity is used to calculate and compare variation

between three groups (Lozupone et al., 2007). The blood

bacterial composition of patients with acute coronary syndrome,

chronic coronary syndrome, and healthy showed moderate

differences in beta diversity (PCoA analysis). A similar outcome

was discovered by (Kamo et al., 2017), in heart failure patients and

healthy participants of the gut microbiota (Mayerhofer et al., 2020).

Significantly distinct beta diversity of the gut oral, thrombus has

also been observed in Korean individuals with ST-elevation

myocardial infarction (Kwun et al., 2020). This study’s findings

demonstrated a partial split between the two groups. Together,

these findings suggest that beta diversity may play a role in both

acute and chronic coronary syndromes. As a result, we believe that

changes in the blood microbiota have a role in the initiation and

progression of atherosclerosis. In addition, a study evaluating the

correlations between clinical measures and microbial taxa in the

acute coronary syndrome and chronic coronary syndrome groups

found no significant link between blood microbiota composition

and clinical variables. Our previous study is supported by these

findings (Khan et al., 2022a).

This study also investigated the characteristics and potential

activities of blood microbiota in acute coronary syndrome and

chronic coronary syndrome patients, revealing new insights into

the etiology of atherosclerosis and identifying prospective bacterial

biomarkers. In atherosclerosis patients, COG and KEGG pathway

analyses revealed a lower abundance of some key metabolic and
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transport pathways. Blood microbiota dysbiosis may play a role in

atherosclerosis-related host metabolic diseases. The findings could

lead to a new understanding of atherosclerosis pathophysiology

and the development of novel treatment alternatives in the future.

Circulating microbiota-related metabolites could be useful in

preventing atherosclerosis in these circumstances.
Strengths and limitations of the study

Considering multiple recent studies that showed changes in

blood microbiota composition and diversity are linked to non-

communicable diseases, by examining changes in blood microbial

signature among acute coronary syndrome, chronic coronary

syndrome, and Healthy group, we hope to determine the role of

circulating microbiota on atherosclerosis. In addition, our results

revealed that the patients with acute coronary syndrome and

chronic coronary syndrome were significantly older than healthy

individuals, these findings are similar to our previous results

(Khan et al., 2022b), this suggests that another important factor

influencing atherosclerosis is age, a detailed study worth needed to

investigate the blood microbiota profile between young and aged

individuals. Improving the accuracy of risk prediction is very

important because it helps target those subjects who are most

likely to benefit from preventive treatment.

Although the current study’s findings were substantial, the

study’s main limitation is the small sample size, which may impair

the accuracy of the findings due to rarity. A larger study cohort

was needed to investigate the effects of bloodmicrobiota signature.

Meanwhile, more modern techniques such as metagenomics and

metabonomics must be used to investigate the potential health

effects of specific circulating microbiota and their metabolites.
Conclusion

In conclusion, the current study found that atherosclerosis

patients and healthy controls have distinct blood flora diversity

and composition. A change in blood microbiota may be linked to

the development of atherosclerosis. A causal relationship

between atherosclerosis and blood flora requires more research.
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