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Alterations in platelets during SARS-CoV-2 infection
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Abstract
Coronavirus disease 2019 (COVID-19) is a pandemic syndrome caused by severe acute respira
tory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection induces a process of 
inflammation and thrombosis supported by an altered platelet activation state. This platelet 
activation is peculiar being characterized by the formation of platelet-leukocytes rather than 
platelet–platelet aggregates and by an increased procoagulant potential supported by ele
vated levels of TF positive platelets and microvesicles.
Therapeutic strategies targeting, beyond systemic inflammation (i.e. with tocilizumab, an anti 
interleukin-6 receptor), this state of platelet activation might therefore be beneficial. Among 
the antithrombotic drugs proposed as candidates to treat patients with SARS-CoV-2 infection, 
antiplatelet drugs, such as aspirin are showing promising results.
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Introduction

In December 2019, a new infectious disease outbreaked in China 
causing severe acute respiratory syndrome. The causative agent 
was identified as a new coronavirus, the SARS-CoV-2 (severe 
acute respiratory syndrome coronavirus 2) [1]. The COVID-19 
(Coronavirus Disease 2019) pandemic has led to high morbidity 
and mortality worldwide challenging healthcare systems and mak
ing crucial the identification not only of effective treatments but 
also of the pathogenic mechanisms.

Clinical features that characterize SARS-CoV-2 infection 
include inflammation and thrombosis [2,3]. Studies carried out 
so far have shown high levels of proinflammatory cytokines, the 
so-called ”cytokine storm” that correlates with disease severity 
[4–6]. This exacerbated inflammatory state leads to the activation 
of coagulation, documented by levels of D-Dimer significantly 
elevated and predictive of mortality [7,8]. Additionally, levels of 
ferritin, factor VIII, von Willebrand Factor (VWF) and protein of 
the complement cascade are abnormal in COVID-19 [9–11]. 
These consistently reported hemostatic changes are indicative 
for a coagulopathy that may predispose COVID-19 patients to 
thrombotic events. Postmortem studies have indeed highlighted 
the presence of multiorgan thrombosis, even in patients on stan
dard thromboprophylaxis [12,13]. Fibrin thrombi in the small 
arterial vessels were observed in 87% of the analyzed samples. 
Of note, pulmonary thrombosis was reported in 15% of COVID- 
19 patients. This incidence, which is similar to that reported in 
patients with SARS, is more than twofold higher than that 

reported in patients with H1N1 influenza (6% of patients) [14]. 
These vascular microthrombi are particularly present in areas of 
diffuse alveolar damage and support the hypothesis that COVID- 
19 is complicated by coagulopathy and thrombosis [15].

In the context of this pandemic, platelets can be the poten
tial pathophysiologic drivers of disease associated coagulopa
thy and thrombotic complications. The critical role of 
platelets during infections is well known [16]. It has been 
reported that several viruses, including influenza A virus, 
coronavirus, dengue virus human immunodeficiency virus 
type-1 (HIV-1) and adenovirus, are able to bind and activate 
platelets [17]. On the one side, however, the role of platelets 
may be beneficial, as they can reduce the circulating viral 
load by engulfing viruses and presenting them to neutrophils, 
as has been demonstrated for the influenza A virus [18]. On 
the other side, activated platelets can support the inflamma
tory process and tissue injury by worsening the pathological 
scenario. These cells may also foster the coagulation process 
by providing both tissue factor, the key protein for the initia
tion of the coagulation cascade, and the procoagulant surface 
for the assembly of coagulation factors and trigger the throm
botic process [19,20]. In addition, platelets can amplify 
inflammation through the release of soluble mediators from 
intracellular granules, the production of microvesicles and the 
interaction with leukocytes [21,22]. As a proof of these 
assumptions, an increased deposition of platelets and mega
karyocytes [23,24] as well as an increased number of platelet- 
leukocyte aggregates has been reported within lung capillaries 
[15,25].

In this review, we will focus on the platelet alterations 
associated with COVID-19 disease summarizing changes 
occurring in platelet number, size, and function that recapitu
late an overall state of platelet activation. We will also gain 
insight into the pharmacological strategies to manage platelet 
activation during COVID-19.45
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Alteration in Platelet Number and Size

Thrombocytopenia is a hallmark of various infectious diseases 
including MERS and SARS, pathologies in which it was recorded 
in 37% and 50% of affected patients, respectively [26,27]. It is 
therefore not surprising that a reduction, although mild, in platelet 
count is common feature also in patients with severe COVID-19 
infection, with a 5–41% incidence depending on disease severity 
[28]. Several studies, included in a meta-analysis on 7613 
COVID-19 patients, reported a significant relationship between 
thrombocytopenia and the clinical severity and mortality of 
COVID-19 [29]. Although platelet counts are often within refer
ence ranges and severe thrombocytopenia rarely occurs, reduction 
of platelet count was identified as a poor prognostic factor [30]. 
A platelet count <100*109/L in the last 24 h before death in 60% 
of patients has been reported [31]. This dynamic change in plate
let count seems to be peculiar of SARS-Cov-2 infection being not 
reported with other coronavirus strains [32].

Although changes in platelet number during the course of 
disease are multifactorial, in the context of infectious diseases 
a reduced platelet count may be due to decreased production of 
platelets in damaged lungs, as already described for SARS 
[33,34]. Alternatively, an increased platelet clearance may occurs 
as a consequence of the activation of the immune system that 
induces an antibody-mediated phagocytic response [35]. Finally, 
the most likely hypothesis is that thrombocytopenia may be 
caused by increased consumption of platelets due to microtrombi 
formation [34]. This hypothesis is strengthened by the evidence 
that in COVID-19 patients there is a trend toward higher levels of 
immature reticulated platelets, indicative of active cell production 
by megakaryocytes in response to the increased platelet consump
tion [28]. This higher platelet turnover leads to the release of 
young macrothrombocytes that, as such, may account for the 
increased mean platelet volume found in COVID-19 patients 
[36–38].

Features of Platelet Activation in COVID-19

Platelet activation is a common feature of infection diseases and 
the degree of platelet activation follows the symptoms’ severity. 
Several reports have shown that platelets from COVID-19 
patients are hyperreactive,119 releasing into the blood both 
dense and alpha granules’ cargo [38–44]. By measuring platelet 
adhesion to collagen under flow, Zaid et al. reported that both in 
severe and non-severe COVID-19 patients platelets are more 
prone to clotting []. Platelet aggregation is also higher than in 
healthy subjects especially when suboptimal concentrations of 
agonist are used. This lower platelet stimulation threshold in 
COVID-19 patients has been reported also by Manne et al., 
suggesting that infection primes platelet hyper- 
reactivity. Interestingly, platelet aggregation is not increased 
when induced by stronger stimuli [46]. Furthermore, Pulcinelli 
et al. reported that it is even reduced in critically ill patients []. 
A similar behavior, together with an increased platelet agglutina
tion – mediated by high levels of von Willebrand factor – has 
been previously described in patients with dengue virus infection 
[]. This finding may be fitted with data reported in other studies 
showing that the expression of activated glycoprotein IIbIIIa, the 
gold standard marker of platelet activation, is not altered [38,46].

Platelets respond to the increased systemic inflammation 
caused by COVID-19 associated cytokine storm increasing the 
interaction with leukocytes mainly through P-selectin. In accor
dance with data reported by other research groups [41,47], we 
have recently highlighted that in COVID-19 patients the higher 
levels of P-selectin, compared to healthy subjects, expressed on 
the platelet surface resulted in an enhanced (about 10-fold) 

interaction with neutrophils and monocytes. Of note, this 
increased platelet–leukocyte interaction is a feature common 
also to other virus infection [48,47]. Interestingly, the number of 
platelet-leukocyte aggregates were significantly lower in critically 
ill patients compared to those with less severe infection and their 
levels were negatively associated with plasma levels of IL-6, 
CRP, and D-dimer, leading to the speculation of a possible invol
vement of platelet-leukocyte conjugates in microthrombotic 
events [38]. This hypothesis is supported by results from post
mortem studies demonstrating the presence of platelets, neutro
phils, and thrombogenic neutrophil-extracellular traps (NETs), 
whose formation is sustained by platelet-neutrophil aggregates 
in the lung of COVID-19 patients [12,49,50].

Platelet–neutrophil interaction may also be responsible for the 
release of NETs, which are highly prothrombotic and, when 
dysregulated, able to induce intravascular coagulation. It has 
been shown indeed that sera from patients with COVID-19 con
tain highly specific markers for NETosis [51] and that NET 
formation is associated with thrombotic events in COVID-19 
patients [40].

Platelet activation in COVID-19 patients also resulted in an 
increased release of extracellular vesicles (EVs) that might con
tribute to the COVID-19 pathogenesis [38,43,44]. In the last 
years, EVs received great attention as potential biomarkers for 
several human diseases including infections [52,53]. In the con
text of COVID-19, platelet EVs are strongly associated with 
SARS-CoV-2 infection, being higher in SARS-CoV-2 positive 
patients, regardless of the severity of the disease, compared to 
negative ones. This association is independent from any confoun
ders making EVs a good diagnostic marker as indicated by ROC 
curve analysis [54].

Coagulation Abnormalities and Platelet Procoagulant 
Phenotype

Among the pathways and mediators that are dysregulated in 
COVID-19, coagulation disorders are prominent. The clotting 
abnormalities include prolonged prothrombin time (PT) and par
tial thromboplastin time (PTT), increased fibrinogen as well as 
D-dimer levels that are linked with a higher mortality rate [7,55]. 
An increased resistance to fibrinolysis has also been observed 
using viscoelastometric tests reinforcing the procoagulant state 
described in COVID-19 [56,57]. Patients with COVID-19 experi
ence coagulopathies among which pulmonary thromboembolism 
[58,59], despite LMWH thromboprophylaxis [60] and a not well- 
defined intravascular coagulation syndrome, characterized by 
thrombotic events in the absence of a renal consumption coagulo
pathy and with an apparent lack of bleeding [61]. In a recently 
published meta-analysis including 20 studies in COVID-19 
patients, Di Minno and collaborators have shown that the preva
lence of venous thromboembolism (VTE) is ~30%. This percen
tage rises to 37% when considering only studies in which 
systematically the screening for thrombosis was carried out [62]. 
However, the complex relationship between SARS-CoV-2 infec
tion and hemostatic imbalance observed in COVID-19 patients is 
not fully explained by the traditional risk factors for VTE and 
other factors seem to be responsible for the observed coagulo
pathy [62]. Among these, the procoagulant activity of platelets 
might have particular relevance. In addition to their role in pri
mary hemostasis, platelets are indeed deeply involved in second
ary hemostasis, providing not only the surface for the assembly of 
coagulation factors but also tissue factor (TF), the key protein 
required to initiate thrombin generation [19]. TF is 
a transmembrane protein that binds factor VII/VIIa leading to 
activation of the extrinsic coagulation pathway. TF-dependent 
activation of coagulation has been described in several viral 
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infections including Herpes simplex virus [63], human immuno
deficiency virus (HIV) [64], dengue [65], or Ebola [66]. Different 
studies have reported increased TF expression in monocytes [41], 
endothelial cells [67] and extracellular vesicles [68] also in the 
context of SARS-CoV-2 infection, leading to the speculation that 
TF may be involved in the prothrombotic phenotype of this 
disease. We have provided evidence that in COVID-19 patients 
the number of TF expressing platelets is more than twice greater 
than that measured in healthy subjects, being higher in critically 
ill patients. Of note, the protein is functionally active and able to 
sustain thrombin generation [38]. Unlike the TF expressing plate
lets, the number of PS positive platelets in COVID-19 patients 
was comparable to that measured in healthy donors [15,69]. 
Consistent with the lack of PS exposure, dual-agonist stimulation 
of platelets from COVID-19 patients did not result in a significant 
loss of mitochondrial membrane potential [69]. Of interest, 
Althaus and collaborators highlighted that COVID-19 patients 
with diagnosis of thromboembolic complications had signifi
cantly higher PS externalization compared with those without 
thrombotic events. It remains unclear whether apoptosis alone is 
sufficient to support thromboembolic status in these patients or 
rather this is dependent on the generalized platelet activation state 
of SARS-CoV-2 disease [70].

The contribution of the extrinsic pathway to thrombosis in 
COVID-19 patients is further supported by data showing 
a significant increase in circulating extracellular vesicle- 
associated TF activity, which is linked with the severity of disease 
and mortality [71]. Of note, in COVID-19 patients, platelets 
together with erythrocytes are the main source of TF-positive 
MVs [38].

Potential Mechanisms Involved in Platelet Alterations in 
COVID-19

Several factors may contribute to the induction of the platelet 
hyperreactive state described in COVID-19 (Figure 1).

The activation of the immune system, which involves the 
production of cytokines and immune complements, whereas 
being essential for the resolution of the infection, can be the 
cause of immunothrombosis sustained by platelet activation. 
Circulating platelets can indeed be activated by soluble molecules 
(e.g. fibrinogen) and inflammatory cytokines, among which IL-6, 
IL-1b, and TNF-alpha, whose concentrations are significantly 
elevated in the plasma of COVID-19 patients [72]. Exposure of 
whole blood to IL-6 and IL-1β can lead to the amplification of 
platelet activation in response to common agonists, such as ADP 
or thrombin. In this regard, we have recently characterized the 
in vitro IL-6-mediated platelet stimulation, in terms of platelet-TF 
and P-selectin induction as well as of platelet-leukocyte forma
tion. This cell activation, which is prevented by the presence of an 
IL-6 receptor antagonist, such as tocilizumab, closely mirrors the 
in vivo platelet activation observed in COVID-19 patients [38].

A second mechanism of platelet activation may lay in an 
alteration of their transcriptome. Infectious diseases including 
dengue, influenza, and sepsis are indeed associated with dynamic 
changes in platelet gene expression [73–75]. Similarly, in 
COVID-19 virus proliferation within lung tissue may induce 
activation of megakaryocyte leading to the production of platelets 
with a significantly altered gene expression profile. Of note, the 
COVID-19-associated transcriptome differs by hundreds of tran
scripts from that observed in influenza and sepsis suggesting 
a unique transcriptional footprint that characterizes SARS-COV 
-2 infection [46].

Another hypothesis is that numerous COVID-19 comorbid
ities, typically associated with platelet function alterations, can 
cause a primed platelet state that worsens COVID-19 illness. 
Among these, metabolic syndrome, diabetes, gut dysbiosis, 

Figure 1. Platelet alterations in COVID-19 disease. As the SARS-Cov-2 infection progresses, the uncontrolled overproduction of inflammatory 
cytokines (1) may contribute to platelet activation resulting in increased exposure of P-selectin and Tissue Factor on the surface of circulating platelets. 
Platelet hyperreactivity may also be a consequence of the effect of SARS-CoV-2 on megakaryocytes. This results in the production of activated 
platelets characterized by significant changes in their transcriptome (2). Diabetes or cardiovascular diseases, characterized di per se by a sustained 
platelet activation state, may determine the presence in circulation of COVID-19 patients, of “primed platelets” more prone to activation (3). In 
addition, the altered platelet activation can be a direct consequence of the virus activity that, once internalized, can determine a Toll like receptor 
7-mediated release of platelet granules (4). Finally, activation of endothelial cells, which is another hallmarks of COVID-19 disease, may result in a NO 
pathway dysfunction (5) that can promote and sustain further platelet activation. These mechanisms, which are not reciprocally exclusive, are 
responsible for (a) an increase in circulating procoagulant platelets expressing Tissue Factor, which are therefore able to support thrombin generation, 
and P-selectin-positive platelets available for the formation of heteroaggregates with monocytes and neutrophils (b). The release of alpha and dense 
granule cargo as well as the production of extracellular vesicles are further consequences of platelet activation (c,d). The interaction between platelets 
and neutrophils causes the formation of highly prothrombotic NETs (e) that can support the formation of fibrin-rich microthrombi that have been 
shown in the lung of COVID-19 patients (f,g).
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cardiovascular disease, cancer, and aging are all conditions known 
to alter platelet functions [76–78].

Although SARS-CoV-2 RNA in blood is undetectable [38] or 
present at very low levels in less than 13% of patients with non- 
severe or severe COVID-19 [79,80], the possibility that the virus 
can directly activates platelets and/or megakaryocytes cannot be 
excluded. Indeed, this mechanism has already been described for 
dengue virus [81], influenza virus [48,82], human immunodefi
ciency virus-1 (HIV-1) [83], and encephalomyocarditis 
virus [73].

A putative receptor for the binding and entry of SARS-CoV-2 
virus to cells is angiotensin converting enzyme-2 (ACE2) which 
is also expressed at high levels in the endothelial cells of the lung 
[84]. Many studies, however, did not detect ACE2 mRNA nor 
protein in platelets [43,46] not fully confirming the hypothesis 
that ACE2 is involved in this phenomenon. CD147 may be an 
alternative receptor for SARS-CoV-2 [85] as already described 
for SARS-CoV, HIV-1, and measles [86–88]. Although its invol
vement has been questioned [89], CD 147 is expressed in differ
ent cell types including leukocytes, endothelial cells, and platelets 
[90]. Within blood cells, its expression is higher in males than in 
females, in line with the prevalence of COVID-19 infection in 
male, and it is upregulated in asthma, chronic obstructive pul
monary disease, and obesity, that are reported risk factors under
lying complications in COVID-19 [91]. Another receptor that 
might play a role in this presumed mechanism is furin. This 
convertase is implicated in the activation of the spike S-protein 
of SARS-CoV-2 [92] and is stored in large amount in platelets 
[93]. Langnau et al. have recently provided the evidence that 
plasma levels of furin are associated with poor clinical outcome 
in COVID-19 patients with cardiovascular diseases. The Authors 
did not provide the evidence that platelet-derived furin is impli
cated in SARS-CoV-2 activation, but they speculate that limiting 
its release by inhibiting platelet activation with antithrombotic 
drugs may be an effective strategy to prevent worst outcome [93].

Once internalized within platelets, the single strand viral RNA 
can interact with the Toll-like receptor 7 (TLR7) in the lysosome. 
Activation of TLR7 may then lead to the release of alpha granules 
with exposure of P-selectin and CD40L, which mediate interac
tion with leukocytes. In addition, TLR7 may also lead to the 
release of complement C3, which promotes the process of neu
trophil NETosis [94,95].

Endothelial dysfunction, extensively described in COVID-19, 
might also be involved in the observed platelet changes. 
Endothelium synthesis of nitric oxide (NO) and prostaglandin 
I2, two major molecules controlling platelet activation, is indeed 
deeply affected in COVID-19 patients. In these subjects, a marked 
reduction of arginine, which is involved in NO production and 
whose metabolism is modified by several viral infections [96], as 
well as a significant increase of ADMA, a specific NOS inhibitor, 
has also been reported [38]. The endothelial activation in 
COVID-19 patients is also documented by the significantly 
increased levels of prostacyclin that, as previously reported in 
other clinical settings, reflects the homeostatic response to 
inflammation and platelet activation [97].

Finally, as already described in influenza [98], it may also be 
hypothesized that, as the infection progresses and the adaptive 
immune response develops, platelets become further activated as 
a consequence of the interaction between platelet FcγRIIa and 
immunoglobulin G antibodies [99].

Possible Pharmacological Approaches

Despite today several different therapeutic strategies are used to 
treat SARS-CoV-2 infection, there is not yet a clear consensus on 
the pharmacological treatment of this disease (COVID-19 

Treatment Guidelines Panel, NIH. Available at https://www.cov
id19treatmentguidelines.nih.gov/). To rapidly identify successful 
therapies to reduce COVID-19 mortality and morbidity, particular 
attention has been paid to the repurposing of existing drugs. The 
current therapeutic strategies are aimed at limiting the dysfunctional 
processes detected in COVID-19. Antiviral drugs are obviously 
used to inhibit replication of SARS-CoV-2. Immunomodulatory 
and anti-inflammatory treatments have proven effective in inhibit
ing the altered host immune response that leads to the exaggerated 
release of pro-inflammatory cytokines. Data summarized in two 
systematic reviews suggest that corticosteroid use in patients with 
severe COVID-19 disease is associated with reduced mortality 
[100,101]. Similarly, administration of tocilizumab, an anti- 
interleukin-6 receptor monoclonal antibody, reduced mortality, 
and promoted clinical improvement in patients with high concen
tration of circulating IL-6 [102]. Finally, evidence that the patho
biology of COVID-19 involves thrombosis has led to consideration 
of the possible efficacy of antiplatelet therapy.

Aspirin and P2Y12 Antagonists

In addition to the well-established anti-inflammatory and antith
rombotic properties [103], aspirin is effective in reducing replica
tion, propagation, and infectivity of several DNA and RNA 
viruses, including different human coronavirus (such as the 
human CoV-229E and the MERS-CoV) [104,105].

Additionally, aspirin is able to reduce NETs’ release in a sepsis 
model, thus limiting their potential to induce thrombin generation 
and drive intravascular coagulation [106]. Data in the literature 
reported that chronic intake of aspirin (100 mg/day) was effective 
in reducing mortality rate in patients with community-onset pneu
monia compared to those not receiving the antiplatelet treatment 
(HR 2.07; 95% CI; 1.08-.3.98; p = .029; for all-cause mortal
ity) [107].

A recent meta-analysis of 10 cohort studies enrolling more 
than 680,000 patients with sepsis indicated that aspirin, adminis
tered before and after the onset of sepsis, reduced the rate of 
admission to ICU and of hospital mortality [108]. Aspirin is also 
effective in reducing the incidence of ARDS (OD 0.59, 95% CI, 
0.36–0.98) [109]. Even clopidogrel administration, in association 
with an antiviral agent, improved survival rate during influenza 
infection in mice [47].

Altogether, these evidences provide the rationale for hypothe
sizing a benefit of pharmacological treatment of SARS-CoV-2 
infection with these drugs. Thus, targeting both platelet activation 
as well as virus replication, antiplatelet drugs can be an effective 
therapeutic option.

To date, there are few observational studies reporting the effect 
of antiplatelet treatment with aspirin and/or antiP2Y12 on 
COVID-19. In a very recent retrospective study, Chow et al. 
examined the association between aspirin use and the clinical 
outcome in 412 hospital-admitted COVID-19 patients. Even 
though the patients treated with the antiplatelet drug had higher 
rates of cardiovascular risk factors and coronary artery disease, 
aspirin treatment was independently associated with a reduced 
risk of mechanical ventilation, intensive care unit admission, as 
well as in-hospital mortality [110]. Accordingly, Liu and colla
borators showed that low-dose aspirin treatment (100 mg/day) 
among hospitalized COVID-19 patients was associated with 
lower risk of mortality compared with a matched group of non- 
aspirin users [111]. Viecca et al. showed that the combined use of 
several antiplatelet therapies in severe COVID-19 patients with 
a thrombophilic profile improved gas exchange efficiency and 
increased arterial oxygenation [112]. Finally, we have provided 
the evidence that in vitro aspirin and the treatment with a P2Y12 
inhibitor prevent platelet activation induced by plasma of 
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COVID-19 patients [38]. The evidence that inhibition of P2Y12 
affects the release of sIL-6 R, the specific soluble receptor needed 
for IL-6 provides another possible mechanism underpinning the 
clinical efficacy observed in the treatment of COVID-19 [113].

Other pleiotropic effects can also be involved in the effective
ness of aspirin treatment, such as its effects on endothelial func
tion. Aspirin increases NO availability by acetylating endothelial 
NO synthase (eNOS), by increasing the activity of dimethylargi
nine-dimethylaminohydrolase, which is responsible for the degra
dation of ADMA and by promoting the generation of 15-epi 
lipoxin A4, which increases eNOS activity [114,115].

Finally, results obtained in a retrospective population‐based 
cross‐sectional study by Merzon and collaborators have recently 
suggested that preexisting treatment with low-dose aspirin might 
have a protective effect on COVID-19 susceptibility and disease 
duration among COVID-19-infected subjects [116]. This finding, if 
confirmed by appropriate trials, would even pave the way to the use 
of low-doses of aspirin for the prevention of COVID-19 infection.

The effectiveness of antithrombotic therapy certainly requires 
further investigation. Results of the RECOVERY trial have 
recently become available (currently unpublished and under 
peer-review) [117]. The study included more than 15000 
patients randomized to receive aspirin or usual care alone. The 
data suggest that aspirin use is associated with an absolute 
reduction in thrombotic events (4.6% vs 5.3%) although it is 
not associated with a reduction in 28-day mortality. It should be 
mentioned, however, that, as the Authors stated, the rate of 
thromboembolic events in the studied population was lower 
compared to previous reports [118,119]. It is plausible therefore 
that aspirin might have more meaningful benefit in a higher 
thrombotic risk population. Several other randomized clinical 
trials are, however, currently in progress to clarify whether the 
use of antiplatelet drugs, such as aspirin (ClinicalTrials.gov 
Identifier: NCT04324463, NCT04365309, NCT04324463, 
NCT04363840) or clopidogrel (ClinicalTrials.gov Identifier: 
NCT02735707, NCT04409834; NCT04333407), could be 
potentially useful to mitigate the clinical consequence of SARS- 
CoV-2 infection.

Conclusion

In summary, during the acute phase of SARS-Cov-2 infection, 
platelets are characterized by an activated phenotype with 
enhanced TF expression, and release of extracellular vesicles 
together with a pronounced increase in the number of platelet- 
leukocyte aggregates. Activated platelets interact with neutro
phils, promoting the process of NETosis, and with 
a dysfunctional endothelium inducing a prothrombotic phenotype. 
As the infection progresses, the cytokine storm first, and the 
interaction with antibody immunoglobulins later on can amplify 
platelet activation ultimately responsible for the prothrombotic 
scenario characterizing SARS-CoV-2 infection.

Data available on the effectiveness of aspirin and anti P2Y12 
provide a strong rationale for proposing the use of antiplatelet 
drugs in the treatment of COVID-19.
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