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Human cell division is a highly regulated process that relies
on the accurate capture and movement of chromosomes to the
metaphase plate. Errors in the fidelity of chromosome con-
gression and alignment can lead to improper chromosome
segregation, which is correlated with aneuploidy and tumori-
genesis. These processes are known to be regulated by extra-
cellular signal-regulated kinase 2 (ERK2) in other species, but
the role of ERK2 in mitosis in mammals remains unclear. Here,
we have identified the dual-specificity phosphatase 7 (DUSP7),
known to display selectivity for ERK2, as important in regu-
lating chromosome alignment. During mitosis, DUSP7 bound
to ERK2 and regulated the abundance of active phospho-ERK2
through its phosphatase activity. Overexpression of DUSP7,
but not catalytically inactive mutants, led to a decrease in the
levels of phospho-ERK2 and mitotic chromosome misalign-
ment, while knockdown of DUSP7 also led to defective chro-
mosome congression that resulted in a prolonged mitosis.
Consistently, knockdown or chemical inhibition of ERK2 or
chemical inhibition of the MEK kinase that phosphorylates
ERK2 led to chromosome alignment defects. Our results sup-
port a model wherein MEK-mediated phosphorylation and
DUSP7-mediated dephosphorylation regulate the levels of
active phospho-ERK2 to promote proper cell division.

Critical to the fidelity of cell division is the accurate move-
ment and alignment of chromosomes at the metaphase plate
and their segregation during anaphase. Errors in these processes
are linked to human developmental disorders and tumorigen-
esis (1). Previous research has underscored the importance of
protein phosphorylation as a molecular switch to regulate the
activity of cell division enzymes (2, 3). This is highlighted by the
growing list of essential mitotic kinases and their substrates that
carry out functions related to bipolar spindle assembly,
kinetochore-microtubule attachment, chromosome con-
gression, and chromosome segregation (4–6). Beyond well-
established mitotic kinases, less studied phospho signaling
pathways have been implicated in cell division including the
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Wnt, mTOR, andMAPK/ERK pathways, among whichMAPK/
ERK is phosphorylated by MEKs (mitogen-activated protein
kinase or extracellular signal–regulated kinase kinase) to regu-
late downstream transcription factors (7–9). In Xenopus laevis
ERK2 (extracellular signal–regulated kinase 2) is critical for the
spindle assembly checkpoint (10–12). In mammalian cells
ERK1/2 activity is necessary for theG1/S transition and early G2
events for timely entry into mitosis (13, 14). However, whether
human ERK2 is active in mitosis and what roles it plays in hu-
man somatic cell division remains ambiguous.

Our RNAi screen for novel factors important for cell division
identified the dual-specificity phosphatase 7 (DUSP7/MKP-X).
DUSP7, DUSP6/MKP-3, and DUSP9/MKP-4 are members of
the cytoplasmic ERK specific mitogen-activated protein kinase
phosphatases (MKPs) subfamily that share similar amino acid
sequences, subcellular localizations, and substrate preferences
(15–17). DUSPs can dephosphorylate both tyrosine and serine/
threonine residues and are important modulators of signaling
pathways that regulate cellular processes such as proliferation
and apoptosis (16, 17). DUSP7 exhibits selectivity toward ERK1/
2 (18–20) and is a regulator of oocyte meiosis (21–23). DUSP7
contains an N terminal noncatalytic Rhodanese-like domain
and a C-terminal dual-phosphatase domain. A conserved Ki-
nase Interaction Motif (KIM) in the noncatalytic domain is
essential for the interaction between MKPs and ERK (19, 24).
Two key amino acid residues within the conserved catalytic
sequence (H/V)C(X5)R(S/T) of the phosphatase domain, C331
and R337, are important for DUSP7’s phosphatase activity (25,
26). However, in contrast to MKPs such as DUSP6 and DUSP9,
little is known about the physiological functions of DUSP7.

Here, we have determined that MEK phosphorylation ac-
tivity and DUSP7 phosphatase activity regulate the levels of
active phospho-ERK2, which is important for the fidelity of
chromosome alignment and segregation during cell division.

Results

DUSP7 interacts with ERK2 and regulates the levels of
phospho-ERK2

To understand the role of DUSP7 during cell division, we
began by defining the protein–protein interaction and protein
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ACCELERATED COMMUNICATION: DUSP7 regulates ERK2 to promote cell division
proximity networks of DUSP7 in mitotic cells. Localization
and affinity purification (LAP = GFP-Tev-S-tag)-tagged and
biotin identification 2 (BioID2)-tagged DUSP7 inducible HeLa
stable cell lines were used to express LAP/BioID2-DUSP7 and
biochemical purifications were analyzed by mass spectrometry.
In-house R scripts were used to analyze the mass spectrometry
data and protein interaction and proximity networks were
visualized with RCytoscape JS (Fig. S1, A and B). Further, we
applied Gene Ontology (GO) terms (mitotic spindle; kineto-
chore and chromosome segregation) (Fig. S1C) and CORUM
complex annotation analyses to these networks (see
Experimental procedures for details). These analyses deter-
mined that ERK2 (aka MAPK1) was also associating with
DUSP7 in mitosis (Fig. 1, A and B). Next, we validated the
DUSP7-ERK2 mitotic interaction by immunoprecipitation (IP)
experiments using mitotic cell extracts from Taxol- or
nocodazole-arrested LAP-DUSP7 stable cell lines (Fig. 1C).

The KIM domain was shown to be essential for the interac-
tion of some DUSPs (DUSP1, 4, 6) with ERK2 (24, 27, 28), but it
remained unknown which domain of DUSP7 bound to ERK2
and whether its KIM was required for binding to ERK2 or its
ability to dephosphorylate ERK2. To better understand the
DUSP7-ERK2 interaction, we generated DUSP7 KIM mutants
R102A, R103A, and R102,103A double mutants (Fig. 1D and
Fig. S2, A–C). IP experiments from mitotic cells transiently
transfected with DUSP7 or DUSP7 KIM mutants showed that
ERK2 IPed with DUSP7 but not DUSP7 KIMmutants (Fig. 1E).
To further define the interaction domains of DUSP7 involved in
ERK2 binding, we generated a series of LAP-DUSP7 stable cell
lines expressing DUSP7 truncations (Fig. S3A). ERK2 failed to
associate with DUSP7 truncations (Fig. S3B), likely due to
DUSP7 destabilization. Next, we sought to determine the sig-
nificance of the DUSP7-ERK2 interaction. Consistent with the
abolished interaction between DUSP7 KIM mutants and ERK2
(Fig. 1E), DUSP7-R103A and DUSP7-R102,103A double mu-
tants showed a slightly reduced ability to dephosphorylate ERK2
in mitotic HeLa cells (Fig. 1F and Fig. S3, C–E). However,
DUSP7-R102A could still dephosphorylate ERK2 (Fig. 1F); this
phenomenon was also observed for conserved KIM mutations
in DUSP6 (29). Similarly, IP experiments using in vitro
expressed proteins or mitotic cell extracts from DUSP7 or
DUSP7 catalytic dead mutant (C331A and R337A) (Fig. S2, D–
G) cell lines showed that ERK2 IPed with DUSP7 and DUSP7-
R337A but not DUSP7-C331A (Fig. 1, G and H, Fig. S3, F–H).
While overexpression of DUSP7 led to the absence of phospho-
ERK2, overexpressed DUSP7-R337A or DUSP7-C331A showed
a reduced ability to dephosphorylate ERK2 inmitotic HeLa cells
(Fig. 1I). Together, these results showed that DUSP7 was
binding to ERK2 during mitosis and that the DUSP7 KIM was
required for this interaction, while the DUSP7 catalytic sites
(C331 and R337) within its phosphatase domain were important
for regulating the levels of active phospho-ERK2.

Knockdown of DUSP7 leads to chromosome alignment and
segregation defects

To understand the importance of DUSP7’s function in
regulating the levels of active phospho-ERK2 during cell
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division, we first identified siRNAs capable of depleting DUSP7
levels by immunoblot analysis (Fig. 2A and Fig. S4A) and
DUSP7 mRNA expression by RT-qPCR (Fig. S4, B and C).
Knockdown of DUSP7 led to a failure to dephosphorylate
ERK2 and an increase in phospho-ERK2 levels (Fig. 2A). We
then analyzed the consequences of depleting DUSP7 during
metaphase (Fig. 2B) and postmetaphase (Fig. 2E) with immu-
nofluorescence (IF) microscopy. DUSP7 depletion led to an
increased percentage of defective mitotic cells with chromo-
some misalignment (siDUSP7 = 44.6 ± 5.6, p < 0.05 compared
with siControl = 29.1 ± 2.9) (Fig. 2, C and D). These defective
cells also showed defects in spindle organization including
unfocused and multipolar spindles (Fig. 2C). The chromosome
misalignments defects in siDUSP7 cells translated into an in-
crease in the percentage of lagging chromosomes during
anaphase (siDUSP7 = 24.9 ± 3.7, p < 0.05 compared with
siControl = 13.45 ± 3.1) (Fig. 2, F and G). The mitotic defects
were rescued by an siRNA resistant DUSP7 (Fig. S2H)
expressed at near endogenous levels but not DUSP7 catalytic
dead mutants (Fig. S4, D–F). Similar results were observed and
statistically analyzed in U2OS cells (Fig. S4, G–I) and
HCT116 cells (Fig. S4, J–L).

Next, we analyzed whether DUSP7 depletion could affect
the timing of cell division by live-cell time-lapse microscopy in
HCT116 GFP-H2B cells (Fig. 2H). This analysis showed that
depletion of DUSP7 led to a marked increase in the time from
chromosome condensation to chromosome segregation
(siDUSP7 = 54.0 ± 38.3 min, p < 0.01 compared with siCon-
trol = 38.0 ± 19.1 min) (Fig. 2, I–K; Movies S1–S4). Together,
these results showed that depletion of DUSP7 led to a slowed
mitosis where cells failed to properly align and segregate
chromosomes.

Downregulation of ERK2 leads to chromosome alignment
defects

Next, we sought to determine if ERK2 was important for
human cell division. First, we depleted endogenous ERK2 by
RNAi (Fig. 3A) and analyzed the consequences during cell
division (Fig. 3B) with IF microscopy. Depletion of ERK2 led to
an increased number of cells with defects in chromosome
alignment during metaphase (siERK2 = 52.1 ± 2.8, p < 0.01
compared with siControl = 30.6 ± 3.5) (Fig. 3, C and D), which
was consistent in U2OS cells (Fig. S5, A and B) and
HCT116 cells (Fig. S5, C and D). ERK2 depletion also led to an
increase in interphase cells that were multinucleated or con-
tained micronuclei (siERK2 = 22.6 ± 6.2, p < 0.01 compared
with siControl = 3.8 ± 0.8) (Fig. S5, E and F).

Since phospho-ERK2 levels were lower in mitosis than in
G1/S phase (Fig. S5, G–J), we asked if ERK2 phosphorylation
or ERK2 kinase activity was important for cell division. HeLa
cells were treated with a MEK inhibitor U0126 (30, 31) or the
ERK2 ATP-competitive inhibitor FR180204 (32) and analyzed
by western blotting and IF microscopy (Fig. 3E). Phospho-
ERK2 levels decreased in U0126-treated cells, but were not
affected in FR180204-treated cells (Fig. 3F). In comparison to
the control DMSO treatment, cells treated with U0126 or
FR180204 showed an increase in chromosome alignment
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Figure 1. DUSP7 interacts with ERK2 and regulates the levels of phospho-ERK2. A and B, DUSP7 protein–protein interaction (PPI) (A) and protein
proximity (B) networks generated using mitotic spindle GO annotations and CORUM complex annotation analyses. Yellow stars indicate the bait protein
DUSP7; red circles indicate putative interactors; blue squares indicate protein complexes; red dashed circles highlight ERK2 (aka MAPK1). C, ERK2 immu-
noprecipitates (IPs) with DUSP7 (D7) in early (nocodazole (Noc) arrested cells) and mid (taxol (Tax) arrested cells) mitosis. D, schematic of DUSP7 domain
structure and key sites. The number of amino acids are indicated for each domain. DUSP7 KIM (R102, R103) and catalytic sites (C331, R337) are in red. E, the
DUSP7 KIM mediates the DUSP7-ERK2 mitotic interaction. F, the DUSP7 KIM is dispensable for its phosphatase activity. Ratios below immunoblots indicate
normalized phospho-ERK2 levels. G and H, the DUSP7-ERK2 mitotic interaction is influenced by DUSP7’s catalytic activity. In (G) HA-ERK2, Flag-DUSP7, Flag-
C331A, Flag-R337A and Flag-GFP (negative control) were IVT expressed and incubated with anti-FLAG M2 magnetic beads in IP assays. In (H) LAP-only, LAP-
DUSP7-WT, LAP-C331A, and LAP-R337A stable cell lines were induced before being harvested for S-tag pull downs. Ratios below immunoblots indicate
relative protein–protein binding affinity. I, DUSP7 regulates mitotic phospho-ERK2 levels through its phosphatase activity. Phosphatase inhibitor (PI) in the
second lane was added when lysing the cells. Numbers on the right side of immunoblots indicate molecular weights of proteins. All cell-based experiments
and immunoprecipitations were carried out in HeLa cells.
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Figure 2. Knockdown of DUSP7 leads to chromosome alignment and segregation defects. A, siRNA knockdown of endogenous and overexpressed
DUSP7. Numbers on the right side of immunoblots indicate molecular weights of proteins. Red arrow indicates endogenous DUSP7 band. B, schematic of IF
microscopy experiment performed in (C). C, knockdown of DUSP7 leads to chromosome misalignment in metaphase. HeLa cells were treated with negative
control siRNA or siDUSP7 before being fixed and costained with anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. D, quantification
of the percentage of cells with chromosome misalignment in metaphase (y-axis) for conditions shown in (C) (x-axis). E, schematic of IF microscopy
experiment performed in (F). F, knockdown of DUSP7 leads to an increase in lagging chromosomes in anaphase. HeLa cells were treated with negative
control siRNA or siDUSP7 before being fixed and costained with anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. White arrow
shows the lagging chromosome. G, quantification of the percentage of cells with lagging chromosome in anaphase (y-axis) for conditions shown in (F)
(x-axis). H, schematic of live-cell time-lapse microscopy experiment performed in (I) and (J). I and J, knockdown of DUSP7 leads to a slowed mitosis. Live-cell
time-lapse microscopy of HCT116 GFP-H2B cells treated with negative control siRNA (I) and siDUSP7 (J) undergoing cell division. K, quantification of the
timing of mitosis from chromosome condensation to chromosome segregation (y-axis) for the conditions shown in (I) and (J) (x-axis). Scale bars: 10 μm. *p <
0.05, **p < 0.01 (unpaired two-tailed Student’s t-test).
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errors (U0126 = 48.7 ± 12.7, p < 0.05 and FR180204 = 45.6 ±
6.5, p < 0.05 compared with DMSO = 25.8 ± 3.9) (Fig. 3, G and
H), which was consistent in U2OS cells (Fig. S5, K and L) and
4 J. Biol. Chem. (2021) 296 100676
HCT116 cells (Fig. S5, M and N). These results showed that
inhibiting ERK2 phosphorylation, and thereby its activation, or
ERK2’s kinase activity led to chromosome alignment defects.
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Figure 3. Downregulation of ERK2 leads to chromosome alignment defects. A, siRNA knockdown of ERK2. B, schematic of IF microscopy experiment
performed in (C). C, knockdown of ERK2 leads to chromosome misalignment in metaphase. HeLa cells were treated with negative control siRNA or siERK2
before being fixed and costained with anti-ERK2, anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. D, quantification of the
percentage of cells with chromosome misalignment in metaphase (y-axis) for conditions shown in (C) (x-axis). E, schematic of western blotting experiment
performed in (F) and IF microscopy experiment performed in (G). F, HeLa cells were treated with DMSO (as negative control), 50 μM U0126, or 50 μM
FR180204 before being lysed and analyzed by immunoblot. G, inhibition of MEK kinase activity or ERK2 kinase activity leads to chromosome misalignment
in metaphase. HeLa cells were treated with DMSO or the indicated inhibitors, fixed, and costained with anti-CREST and anti-α-tubulin antibodies and the
DNA dye Hoechst 33342. H, quantification of the percentage of cells with chromosome misalignment in metaphase (y-axis) for the conditions shown in (G)
(x-axis). Numbers on the right side of immunoblots indicate molecular weights of proteins. Scale bars: 10 μm. *p < 0.05, **p < 0.01 (unpaired two-tailed
Student’s t-test).
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DUSP7 promotes chromosome alignment in mitosis by
regulating the activity of ERK2

Since DUSP7 dephosphorylated ERK2 (Fig. 1E), we hy-
pothesized that overexpression of DUSP7 would lead to similar
chromosome alignment defects to those observed in cells
treated with the MEK inhibitor U0126. To test this, we over-
expressed GFP-tagged DUSP7 (validated to decrease phospho-
ERK2 levels, Fig. 1, F and I) or the catalytic dead DUSP7-
C331A or DUSP7-R337A mutants (showed minimal effects
on phospho-ERK2 levels, Fig. 1I) and analyzed the cells by IF
microscopy (Fig. 4A). While DUSP7 overexpression led to a
significant increase in chromosome alignment defects, over-
expression of DUSP7-R337A or DUSP7-C331A did not
(DUSP7 = 42.1 ± 6.9, p < 0.05; DUSP7-C331A = 30.6 ± 3.5, p =
0.3183; and DUSP7-R337A = 34.4 ± 5.7, p = 0.1386; compared
to the GFP control = 27.3 ± 3.5) (Fig. 4, B and C), which was
consistent in U2OS cells (Fig. S6A) and HCT116 cells
(Fig. S6B). These results showed that an overabundance of
DUSP7 phosphatase activity led to chromosome alignment
defects.
J. Biol. Chem. (2021) 296 100676 5
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Figure 4. DUSP7 promotes chromosome alignment in mitosis by regulating the activity of ERK2. A, schematic of IF microscopy experiment performed
in (B) and (D). B, overexpression of DUSP7 wild type, but not catalytic dead mutants, leads to chromosome misalignment in metaphase. LAP-only, LAP-
DUSP7-WT, LAP-C331A, and LAP-R337A HeLa stable cell lines were treated as described in (A) before being fixed and costained with anti-GFP, anti-CREST,
and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. C, quantification of the percentage of cells with chromosome misalignment in metaphase
(y-axis) for conditions shown in (B) (x-axis). D, LAP-only, LAP-ERK2-WT, and LAP-ERK2-2A HeLa stable cell lines were treated as described in (A) before being
fixed and costained with anti-GFP, anti-CREST, and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. E, quantification of the percentage of cells
with chromosome misalignment in metaphase (y-axis) for conditions shown in (D) (x-axis). F, model of how DUSP7 regulates the abundance of active
phospho-ERK2 to ensure the fidelity of chromosome alignment. See main text for details. Scale bars: 10 μm. *p < 0.05, **p < 0.01, ns indicates not sta-
tistically significant (unpaired two-tailed Student’s t-test).
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To further understand the phospho-ERK2 equilibrium
regulated by MEK and DUSP7 during cell division, we asked if
the ERK2-DUSP7 interaction was dependent on ERK2 phos-
phorylation. IP experiments using cell extracts from a U0126-
treated LAP-DUSP7 stable cell line showed that ERK2 bound
to DUSP7 in the absence of MEK kinase activity (Fig. S6C).
Since ERK2 is phosphorylated by MEK at T185 and Y187 (33,
34), we generated the nonphosphorylation mimetic mutant
ERK2-2A (T185,Y187A) (Fig. S2, I and J) and analyzed its
binding to DUSP7. In vitro binding experiments showed that
both ERK2 and ERK2-2A bound to DUSP7 (Fig. S6D). Similar
results were observed in IP experiments from HeLa cell ex-
tracts (Fig. S6E). Together, these results showed that DUSP7’s
binding to ERK2 did not require ERK2 to be phosphorylated.
Instead, D318 within the ERK2 common docking (CD) domain
(24) was responsible for its binding to DUSP7 (Fig. S6F). Next,
we examined if phosphorylation of ERK2 at T185 and Y187
was critical for cell division by analyzing cells overexpressing
GFP-tagged ERK2 or the nonphosphorylation mimetic mutant
ERK2-2A (Fig. 4A). Compared with the overexpression of
ERK2, overexpression of ERK2-2A led to a significant increase
in cells with chromosome alignment defects in metaphase
(ERK2 = 28.7 ± 4.4, p = 0.1438; ERK2-2A = 49.7 ± 3.0, p <
0.01; compared with GFP control = 20.6 ± 6.4) (Fig. 4, D and
E), which was consistent in U2OS cells (Fig. S6A) and
HCT116 cells (Fig. S6B). These data indicated that the proper
amount of phospho-ERK2 in cells was critical for chromosome
alignment and segregation during mitosis.

Discussion

This study revealed a novel function for DUSP7 in mitotic
chromosome alignment and established the MAPK/ERK
pathway as being important for cell division. Our data are
consistent with a model where, during a normal mitosis,
MEK’s kinase activity phosphorylates ERK2 and DUSP7’s
phosphatase activity dephosphorylates ERK2 to establish an
equilibrium of active phospho-ERK2 (Fig. 4F middle panel).
This phospho-ERK2 equilibrium is critical for ensuring the
fidelity of chromosome alignment and segregation. Perturbing
the balance of active phospho-ERK2 through MEK inhibition
(Fig. 4F right panel), DUSP7 depletion (Fig. 4F left panel) or
overexpression (Fig. 4F right panel) leads to defects in chro-
mosome alignment. Together, these results establish DUSP7 as
an important mitotic phosphatase that regulates the abun-
dance of active phospho-ERK2 to ensure the fidelity of chro-
mosome alignment and segregation.

Interestingly, although the DUSP7 KIM mutant R102A did
not bind EKR2, it could still dephosphorylate it (Fig. 1F, Fig. S3,
C–E). This is consistent with previous DUSP6 observations,
where theDUSP6KIMmutant R64Adid not bind ERK2 but was
able to dephosphorylate it (29). Therefore, it is possible that
these mutants are capable of transiently interacting with ERK2,
but that the interaction is undetectable in IP experiments.

With the exception of ERK2, there is little known about the
repertoire of DUSP7 substrates, regulators, and interactors. The
GO enrichment analyses of the DUSP7 protein association
network and DUSP7 proximity protein network indicate that
DUSP7 is likely to associatewith numerousproteins that carry out
important functions related to a broad array of cellular processes
including apoptosis, regulation of transcription, and cell division
(Table S1). Therefore, future studies aimed at understanding the
importance of these interactions will further aid our under-
standing of DUSP7’s function in cell division and beyond.

Experimental procedures

Cell culture

Table S2 lists all reagents and tools used in this study. HeLa
cells (ATCC) were grown in DMEM/Ham’s F-12 with
L-Glutamine (Genesee Scientific), U2OS (ATCC) and
HCT116 cells were grown in McCoy’s 5A (Gibco), with 10%
FBS and 5% CO2 at 37 �C. Detailed experimental procedures
for cell synchronization, cell transfection, and inhibitor treat-
ments are in the Supporting information.

Generation of vectors and cell lines

DUSP7 and ERK2 mutants were generated by QuikChange
Lightning Site-Directed Mutagenesis (Agilent). cDNAs of GFP,
DUSP7, DUSP7 KIM mutants, DUSP7 catalytic dead mutants,
ERK2, ERK2-2A, and DUSP7 truncations were cloned into
pGLAP1, pGBioID2, pCS2-HA, or pCS2-Flag via Gateway
LR Clonase reaction (35). pGLAP1-only/DUSP7/DUSP7-
C331A/DUSP7-R337A/ERK2/ERK2-2A/DUSP7-truncations
and pGBioID2-only/DUSP7 were used to generate Dox
inducible HeLa Flp-In T-REx LAP-GFP/DUSP7-C331A/
DUSP7-R337A/ERK2/ERK2-2A/DUSP7-truncations and
HeLa Flp-In T-REx BioID2-only/DUSP7 stable cell lines as
described previously (36, 37) (see Supporting information).

LAP/BioID2 purifications and LC-MS/MS analyses

LAP purifications from Taxol arrested LAP-tagged inducible
stable cell lines were as previously described (36). For BioID2
purifications, biotinylated proteins were purified from Taxol-
arrested BioID2-tagged inducible stable cell lines as described
previously (38, 39).Mass spectrometry analysis was performed on
a Thermo Q Exactive Plus Orbitrap as described previously (40).
Protein–protein interaction information was integrated from the
Biological General Repository for Interaction Datasets (BioGRID
v. 3.5) (41). Protein-complex information was derived from the
Comprehensive Resource of Mammalian Protein Complexes
(CORUMv. 3.0) (42). Selected GO terms (Gene Ontology release
June 2019) (43) were used to analyze the protein–protein in-
teractions based on cellular mechanisms. Affinity-based and
proximity-based networks were generated with RCytoscapeJS
(44, 45). See Supporting information and Table S3–S6 for details
on purifications, mass spectrometry, quantification of data, and
protein interaction and proximity networks.

Immunoprecipitations, in vitro binding assays, and
immunoblot analyses

Immunoprecipitations, in vitro binding assays, and immu-
noblot analyses were performed as described previously (46)
with minor modifications detailed in the Supporting
information.
J. Biol. Chem. (2021) 296 100676 7
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Cell imaging

Fixed-cell and live-cell time-lapse microscopy was carried
out as described previously (47), except that an ImageXpress
XL imaging system (Molecular Devices) was used for live cell
imaging. See Supporting information for details on imaging,
quantification of data, and statistical analyses.

RT-qPCR

RNA from control or DUSP7 siRNA transfected HeLa,
U2OS, or HCT116 cells and DUSP7 cell lines was isolated
with Direct-zol RNA Miniprep Kits (Zymo Research) and
reverse transcribed with UltraScript 2.0 cDNA Synthesis Kit
(Genesee Scientific). qPCR was carried out with the
synthesized cDNA, oligo(dT) primers, and qPCRBIO
SyGreen Blue Mix Lo-ROX (Genesee Scientific) using a CFX
Connect Real-Time PCR Detection System (Bio-Rad). qPCR
data were analyzed with the Livak–Schmittgen method
(2−ΔΔCT) (48).

Antibodies

See Table S2 for a list of the antibodies used for immuno-
blotting and IF microscopy.

Data and code availability

Mass spectrometry data were deposited at the UCSD Center
for Computational Mass Spectrometry MassIVE datasets ftp://
massive.ucsd.edu/MSV000085629/. R scripts used to analyze
and visualize LC-MS/MS results were deposited at
GitHub https://github.com/uclatorreslab/MassSpecAnalysis.
All remaining data are contained within this article.

Supporting information—This article contains supporting
information (46, 49-51).
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