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Simple Summary: Despite numerous benefits of cone-beam computed tomography (CBCT), its
applications to radiotherapy were limited mainly due to degraded image quality. Recently, enhancing
the CBCT image quality by generating synthetic CT image by deep convolutional neural network
(CNN) has become frequent. Most of the previous works, however, generated synthetic CT with
simple, classical intensity-driven loss in network training, while not specifying a full-package of
verifications. This work trained the network by combining feature- and intensity-driven losses and
attempted to demonstrate clinical relevance of the synthetic CT images by assessing both image
similarity and dose calculating accuracy throughout a commercial Monte-Carlo.

Abstract: Deep convolutional neural network (CNN) helped enhance image quality of cone-beam
computed tomography (CBCT) by generating synthetic CT. Most of the previous works, however,
trained network by intensity-based loss functions, possibly undermining to promote image feature
similarity. The verifications were not sufficient to demonstrate clinical applicability, either. This work
investigated the effect of variable loss functions combining feature- and intensity-driven losses in
synthetic CT generation, followed by strengthening the verification of generated images in both
image similarity and dosimetry accuracy. The proposed strategy highlighted the feature-driven
quantification in (1) training the network by perceptual loss, besides L1 and structural similarity
(SSIM) losses regarding anatomical similarity, and (2) evaluating image similarity by feature mapping
ratio (FMR), besides conventional metrics. In addition, the synthetic CT images were assessed
in terms of dose calculating accuracy by a commercial Monte-Carlo algorithm. The network was
trained with 50 paired CBCT-CT scans acquired at the same CT simulator and treatment unit to
constrain environmental factors any other than loss functions. For 10 independent cases, incorporating
perceptual loss into L1 and SSIM losses outperformed the other combinations, which enhanced FMR
of image similarity by 10%, and the dose calculating accuracy by 1–2% of gamma passing rate in
1%/1mm criterion.

Keywords: cone-beam computed tomography (CBCT); synthetic computed tomography (CT);
convolutional neural network (CNN); SSIM loss; perceptual loss; feature mapping ratio (FMR)

1. Introduction

Image-guided radiotherapy (IGRT) is a viable option in modern radiotherapy [1,2].
Such imaging systems as in-room megavoltage CT, CT-on-rails, and cone-beam CT (CBCT)
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are available for IGRT [3]. Of those, CBCT equipped with a flat-panel kV detector and kV
radiation source became a dominant scanning system over the past decades [4–6]. The
strength of the imaging system is to provide a 3D volumetric information between patient
set-up and actual treatment with relatively low radiation exposure than the other options,
followed by facilitating the image matching against the planning CT image.

Over the treatment, the anatomic change derived from a combination of treatment
response, weight loss, and radiation effects on normal tissues is inevitable. The changes in
internal organs and surface must be non-trivial especially in intensity modulated radiother-
apy (IMRT), currently dominant radiation treatment scheme, that try to maximally conform
the dose to the target volume, and avoid organ-at-risks (OARs) than the 3D conformal
radiotherapy (3D-CRT) [7–9]. The notion of on-line and off-line adaptive radiation therapy
(ART) [10] was introduced to take preemptive option on the worst case scenario. Volumetric
image scanning on a daily fractional basis is also able to monitor the internal anatomic
changes, and to help conduct ART in many aspects.

Despite many advantages and potentials above, the limitations of CBCT converge to
the image quality. In contrast with conventional fan-beam CT scanners, the cone-shape
image scanning increases the unwanted, unexpected scatters reaching to the flat-panel,
finally leading to several types of imaging artifacts [11,12]. To overcome the shortcomings
in image quality of CBCT, various techniques have been developed. Histogram matching
(HM) method [13–15] was proposed to enhance dose calculating accuracy. However,
matching the HU values of the CT, comprehending the cone-beam artifacts, to those of the
planning CT could be problematic. The Monte Carlo (MC) simulation study [16–18] and
iterative reconstruction method [19–21] showed enhancing CBCT image quality for ART
at the substantial cost of computational expenses. Although the computation time was
significantly reduced with modified MC simulation [22], the additional processing was still
demanded to reduce the remaining cone-beam artifacts.

The advent of deep learning based on convolutional neural network (CNN) opened a
new prospect in medical image applications, including image segmentation, reconstruction
and translation. The image translation, especially, can be applied to enhancing the image
quality of CBCT by generating the planning CT-like synthetic image. As most of the
planning and dose calculating tasks for radiotherapy are conducted through planning CT
images, generating the synthetic CT from CBCT is the rational trial to attempt. Previously,
several studies [23,24] developed U-Net based model for generating synthetic CT (sCT)
from CBCT with a comparison of image similarity only. Another studies implemented
CycleGAN model for the sCT generation providing a promising results [25–29], while
CycleGAN may not be an optimal option to take when the paired datasets are available [30].

The previous, recent works, briefly, paid attention to plugging the new network
architectures to enhance the performance of reducing the cone-beam artifacts in synthetic
CT generation. It did not provide radiation therapy applicable assessment, such as dose
calculating accuracy beyond image similarity of the generated synthetic CT to the ground-
truth CTs, which may not be sufficient to attain clinical applicability regarding radiotherapy
(RT). Many of the studies were also oriented to training the network by intensity-based
loss functions accustomed in image translations, possibly undermining the importance
of promoting similarity in image features [31,32]. Thus, this study attempted to make
contributions to improving the performance in synthetic CT generation as follows:

Incorporating the feature-driven operations into

• defining the loss function in training the network for synthetic CT generation
• assessing the image similarity for the generated image

Offering a full package of verifications for the generated synthetic CT images from
CBCT with respect to image similarity throughout dosimetry accuracy

More specifically, this work combined a feature-driven loss function [33,34] with the
intensity-based losses, such that it can promote the image feature similarity of the generated
images in addition to the anatomical similarity (Sections 2.1–2.3), as implemented in some
of the previous works for the image reconstruction and MR-to-CT image translation [35,36].
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In evaluating image similarity, besides the conventional metrics, it employed a feature-
oriented metrics to quantify the degree of similarity in image feature (Section 2.4). In an
effort to provide a full verifying procedure, the dosimetry accuracy was also investigated
for the synthetic CT images by dose calculation throughout a commercial Monte-Carlo
algorithm (Section 2.4). Overall, this study was to explore which combination of loss
functions for network training would yield the clinically feasible synthetic CT images from
CBCT images for RT. To achieve so, it also focused on acquiring well-paired, consistent CT
and CBCT images by deformable image registration and by obtaining a pair of CT-CBCT
images from a single simulator and treatment unit.

2. Materials and Methods
2.1. Dataset

The patient cohort for DL model consisted of 65 brain and HN cancer patients with
CBCT and CT images, where the patients were scanned in Canon Aquilion LB CT simulator
(Canon Medical Systems Corporation, Otawara, Japan), and treated by Elekta Infinity
(Elekta, Stockholm, Sweden) linear accelerators from January in 2019 to December in 2021.
52 cases of those were the patients with skull and brain cancers, while the remaining cases
were the head-and-neck cancers. Table 1 specifies the characteristics of data used in this
work. The 65 scans from 65 patients were divided into 50, 5 and 10 for training, validating,
and testing the network, respectively. The input and output images of the network were the
paired images of CBCT and planning CT images, which plays a role in generating synthetic
CT from CBCT images. This work took a special care of pairing CT and CBCT images
and maintaining the data consistency. Namely, to achieve so, we acquired the CT and
CBCT images that were scanned and treated at the same imaging simulator and the same
treatment unit. Thus, it adopted a general deep neural network, in contrast with cycling
GAN architecture suited for unpaired dataset. Hence, he planning CT was deformably
registered and resampled to CBCT, named deformed CT (dCT), such that it can enhance
the image structural similarity between CBCT and planning CT images.

Table 1. Patient Characteristics.

Variables Total (65) Train (+Valid) Set (55) Test Set (10)

Age (years)
Median (range) 56 (3–83) 57.5 (3–78) 55.5 (24–83)

Sex
Male 33 (51) 27 (49) 6 (60)

Female 32 (49) 28 (51) 4 (40)
Acquisition Diff.

(days)
Median (range) 13 (0–119) 13 (0–119) 15.5 (7–33)

Abbreviations: Acquisition Diff., acquisition date difference between CBCT images and CT images.

2.2. Loss Functions on FC DensNet

In generating the synthetic CT from CBCT, the training model used a couple of
combinations of different loss functions: L1-loss, perceptual loss, and structural similarity
(SSIM) loss, as illustrated in Figure 1A. The loss functions used in this work could be
split into two types, where the L1 and SSIM loss referred to the anatomical difference
in enhancing image similarity. Contrarily, the perceptual loss penalizes and updates the
weights in network by comparing features on the images.
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Figure 1. Study design of our study. (A) Flowchart of the compare four different learning losses and
obtain a cone-beam artifact-free CT image trained with each loss. (B) FC-DenseNet is used as the DL
architecture for the eliminate cone-beam artifact in CBCT.

The L1-loss function, most frequently used function in DL models with images, mea-
sures the pixel-wise mean absolute difference between the output of the DL model and
ground-truth. The L1 Loss is expressed in (1):

LL1(x, G(x)) = ||x− G(x)||1 (1)

where x is the true planning CT image, and G(x) is the synthetic CT image generated from
CBCT.SSIM has been widely employed as one of the metrics to evaluate image quality. It
has the characteristic of preserving image contrast and luminance better than other losses.
The SSIM loss is defined as in the following:

LSSIM(x, G(x)) =

(
2µxµG(x) + c1

)(
2σxG(x) + c2

)
(
µ2

x + µ2
G(x) + c1

)(
σ2

x + σ2
G(x) + c2

) (2)

where µx is the average of x, µG(x) is the average of G(x), σx 2 is the variance of x, σG(x) 2 is
the variance of G(x), and σG(x) is the covariance of x and G(x), c is the stabilization variable.
The perceptual loss function was first introduced as a VGG loss based on a pre-trained
VGG network. The perceptual loss compensates for the perceptually unsatisfactory results
of pixel-wise losses such as L1 Loss. For this, perceptual loss calculates the euclidean
distance between feature maps extracted from a pre-trained VGG network. The definition
of perceptual loss is given in (3):

LPerceptual(x, G(x)) = ||VGG(x)−VGG(G(x))||22 (3)

The loss functions defined above were plugged into one of the fully convolutional
network (FCN) structures, FC DenseNet [37]. The DenseNet was employed in this application
as it t has shown a promising result for the paired image dataset. FCN is similar to common
CNN, while the fully connected layers are removed from the end of the network and the
output is generated by combining the output of pooling layers from different convolutional
ones. As shown in Figure 1B, the FC-DenseNet consisted of down-sampling path, up-
sampling path. Specifically, in down-sampling path, following the convolution layer, the
transition down layers consists of batch normalization, exponential linear units (ELU) [38],
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1 × 1 convolution, dropout (p = 0.2), and a 2 × 2 max-pooling operation. In up-sampling
path, the transition up layers, before the convolution layer, consist of transposed convolution.

2.3. Implementation

The deformable image registration (DIR) between CBCT (target) and planning CT
(moving) images was performed on MIM software (Mim Software Inc., Cleveland, OH,
USA) and MATLAB (The MathWorks, Inc., Natick, MA, USA) with deformation and
resampling, the resolution and imaging size of deformed planning CT image (dCT) are
identical to those of CBCT (270 × 270 with 1 mm resolution). The FC-DenseNet was
implemented using Python 3.8.3 and PyTorch 1.5.1 [39]. The training was performed on
graphical processing units (GPUs) (NVIDIA TITAN RTX with 24 GB of memory). Each
model was trained under the identical hyper-parameter setting, while varying the definition
of loss functions. The number of epochs was 150. The DL architecture had an initial learning
rate of 0.00002 and the architecture’s weights were optimized using Adam [40]. During the
training, data augmentations (horizontal flip, random rotation, random blur) were applied
on the fly randomly.

From our observations, the image similarity was enhanced when the perceptual
and/or SSIM losses were combined with L1-loss. Thus, we composed the loss function
by addition of L1-loss to perceptual loss and/or SSIM loss. The combinations exploited
in this work were defined as follows: L1-loss only (L1), L1 + Perceptual loss (LP), L1 +
SSIM loss (LS), and L1 + Perceptual + SSIM loss (LPS). In this work, the weights for the
different losses were well-balanced as imposing unbalanced regularizing weights led to
poorer performance from our observations.

2.4. Evaluation
2.4.1. Image Similarity

To evaluate the image similarity, the dCT images were used as the ground truth to
evaluate the four different loss combination models. We compared the image similarity
between ground-truth dCT and synthetic CT images in terms of such conventional similarity
metrics as mean-absolute error (MAE), SSIM, and peak-signal-to-noise-ratio (PSNR).

Recently, interest in features of tomographic images such as CT, magnetic resonance
(MR), or positron emission tomography (PET) images has increased [41]. There are SIFT,
KAZE, ORB, etc. methods for mapping features from images. Although the above image
similarity metrics are good evaluations, one step further, we propose a feature mapping
ratio (FMR) based on the A-KAZE feature mapping algorithm [42], an algorithm that
improved the SIFT algorithm, as an image similarity comparison metric. Figure 2 shows
how FMR processes the feature points in the paired sCT and dCT images. It extracts
feature points in each sCT and dCT images, following calculates binary descriptors, and
matches descriptors. Next, the image quality was compared through the ratio between the
detected features and the matched features. Specifically, in the step of extracting feature
points, it computes a nonlinear scale space to extract feature points, generating a robust
binary descriptor that exploits gradient information from the nonlinear scale space. In the
following descriptor matching, a brute-force algorithm is used to match descriptors with a
hamming distance less than a threshold, which was set to be 0.8 in this work.
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Figure 2. Feature mapping ratio (FMR). (A) Example of detect feature point. To detect the feature
point, the difference image between adjacent Gaussian blurring images is used and the local extrema
position is used as the feature point. (B) Example of binary descriptor. The binary number is
calculated as 110(2) by points a, b, and c around the feature point p. 110(2) means information that b
is brighter than a, c is brighter than b, and a is darker than c. (C) The binary descriptor determines
the similarity using a Hamming distance.

2.4.2. Dose Calculation

We had an optimized VMAT plan for each testing case, designed to treat the patient
on the given CT image. As the deformed CT images (dCT) were slightly different in
registration, the same planning parameters were applied to the dCTs. Hence, the calculated
dose on dCT was defined as the ground-truth dose distribution. The dose calculation was
performed by MONACO treatment planning system from Elekta, in which the commercial
Monte-Carlo (MC) dose calculation is available. The dose distributions on the synthetic
CT images resulted from the different loss functions were calculated by the commercial
MC algorithm with the same VMAT planning parameters as those for the dCT images. The
dosimetric similarity was quantified by absolute dose difference, and gamma passing rate
on 1%/1 mm, and 2%/2 mm criteria.

3. Results
3.1. Image Similarity Comparison

Figure 3 illustrates a couple of exemplary synthetic CT images of the 10 testing cases,
generated from different loss functions. It shows that the synthetic CT images produced
from LS and LPS loss functions tended to be analogous to the ground-truth CT images. As
indicated by arrows, the synthetic CT images from the SSIM-associated loss functions well
simulated the structural details of the true CT images, relative to those from L1-loss and LP
loss functions.

Table 2 lists the numerical details of image similarity between the dCT and sCT images
for the 10 testing cases. The synthetic CT images generated from different loss functions
resulted in about 6 HU distance on average against the ground-truth CT images, which
were fairly good. In SSIM, MAE, and PSNR, it turns out that the LPS loss produced slightly
more accurate synthetic CT images than the other loss functions though the differences were
not significant. In feature matching throughout the FMR, the difference across different
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loss function definitions became more explicit. Combining the SSIM loss with L1-loss
increased the FMR from 0.532 to 0.569. With all loss function (L1, SSIM, and perceptual
losses) combined, FMR reached out to 0.683. The perceptual loss resulted in the worse
image similarity in the conventional metrics, even relative to L1-loss only. It is interesting
to note that the LP loss produced higher value than L1-loss on average in feature matching.
It could be associated with the fact that the perceptual loss was designed to put more
emphasis on the feature representation.

Figure 3. Examples of DL output images. True CT, CBCT, synthetic CT(L1 loss), synthetic CT(LP
loss), synthetic CT(LS loss), and synthetic CT(LPS loss) from axial plane from one of the patients in
the 10 test set.

Table 2. SSIM, MAE (HU), and FMR performances for the DL outputs by generated from different
learning losses for the 10 test set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average

SSIM

L1 0.995 0.980 0.988 0.986 0.980 0.986 0.988 0.991 0.985 0.991 0.987 (±0.045)
LP 0.993 0.979 0.988 0.984 0.978 0.984 0.987 0.989 0.984 0.990 0.986 (±0.045)
LS 0.993 0.980 0.988 0.986 0.983 0.985 0.989 0.990 0.985 0.988 0.987 (±0.035)

LPS 0.995 0.983 0.991 0.987 0.985 0.988 0.990 0.992 0.987 0.992 0.989 (±0.034)

MAE
(HU)

L1 3.324 8.999 5.101 7.345 9.550 6.562 6.555 4.618 7.790 4.546 6.439 (±1.931)
LP 3.755 9.049 4.985 7.644 9.888 6.825 6.658 4.831 8.349 4.828 6.681 (±1.947)
LS 3.513 8.662 5.015 7.340 8.754 6.629 6.199 4.807 7.750 5.192 6.386 (±1.664)

LPS 3.211 7.954 4.385 6.541 8.016 6.080 5.724 4.289 7.309 4.421 5.793 (±1.592)

PSNR

L1 41.862 33.787 37.982 36.368 34.067 35.817 36.403 39.431 36.383 38.652 37.075 (±2.338)
LP 41.406 34.048 38.568 36.249 33.899 35.734 36.793 39.506 36.356 38.616 37.118 (±2.271)
LS 41.874 34.652 38.435 36.650 35.202 35.905 37.374 39.340 36.879 37.590 37.390 (±2.008)

LPS 42.418 34.991 39.466 31.173 35.553 36.155 37.469 40.024 36.973 38.662 37.888 (±2.157)

FMR(0.8)

L1 0.605 0.484 0.601 0.508 0.444 0.490 0.459 0.622 0.526 0.585 0.532 (±0.062)
LP 0.613 0.470 0.623 0.525 0.433 0.502 0.468 0.605 0.549 0.601 0.539 (±0.066)
LS 0.642 0.503 0.629 0.574 0.510 0.530 0.513 0.613 0.580 0.592 0.569 (±0.049)

LPS 0.644 0.530 0.646 0.578 0.534 0.535 0.536 0.656 0.562 0.604 0.683 (±0.049)

3.2. Dose Distribution Comparison

Table 3 shows the dosimetric analysis with gamma passing rate and absolute dose
difference across the 10 cases. It compared the reference and compute dose distributions
calculated on dCT and sCTs from different loss functions. Though LP loss function pro-
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duced greater gamma passing rate than L1-loss in 2%/2 mm criterion of gamma passing
rate, LPS was followed by LP, L1 and LS in dosimetric accuracy. It was obvious that the
dose distribution computed on the synthetic CT images from LPS had the lowest error to
the ground-truth dose distribution with no exception. In 1%/1 mm criterion of gamma
passing rate, the LPS loss function had 96.2% passing rate on average, which was about 1%
and 1.5% greater than those from the L1 and LP loss functions.

Table 3. Gamma passing rate and dose difference analysis on CBCT and DL output by different
learning losses compared with dose distribution on deformed CT for the 10 test set.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Average

Gamma
passing rate

1 mm/1%

L1 0.9885 0.9101 0.9909 0.9731 0.9727 0.8988 0.9094 0.9707 0.9027 0.9388 0.9456 (±0.036)
LP 0.9869 0.8911 0.9853 0.9763 0.9685 0.8913 0.8851 0.9650 0.9840 0.9267 0.9370 (±0.041)
LS 0.9836 0.9110 0.9856 0.9819 0.9821 0.9285 0.9190 0.9714 0.9123 0.9338 0.9510 (±0.031)

LPS 0.9919 0.9279 0.9919 0.9894 0.9909 0.9390 0.9472 0.9801 0.9225 0.9374 0.9618 (±0.028)

2 mm/2%

L1 0.9999 0.9869 0.9999 0.9954 0.9954 0.9851 0.9884 0.9982 0.9865 0.9933 0.9929 (±0.005)
LP 0.9999 0.9849 0.9997 0.9980 0.9935 0.9850 0.9886 0.9980 0.9904 0.9953 0.9933 (±0.006)
LS 0.9999 0.9919 0.9998 0.9993 0.9986 0.9911 0.9943 0.9978 0.9926 0.9933 0.9960 (±0.003)

LPS 1.0000 0.9947 0.9999 0.9997 0.9998 0.9938 0.9968 0.9992 0.9885 0.9969 0.9969 (±0.004)

Dose difference

L1 0.0132 0.0146 0.0063 0.0081 0.0074 0.0197 0.0174 0.0100 0.0163 0.0125 0.0126 (±0.004)
LP 0.0134 0.0155 0.0068 0.0080 0.0083 0.0207 0.0180 0.0104 0.0175 0.0129 0.0132 (±0.005)
LS 0.0142 0.0145 0.0068 0.0077 0.0083 0.0174 0.0161 0.0102 0.0149 0.0134 0.0124 (±0.004)

LPS 0.0125 0.0129 0.0060 0.0066 0.0081 0.0150 0.0141 0.0095 0.0151 0.0126 0.0112 (±0.003)

Figure 4 illustrates the dosimetric comparison between dose distributions on dCT
and sCTs. From absolute dose differences in the second row of Figure 4, the magnitude
of dosimetric errors got smaller from left to right (from L1-loss to LPS loss functions). In
addition, in the third row of Figure 4 representing gamma passing rate, it was seen that the
region of the errors became narrower on the synthetic CT images from SSIM-associated
loss functions.

Figure 4. Example of dose distributions and dose differences. Ground-Truth, synthetic CT(L1 loss),
synthetic CT(LP loss), synthetic CT(LS loss), and synthetic CT(LPS loss) from axial plane from Patient
3 in the 10 test set.
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4. Discussion

CBCT has many desirable features suitable for IGRT, whereas the degraded image
quality relative to the planning CT images were pitfalls. The source of the degeneracy
was mainly caused by cone-shape imaging with flat-panel detector, which was inherently
susceptible to the photon scattering. The so-called cone-beam artifact reduction was made
easier with an aid of an emerging framework, CNNs with deep learning. Many studies
attempted to enhance the CBCT image quality by generating the synthetic CT images from
CBCT images throughout deep convolutional neural networks. It was found that most
of the studies applied the new network architectures to synthetic CT generation, while a
few studies provided a full package including image similarity and dosimetric analysis to
see if the algorithm is applicable to the clinic. In addition, most of the works utilized the
intensity-based loss function in training the given network, overlooking the possibility of
promoting similarity in image features.

To differentiate from the previous studies, this work derived the feature-driven quan-
tifications in defining loss function by perceptual loss and evaluating image similarity
by the means of feature mapping ratio (FMR). In training the network, in addition to the
perceptual loss, we diversified the loss function with SSIM loss combined with L1-loss,
which could also strengthen the anatomical and structural similarities. In assessing the
dosimetric accuracy, the dose calculation was performed on the MC-based algorithm with
actual VMAT planning parameters. To make it fully controlled, the other environmental
variables were constrained, such that all CBCT and CT images used for training and testing
the network were obtained from the only one RT treatment unit and the same CT simulator.

As seen in the results, the SSIM-associated loss function (L1 + SSIM, and L1 + per-
ceptual + SSIM) produced the most similar synthetic CT images to the ground-truth CT
images with respect to the image-similarity metrics. The perceptual loss did not lead to
better results than L1-loss only in conventional similarity metrics. Contrarily, the synthetic
CT images from LP (L1 + perceptual) loss were greater than those from L1-loss only on
average. This implies that the feature driven training affected the feature-mapping accuracy
constructively. The feature-based perceptual loss was demonstrated to be powerful if it
is combined with secure structural similarity, in which the LPS loss (L1 + perceptual +
SSIM)-based training enlarged the FMR significantly without compromising the structural
similarity as carried out by the LP loss. The similar tendency was appeared in analyzing
dosimetric accuracy. The synthetic CT images generated by the LPS loss outperformed the
other images from different combinations in both gamma passing rate and absolute dose
differences. The synthetic CT images generated from CBCT resulted in 96.2% and 99.6%
gamma passing rates against the reference dose distribution in 1%/1 mm, and 2%/2 mm.

The low-grade image quality of CBCT has been able to affect the accuracy of IGRT.
The reduction in cone-beam artifacts directly facilitates the image matching procedure in
IGRT. Especially, the abovementioned results regarding dosimetric accuracy would be able
to extend the border of CBCT. To be more specific, by generating synthetic CT from CBCT,
the dose calculation on the synthetic CT would become available, which are potentially
used for evaluating dose distribution and summation on a fraction basis. In addition,
it could reduce the necessity of CT re-simulation by possible substitute CT images for
synthetic CT images from CBCT. The synthetic CT images having greater image contrast
than CBCT with reduced imaging artifacts would be beneficial for the deep learning-based
auto-segmentation as well. Hence, these factors mostly associated with enhanced efficiency
could eventually facilitate the realization of adaptive radiation therapy (ART).

Despite various advantages delivered from this work, there are a couple of limita-
tions to be stated. To stand out the benefits of this work, we constrained the variability
of CT/CBCT image data. From our perspectives, however, it was more important to
examine which combination of loss functions can produce more qualified results with a
constrained dataset. Another potential limitation might have been increase in inefficiency
due to additional loss functions in the network training. In fact, the training time was
increased by about 60% with additional 0.6 GB GPU VRAM usage when accompanying the
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perceptual loss that requires for running the VGG network. With respect to the inference
after completing the training, which is considered more important in clinical aspects, there
was no such a big difference in time, presenting only 1 s (5 s vs. 6 s). The body sites that we
referred to were brain and head-and-neck regions, which were covered by CBCT images.
In upper abdomen and pelvic regions, the maximum FOV of CBCT may not cover whole
region of interest. In such conditions, the CBCT images were further influenced by the
additional scattering effect adjacent to the marginal side of images. Last, the synthetic CT
images from CBCT were to reduce so-called cone-beam artifacts, while it possibly has an
inherent CT-possessing artifacts. There is room, thus, to further enhance the image quality
and CBCT-based (adaptive) radiotherapy.

5. Conclusions

This study investigated the generation of synthetic CT from CBCT to reduce the
cone-beam artifacts, thus enhancing the image quality of CBCT. We varied the definition
of loss functions combining L1-loss with intensity and shape-based SSIM, and feature-
based perceptual losses for the well registered, paired CBCT-CT dataset. With evaluating
metrics including image similarity by feature mapping criterion, and dosimetric accuracy
for the MC-simulated dose distributions, the SSIM-associated loss functions produced
the qualified synthetic CT images. When incorporating the perceptual loss into L1- and
SSIM losses, the resulting synthetic CT images yielded the best performance in both image
similarity and dose calculating accuracy. The results would support a claim that CBCT,
once being developed to reduce the artifacts, could be employed for radiation therapy in
more constructive ways, such as for adaptive radiation therapy.
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