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Objective: The objective of the current study is to accomplish a relative exploration of the

biological roles of differentially dysregulated genes (DRGs) in type 2 diabetes mellitus

(T2DM). The study aimed to determine the impact of these DRGs on the biological pathways

and networks that are related to the associated disorders and complications in T2DM and to

predict its role as prospective biomarkers.

Methods: Datasets obtained from metabolomic and proteomic profiling were used for

investigation of the differential expression of the genes. A subset of DRGs was integrated

into IPA software to explore its biological pathways, related diseases, and their regulation in

T2DM. Upon entry into the IPA, only 94 of the DRGs were recognizable, mapped, and

matched within the database.

Results: The study identified networks that explore the dysregulation of several functions;

cell components such as degranulation of cells; molecular transport process and metabolism

of cellular proteins; and inflammatory responses. Top disorders associated with DRGs in

T2DM are related to organ injuries such as renal damage, connective tissue disorders, and

acute inflammatory disorders. Upstream regulator analysis predicted the role of several

transcription factors of interest, such as STAT3 and HIF alpha, as well as many kinases

such as JAK kinases, which affects the gene expression of the dataset in T2DM. Interleukin 6

(IL6) is the top regulator of the DRGs, followed by leptin (LEP). Monitoring the dysregula-

tion of the coupled expression of the following biomarkers (TNF, IL6, LEP, AGT, APOE, F2,

SPP1, and INS) highlights that they could be used as potential prognostic biomarkers.

Conclusion: The integration of data obtained by advanced metabolomic and proteomic

technologies has made it probable to advantage in understanding the role of these biomarkers

in the identification of significant biological processes, pathways, and regulators that are

associated with T2DM and its comorbidities.

Keywords: type 2 diabetes mellitus, pathway analysis, regulators, biomarkers, disorders,

bioinformatics

Plain Summary
In summary, the incorporation of metabolomic and proteomic data through integrative pathway

analysis using different tools would help in understanding the role of various biomarkers in the

identification of the biological processes, pathways, upstream regulators, and pathophysiology

that are associated with Type 2 Diabetes Mellitus (T2DM) and comorbidities. Therefore, such

a study could help to recognize those patients at higher risk for a specific complication and its

response to a particular class of anti-diabetic drugs. This study could help in personalized

medicine for T2DM.
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Introduction
Recent decades had indicated a remarkable upsurge in the

prevalence of diabetes mellitus (DM) worldwide, particu-

larly of type 2 diabetes.1 Type 2 Diabetes Mellitus

(T2DM) is the most diagnosed form of diabetes character-

ized by insulin resistance, impaired β-cell function, hyper-

glycemia, and some comorbidities, including obesity and

cardiovascular disease.2 The potential impact of diabetes

on health, health care system, financial cost, and life

expectancy increases in the upcoming years. Optimum

treatment of T2DM requires a set of potentially multiple

measures to manage hyperglycemia, hyperlipidemia, and

to address the risk factors for the array of diabetic

complications.

Identification of biomarkers for T2DM and its compli-

cations is a challenging issue because of the diverse nature

of this disease. Different factors contribute to the hetero-

genicity of type DM such as the glycemic control, treat-

ment response, duration of the diseases, age of onset and

biochemical profile, body mass index, and variations in

environmental exposures, which could affect the disease

diversity.3 Biomarkers are needed for the evaluation of

chemical profiles, disease status, target validation, and

treatment regimens. Advances in proteomics and meta-

bolic profiling have increased the screening for experimen-

tal biomarkers. Serum biomarkers currently exist for

T2DM, but it remains a challenge to evaluate pathophy-

siology on a patient by patient basis. Therefore, novel

biomarkers based on the integration of different profiles

such as metabolomics, proteomics, and transcriptomics

would better reflect the regulation of gene expression and

the biologic process in diabetes for preventative strategies

and lessen the complications are needed.

Metabolites symbolize intermediate and end products of

metabolic pathways that reflect the physiology and dysfunc-

tions of metabolic processes and disorders. Recent technol-

ogy allows for the assessment of metabolites opening new

opportunities to study changes in biochemical pathways for

insight into the biological mechanisms of disorders such as

T2DM and its comorbidities.4 This integration constitutes the

promise of personalized medicine (PM).

The personalized medicine could help in the screening of

subjects at risk of developingT2DM, aswell as one or all of the

complicating morbidities associated with microangiopathies,

such as retinopathy, neuropathy, nephropathy, and macroan-

giopathy or large-vessel disease. They also have the potential

to direct treatment planning, regarding personalized goal set-

ting, choice of treatments, and treatment prioritization.5

In this study, the aim is to accomplish a comparative

and integrative investigation of metabolomic and proteo-

mic datasets of gene expression to identify differentially

regulated genes (DRGs) as potential predictive biomarkers

associated with type 2 diabetes and its complications. The

integration of the dataset of DRGs is used to reveal sig-

nificant pathways and biological functions and diseases

that are relevant to understand the pathogenesis of asso-

ciated comorbidities of diabetes and its complications. The

study pursued to recognize biological processes and meta-

bolic pathways of DRGs, which are interrelated to T2DM

that were differentially up- or downregulated in compar-

ison to healthy controls. Therefore, the overall target of the

current study is to recognize those patients at higher risk

for a disorder or complication associated with T2DM

through understanding the biological networks and path-

ways underlie these diseases that could respond better to

management and drug treatment.

Methodology
Study Selection and Sample Collection
Datasets from two previously published studies on T2DM by

our group were selected for gene expression integration.5,6

Each gene was described by fold change. All data was col-

lected from serum/plasma samples of patients at the Hamad

Medical Hospital, Qatar (HMC) with T2DM versus a healthy

control group, all subjects were unrelated Arab subjects of

different countries to ensure lack of inheritance. A total of

140 subjects were involved in the present study, of which 85

T2DM subjects and 55 healthy controls, non-diabetics. T2DM

was diagnosed by themedical team of the diabetic unit (HMC)

according to the American Diabetes Association (ADA) cri-

teria, consisting of fasting plasma glucose ≥ 126 mg/dL

(≥6.993 mmol/L), 2 hr. plasma glucose ≥200 mg/dL (11.1

mmol/L) during an oral glucose tolerance test and/or HbA1C

≥ 6.5%.7 The diagnostic criteria were based on the diagnostic

standards based on oral GTT following ADA diagnostic cri-

teria to be sure that all study subjects, including the controls,

are not pre-diabetic or diabetic. The age of diabetic patients

was older than the age of the control, but thiswas accounted for

in the current study as we compared the data using AUC, and a

Supplementary Table 1was provided. The studywas approved

by the Institutional Review Board of the Hamad Medical

Corporation, Qatar University, and Georgetown University

(HMC approval number 8249/08, QU-IRB-06/09 and
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2008–538, respectively). The study was performed according

to the principles expressed in the Declaration of Helsinki.

Written informed consent was obtained from each subject

after a full explanation of the purpose, nature, and risk of all

procedures used.

After overnight fasting, venous blood was collected as

previously described.5 Serum, plasma, and buffy coat were

separated from the whole blood and stored at −80ºC within

4 hours of collection. For maximum longevity and to avoid

repeated freeze-thaw cycles, the plasma, and serum sam-

ples were aliquoted extensively and stored at −80ºC till

further use.5

For the metabolomic and lipidomic profiling experiment

levels of high-density lipoprotein cholesterol, total choles-

terol, and triglycerides were assayed by automated clinical

laboratory methods using a diagnostic analyzer. Low den-

sity lipoprotein cholesterol levels were estimated using the

Friedewald formula: LDL-C = TC – HDL-C (TG/5).8

Serum aminotransferase, albumin, alkaline phosphatase,

and creatinine were also assayed using a diagnostic analyzer

at HMC as previously published.9,10 Metabolite extraction

from plasma was done by adding 175 µL of 66% acetoni-

trile (in water) containing internal standards to 25 µL of

plasma. The samples were incubated on ice for 15 minutes

and centrifuged at 14,000 rpm at 4ºC for 20 minutes. The

supernatant was transferred to a fresh tube and dried under

a vacuum. The dried samples were resuspended in 100 µL

of solvent A (98% water and 2% acetonitrile) for UPLC-

ESI-Q-TOF-MS analysis. In order to increase metabolome

coverage, plasma lipidomics was performed by extracting

lipids using the method described by.11

For the protein expression profiling experiment, serum

samples were delipidated according to the protocol

described by Cham and Knowles in preparation for

iTRAQ analysis.12 ProteoExtract Albumin/IgG (from

Calbiochem), and Vivapure anti-HSA-IgG kits were used

to evaluate the efficiency of high abundance protein deple-

tion from serum samples. Total protein concentration was

calculated by the Bradford Assay. The Vivapure anti-HSA

/IgG kit was used for the iTRAQ experiment.

Data Processing and Metabolite

Identification
Centroided and integrated UPLC-TOFMS data were pre-

processed using the XCMS software and normalized to the

ion intensity of the respective internal standards for the

metabolomic and lipidomic profiling experiment.13

Multivariate analyses were performed to delineate signifi-

cantly altered metabolites. The metabolites were identified

via accurate mass-based search using the Madison

Metabolomics Consortium Database (MMCD),14 the

Human Metabolome Database (HMDB),15 and LIPID

MAPS. The lipids with significant fold change in T2DM

as compared to the control group were identified via

a spectral matching based lipid identification software,

SimLipid v 3.0 and LIPID MAPS,16 and confirmed against

fragmentation pattern of standards. Metabolite identifica-

tions confirmed by comparing the retention time under the

same chromatographic conditions and by matching the

fragmentation pattern of the parent ion from the biological

sample to that of the standard metabolite using tandem

mass spectrometry (UPLC-TOFMS/MS).

Nano-UPLC-MS/MS and iTRAQ Analysis
Nano UPLC-MS/MS analysis was conducted by an elec-

trospray quadrupole time of flight (ESI-QTOF) mass spec-

trometer coupled with a Nano-Acquity-UPLC system.

Relative abundance quantitation, peptide, and protein iden-

tifications were performed using Protein Pilot software 3.0

(ABSCIEX). Data were analyzed with MMTS as a fixed

modification of cysteine, and the database was searched

with a 95% confidence interval rate for protein identifica-

tions. High confidence peptides of the target proteins exhi-

biting rich production spectrum were selected for multiple

reaction monitoring (MRM) assays. MRM data were pro-

cessed using TargetLynx 2.0, while Graph Pad Prism pro-

gram v 5.0 was used for statistical analysis and to generate

the receiver operating characteristics. The Wilcoxon test

was used for the comparison of each peptide.

Luminex Analysis
The serum samples of the study subjects (Diabetics and

controls) were used to evaluate the different panels of

biomarkers, including the inflammatory, adipokines, oxi-

dative stress, metabolic, CVD, and bone markers. The

following kits were used to evaluate such different panels,

including the following multiplex assays, HMHMAG-34,

HCVD1-67AK, APOMAG-62K, HADK1MAG-61k-03,

HBN1A-51K, and HCVD2MAG-67K. All assays were

performed in triplicates according to the manufacturer’s

instructions from Millipore (Merck Millipore, Billerica,

MA, USA). The assays were performed using

a Luminex200 (Austin, TX, USA). Of note, PCA analysis

was performed for all dataset of the study to obtain DRGs

as we previously published.5,6
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Statistical Analyses
Clinical and biochemical data are expressed as mean ± SD.

All statistical analyses were performed using the SPSS

program for Windows (version 21 statistical software:

Texas instruments, IL, USA). Differences between control

and T2DM were performed using Student’s t-test or

Mann–Whitney/Wilcoxon when appropriate. ANCOVA

was used to perform analysis, including the age to com-

pare the biochemical data of the study subjects and AUC

(see Supplementary Table 1). Two-tailed p value is sig-

nificant when p < 0.05.

Bioinformatic Analysis
Ingenuity Pathway Analysis (IPA; http://www.ingenuity.

com/) was performed to identify canonical pathways, dis-

eases and functions, and gene networks that are most

significant to the dataset and to categorize differentially

dysregulated genes in specific diseases and functions. We

also used Pathway Studio 9 (Elsevier) for Integrated path-

way mapping. For Network generation, a data set contain-

ing gene/protein/metabolite identifier and corresponding

fold change and UniProt ID was uploaded into the appli-

cation. Each protein/metabolite ID was mapped to its

corresponding gene/protein/metabolite in the Ariadne

ResNet Mammalian database. The metabolites were

grouped based on their fold change and used to develop

networks based on regulation and connectivity.

Results
Clinical Data of the Study Subjects
The characteristics of the study population are described in

Table 1. As shown in Table 1, diabetic subjects have sig-

nificantly higher values for age, BMI, glucose, HbA1c%,

estimated average glucose (eAC), triglycerides, ALT, and

CRP than control healthy subjects. Diabetic subjects have

significantly lower values for C-peptide and insulin than

healthy control subjects. Other variables are not significantly

different between the two studied groups.

Differentially Expressed Gene Analysis
Table 2 displays 94 differentially expressed proteins, of

note few proteins (9) are downregulated, while the major-

ity (85) are up-regulated, as shown in Table 2.

Bioinformatic Analysis
Data represent the differentially expressed regulated pro-

teins were further evaluated to obtain details of biological

processes, cellular functions, networks, and signaling path-

ways related to comorbidities and diseases associated with

T2DM. The dataset was integrated into different software

such as IPA software, and Pathway Studio 9 software for

the analysis of molecular pathways and networks.

Biological Pathways
Canonical Pathway Analysis

The dataset was analyzed using IPA core analysis to achieve

a fundamental profile of the molecular processes underlying

T2DM and its complications. Related canonical pathways

categorized the differentially expressed genes.

Categorization was based on a multiple testing correction

of p-value less than 10−2 of the present dataset to the numbers

of genes of the IPA knowledge data of each pathway.

Figure 1 displays a conical illustration of the top 15 signifi-

cant enriched biological pathways in T2DM patients (see

Supplementary Table S2 for details). The top 5 enriched

signaling pathways in rank were LXR/RXR Activation,

FXR/RXR Activation, Acute Phase Response Signaling,

Table 1 Clinical and Biochemical Data of the Study Subjects

Characteristics Control

(n=55)

T2DM

(n=85)

P

Age (years) 35.69 (11.11) 52.35(9.96) <0.0001

BMI (kg/m2) 29.12 (5.26) 31.28 (5.11) 0.021

Glucose (mM) 4.97 (1.12) 8.67(3.73) <0.0001

HbA1c (%) 5.71 (0.62) 7.56(1.83) <0.0001

eAG (mM) 6.50 9.50 <0.0001

Triglycerides (mM) 1.21 (0.78) 1.66 (1.11) 0.010

TC (mM) 4.60 (0.97) 4.83(2.05) 0.448

HDL (mM) 1.62 (0.37) 1.21 (0.39) 0.055

LDL (mM) 2.72(0.76) 2.82(0.75) 0.424

Albumin (g/L) 45.56(2.63) 45.24(2.78) 0.524

ALT (U/L) 17.11(2.42) 27.22(1.99) 0.002

Total bilirubin (µmol/

l)

7.96 (3.85) 9.32(6.19) 0.128

Total proteins(g/L) 73.17(7.56) 71.49(9.32) 0.294

ALP (U/L) 72.31(31.33) 71.25(23.39) 0.827

Creatinine (µmol/l) 69.02 (15.64) 72.68(23.91) 0.349

CRP (mg/l) 5.63 (2.09) 7.78 (7.11) 0.046

C-peptide (pg/mL) 348.85 (173.79) 243.08

(127.59)

<0.0001

Insulin (pg/mL) 294.88 (75.45) 99.75 (85.29) <0.0001

Notes: Data are presented as means (SD). ANCOVA test was used to analyze,

including age and gender effects. Two tailed p value is significant at <0.05.

Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DSB, diastolic

blood pressure; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipo-

protein cholesterol; HDL-C, high-density lipoprotein cholesterol; ALT, alanine

transferase; ALP, alkaline phosphatase; eAG, estimated average glucose; HbA1c,

glycosylated hemoglobin; CRP, c-reactive protein.
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Table 2 T2DM Differentially Expressed Proteins

Metabolite/Protein Name (GenBank ID) Fold Change (T2DM to

Control)

P value

(Gene

Symbol)

Accession

Number

Insulin INS P01308 −1.73 0.025

Matrix metallopeptidase 9 MMP9 P14780 −1.9 0.004

Secreted phosphoprotein 1 SPP1 P10451 −2.66 0.031

Islet amyloid polypeptide IAPP P10997 −2.45 0.002

Apolipoprotein C3 APOC3 P02656 −0.62 0.015

Apolipoprotein H APOH P02749 −1.43 0.024

Apolipoprotein C1 APOC1 P02654 −1.55 0.032

Apolipoprotein A2 APOA2 P02652 −1.65 0.014

Immunoglobulin heavy constant gamma 4 IGHG4 P01861 1.24 0.021

Tumor necrosis factor TNF P01375 1.62 0.006

Intercellular adhesion molecule 1 ICAM1 Q99930 1.75 0.004

Angiotensinogen AGT P01019 2.45 0.001

Coagulation factor II F2 P00734 2.55 0.0001

Kininogen 1 KNG1 P01042 3.16 0.002

Interleukin 6 IL6 P05231 2.44 0.021

Parathyroid hormone PTH P01270 1.92 0.035

Apolipoprotein E APOE P02649 1.85 0.018

Glucagon GCG P01275 2.25 0.009

Gelsolin GSN P06396 1.65 0.016

Chemokine (C-C motif) ligand 2 CCL2 P13500 2.8 0.024

Complement component 5 C5 P01031 1.85 0.031

Leptin LEP P41159 2.51 0.0001

Serpin peptidase inhibitor, clade E, member 1 SERPINE1 P05121 −1.8 0.042

Fibronectin 1 FN1 P02751 1.84 0.025

Vitronectin VTN P04004 1.48 0.035

Apolipoprotein A-IV APOA4 P06727 1.95 0.018

Apolipoprotein A-I APOA1 P02647 2.15 0.029

Transferrin TF P02787 2.24 0.016

Peptide YY PYY P10082 1.48 0.041

Ghrelin/obestatin prepropeptide GHRL Q9UBU3 2.58 0.026

Resistin RETN Q9HD89 1.95 0.013

Paraoxonase 1 PON1 P27169 2.36 0.024

Retinol binding protein 4 RBP4 P02753 3.75 0.001

Titin TTN Q8WZ42 1.82 0.04

Plasminogen PLG P00747 3.85 0.035

Complement component 3 C3 P01024 2.5 0.018

Actin, gamma 1 ACTG1 P63261 1.24 0.027

Transthyretin TTR P02766 2.25 0.011

Ceruloplasmin CP P00450 3.55 0.009

Serpin peptidase inhibitor, clade F, member 1 SERPINF1 P36955 2.08 0.043

Serpin peptidase inhibitor, calde G, member 1 SERPING1 P05155 1.85 0.038

Apolipoprotein C-III APOC3 P02656 2.54 0.027

Serpin peptidase inhibitor, clade C member 1 SERPINC1 P01008 1.69 0.014

Alpha-1-microglobulin/bikunin precursor AMBP P02760 1.25 0.026

Apolipoprotein B APOB P04114 3.21 0.018

Glutamic-pyruvate transaminase GPT P24298 4.21 0.004

Haptoglobin HP P00738 3.24 0.003

Kallikrein B, plasma 1 KLKB1 P03952 3.25 0.01

(Continued)
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Table 2 (Continued).

Metabolite/Protein Name (GenBank ID) Fold Change (T2DM to

Control)

P value

(Gene

Symbol)

Accession

Number

Serpin peptidase inhibitor, clade A, member 6 SERPINA6 P08185 2.75 0.027

Clusterin CLU P10909 2.65 0.042

Melanocortin 2 receptor MC2R Q01718 4.2 0.057

Complement factor B CFB P00751 2.55 0.048

Orosomucoid 1 ORM1 P02763 2.85 0.034

Alpha-2-glycoprotein 1, zinc-binding AZGP1 P25311 3.05 0.017

Alpha-2-HS-glycoprotein AHSG P02765 2.45 0.027

Coagulation factor IX F9 P00740 4.15 0.0001

Serum Amyloid A4 SAA4 P35542 3.4 0.0001

Apolipoprotein A-II APOA2 P02652 2.7 0.020

Serpin peptidase inhibitor, clade F, member 2 SERPINF2 P08697 1.69 0.032

Apolipoprotein A-II APOC2 P02655 1.68 0.014

Keratin 14 KRT14 P02533 3.05 0.007

Serpin peptidase inhibitor, clade A, member 3 SERPINA3 P01011 2.45 0.001

Pro-platelet basic protein PPBP P02775 4.6 0.007

Serpin peptidase inhibitor, clade D, member 1 SERPIND1 P05546 3.51 0.003

Complement component 1, s subcomponent C1S P09871 2.45 0.028

Complement component 4, binding protein, alpha C4BPA P04003 1.85 0.037

Lectin, galactoside-binding, soluble, 3 binding

protein

LGALS3BP Q08380 2.05 0.024

Proteoglycan 4 PRG4 Q92954 1.45 0.036

Histidine-rich glycoprotein HRG P04196 1.65 0.038

Fibulin 1 FBLN1 P23142 1.58 0.044

Lumican LUM P51884 1.95 0.043

Apolipoprotein L, 1 APOL1 O14791 1.25 0.03

Complement component 4B C4B P0C0L5 2.24 0.037

Hemopexin HPX P02790 2.48 0.022

Complement component 1, C1R P00736 1.47 0.041

r subcomponent

Group-specific component Vitamin D Binding

Protein

GC P02774 1.56 0.041

Ficolin FCN3 O75636 2.05 0.035

Inter-alpha inhibitor H3 ITIH3 Q06033 1.84 0.028

Complement component C2 P06681 2.14 0.037

Leucine-rich alpha-2-glycoprotein 1 LRG1 P02750 3.15 0.021

Haptoglobin-related protein HPR P00739 2.85 0.019

Keratin 2 KRT2 P35908 3.48 0.003

Complement factor I CFI P05156 3.24 0.008

Immunoglobulin heavy constant gamma 3 IGHG3 P01860 2.15 0.016

Orosomucoid 2 ORM2 P19652 1.85 0.024

Complement component 6 C6 P13671 1.34 0.037

Afamin AFM P43652 2.15 0.035

Calmodulin-1 CALM1 P0DP23 3.43 0.010

Alpha-1-B glycoprotein A1BG P04217 1.55 0.039

Immunoglobulin kappa constant IGKC P01834 1.65 0.026

Complement component 7 C7 P10643 2.31 0.028

Complement component 9 C9 P02748 2.46 0.031

(Continued)
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Atherosclerosis Signaling, and Clathrin-mediated

Endocytosis, as shown in Table 3.

The Retinoid X Receptors (RXRs) were on top of the

signaling pathways, which includes 31 upregulated genes

and 3 downregulated genes of the 128, as shown in

Supplementary Table S3). RXRs are nuclear receptors

that exert the biological effects of retinoids by the partici-

pation of retinoic acid-mediated gene, which affects bio-

logical functions such as lipid metabolism, molecular

transport, small molecule biochemistry. The second path-

way is The Farnesoid X receptor (FXR), which includes

29 upregulated genes and 3 downregulated genes of the

137 genes of IPA base knowledge (Table S4). FXR is

a member of the nuclear family of receptors and has

a fundamental function in the regulation of numerous

metabolic pathways, such as bile acid metabolism and its

control (Figure 2). The third pathway is the Acute Phase

Response Signaling, whereas 34 DRGs of the dataset were

detected of which one gene is downregulated, and 33 were

upregulated out of the 188 genes of IPA base knowledge

(Table S5). This pathway is a cytokine signaling pathway

where it is activated by tissue injury, trauma, surgery,

cancer, immunologic disorders, and in response to micro-

organisms as a protective pathway. Following that, the

Table 2 (Continued).

Metabolite/Protein Name (GenBank ID) Fold Change (T2DM to

Control)

P value

(Gene

Symbol)

Accession

Number

Complement component 1, q subcomponent,

C chain

C1QC P02747 2.81 0.033

Complement component 8, alpha polypeptide C8A P07357 1.89 0.029

Notes: Data displays the list of the 94 metabolites that were identified in the ResNet Mammalian database with their corresponding GenBank ID. Data represent the

differentially expressed regulated proteins with fold changes and p values in T2DM compared to control subjects.

Figure 1 Displays a conical illustration of the top 15 significant enriched pathway analysis in the proteomic and metabolomic dataset, which are differentially expressed genes

in T2DM. Data are presented as bars based on the -log of P values and the ratio indicates the percentage of DRGs of the study compared to the IPA knowledge base.
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next fourth pathway is the Atherosclerosis Signaling,

whereas 20 DRGs of the data set were detected, of

which two were downregulated, and 18 were upregulated

of the 127 genes of IPA base knowledge (Table S6). This

pathway is a specific form of a chronic inflammatory

process that functions as a cell to cell signaling and

interactions and cellular movement in the cardiovascular

system. The next pathway is Clathrin-mediated

Endocytosis Signaling, whereas 19 DRGs of the data set

were detected, of which 2 genes were downregulated, and

17 were upregulated out of the 196 genes of IPA base

knowledge shown in (Table S7). Clathrin-mediated

Figure 2 Role of the farnesoid X receptor (FXR) and bile acids. Network displays DRGs, which are upregulated (red) and downregulated (green) genes. The figure shows

the role of these DRGs in activation (A), expression (E), correlation (CO), localization (LO), phosphorylation (P), transcription (T), translocation (TR), regulatory binding

(RB), inhibition (I), and molecular cleavage (M), which induces the nuclear farnesoid X receptor (FXR) or NR1H4 (nuclear receptor subfamily 1, group H, member 4) with its

effect on the suppression of cholesterol 7 alpha-hydroxylase (CYP7A1), the rate-limiting enzymes of bile acid synthesis from cholesterol.

Abbreviation: CP, canonical pathway.

Table 3 Top Five Canonical Pathways of DRGs of the Diabetic Subjects with Their p-values (Based on Core Analysis in Ingenuity

Pathway Analysis [IPA])

Top Canonical Pathways Downregulated

Genes

Upregulated

Genes
Name p-value Overlap

LXR/RXR activation 2.12E-55 26.6% 3/128 (2%) 31/128 (24%)

FXR/RXR activation 5.24E-50 23.4% 3/137 (2%) 29/137 (21%)

Acute phase response signaling 1.12E-49 18.8% 1/181 (1%) 33/181 (18%)

Atherosclerosis signaling 2.09E-27 15.7% 2/127 (2%) 18/127 (14%)

Clathrin-mediated endocytosis signaling 6.83E-22 9.7% 2/196 (1%) 17/196 (9%)

Cheema et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:132416

http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com
http://www.dovepress.com


Endocytosis Signaling is involved in endocytosis, which is

the principal pathway for the movement of nutrients, hor-

mones, and other signaling molecules from the extracellu-

lar into intracellular structures across the plasma

membrane. Other canonical biological pathways were IL-

12 Signaling and Production in Macrophages pathway,

whereas 16 DEGs of the dataset were detected of which

one gene was downregulated, and 15 were upregulated of

the 136 genes of the IPA base knowledge (Table S2). IL-

12 is produced primarily by dendritic cells, macrophages,

and monocytes, and affecting Th1 immune response and

Th17 cells activation. Following that, the Production of

Nitric Oxide and Reactive Oxygen Species in

Macrophages, whereas 16 DEGs of the data set were

detected of which one gene is downregulated, and 15

were upregulated of the 194 genes of IPA base knowledge

as shown (Table S2). This pathway is central to the control

of infection by microbes.

Diseases Associated with DRGs
Using IPA base knowledge, we detected several significant

diseases associated with the present dataset of the

current study (Table S8 and S9). The top five affected

diseases in rank based on higher p values for multiple

testing for corrections were presented in Table 4. These

disorders are Neurologic Diseases, the Organismal Injury,

and Abnormalities, the Psychological Disorders, the

Inflammatory Response Disorders, and Metabolic Disorders.

Further, we analyze the top significant disorders associated

with each category of these diseases, as shown in Table 5.

Neurologic and Psychological Diseases

Category
Among this category, progressive neurological disorders

included 3 DRGs of the data set of which APOE and

SERPING1 are upregulated, and INS is downregulated,

which increases the prediction of the progressive neurolo-

gical disorders, as shown in Table 5. Dementia is

a neurological and psychological disorder that included 2

DRGs of the data set, whereas APOE is upregulated, and

the INS is downregulated, which increases the prediction

of the prediction to dementia, as shown in Table 5.

Alzheimer’s disease is a neurological and psychological

disorder that included 2 DRGs of the data set, whereas

APOE is upregulated, and the INS is downregulated,

which increases the prediction of the prediction to

Alzheimer’s diseases as shown in Table 5. Eating disorder

is a significant psychological problem in diabetic subjects.

As displayed in Table 5. The eating disorder is predicted to

increase with six DRGs, which are LEP, IL6, GCG,

SERPINE1, TNF, and INS.

Organismal Injury and Abnormalities

Category
Amyloidosis, is one of the Organismal Injury and

Abnormalities. As displayed in Table 5, INS, IL6 increases

while APOE and APOA1 decrease the prediction of

amyloidosis.

Apoptosis of the endothelial cells is one of the

Organismal Injury and Abnormalities predicted to be

increased with (z-score 3.29). As presented in Table 5, the

apoptosis of the endothelial cells is predicted to increase with

12 genes of DRGs, which are PLG, RBP4, KNG1, LEP,

SERPINA3, AGT, SERPINE1, LUM, SERPINC1, TNF,

and SPP1.

The damage of the genitourinary system is predicted to

be increased with (z-score 2.203). As displayed in Table 5,

the damage of the genitourinary system is predicted to

increase with seven DRGs, which are CFB, AGT, IL6,

C4A/C4B, ICAM1, TNF, and GC.

Inflammatory Response Disorders

Category
Degranulation of cells is predicted to be increased with active

z-score 2.60. As displayed in Table 5, the degranulation of

cells is predicted to increase with seven genes, which are

PPBP, CCL2, F2, LEP,GCG,C4A/C4B, andTNF. (Figure S1)

Activation of leukocytes is predicted to be increased

with active z-score 2.359. As displayed in Table 5, the

activation of leukocytes is predicted to increase with 17

genes of DRGs, which are RBP4, KLKB1, KNG1, CCL2,

F2, LEP, AGT, IL6, APOA1, IGHG3, ATP, SERPINF1,

FN1, ICAM1, TNF, GC, and VTN.

Table 4 Top Five Diseases and Disorders of the DRGs of the

Present Study with Their p-values (Based on Core Analysis in

Ingenuity Pathway Analysis [IPA])

Diseases and Disorders p-Value Range # Molecules

Name

Neurological disease 2.13E-09–2.44E-30 63

Organismal injury and abnormalities 1.19E-08–2.44E-30 89

Psychological disorders 1.01E-08–2.44E-30 49

Inflammatory response 1.20E-08–8.76E-29 76

Metabolic disease 3.88E-09–2.13E-28 60
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Metabolic Disorders Category
Hypertriglyceridemia is on the top of the metabolic disorders

and cardiovascular diseases (CVD) associated with T2DM,

with Z-score of 2.035. Hypertriglyceridemia is predicted to

increase with the following upregulated genes APOA2,

APOB, APOC3, APOE, IL6, SERPINF1, TNF, and the down-

regulated gene INS as shown in Table 5.

Dyslipidemia is ametabolic disorder commonly associated

with T2DMwith a Z-score of 1.260. Dyslipidemia s predicted

to increase with the following genes APOA2, APOB, APOC3,

IL6, INS, and TNF, as shown in Table 5. See Supplementary

figures (Figures S1).

Functional Disorders Associated with

Dataset in T2DM
Furthermore, we analyzed the common functional disor-

ders which are associated with DRGs of that set using IPA

base knowledge. The top 5 functions affected are Cellular

compromise, Protein synthesis, Molecular transport, Lipid

metabolism, and Small molecule biochemistry. Table 6

Illustrates the genes associated with the top functions.

Further, we explore the top five functions in each category

associated with T2DM and identify the genes of the DRGs of

the data set per each function, as shown in Table 7. The most

affected function in the cellular component category is the

degranulation of cells (Table 7) and (Figure S1), of which

seven genes are PPBP, CCL2, F2, LEP, GCG, C4A/C4B,

TNF increased the prediction of the degranulation. Fat Acid

Metabolism under the lipid metabolism category with activa-

tion Z-score of 3.62, including 19 genes of the data set

increased the prediction of FA metabolism (Figure S2a),

Protein synthesis under Protein Metabolism category with

a P value of 7.74E-24, Z-score of 2.88, with 19 DRGs of the

data set to increase the prediction of protein synthesis (Figure

S2b). The release of lipids (p=2.11E-12), Z-scores of 3.70

having 15 DRGs which increase the prediction of the release

of lipids, and release of Ca+2, P=1.15E-11 and Z-scores of 2.75

having 11 DRGs of the data set which increased the prediction

of the release of Ca+2, (Figure S2c), and quantity of metal ions

(p=1.61E-20), Z-scores of 3.16 having 10DRGswhich increase

the prediction of the quantity of metal ions (Figure 3) under

Molecular transport category. All molecules involved in func-

tions are illustrated in supplementary (Table S10) for details.

We explore some specific disorders associated with organ

injuries. Data obtained from the current analysis showed that

Table 6 Top Five Functions of the DRGs of the Present Study

with Their p-values (Based on Core Analysis in Ingenuity Pathway

Analysis [IPA])

Molecular and Cellular Functions

Category of Function p-value Range # Molecules/Function

Cellular compromise 2.50E−09–8.76E-29 42

Protein synthesis 1.64E-12–2.30E-25 46

Molecular transport 1.08E−08–6.29E-25 59

Lipid metabolism 9.51E−09–1.51E-24 55

Small molecule biochemistry 1.08E−08–1.51E-24 58

Table 5 Top Disease Category with Examples of Each of the Present Study with Their p-values and DRGs Involved (Based on Core

Analysis in Ingenuity Pathway Analysis [IPA])

Disease Category/Example p-value Genes in Dataset

Neurologic and psychological diseases

Progressive neurological disorders 8.17E-28 APOE, SERPING1, INS

Dementia 2.44E-30 APOE, INS

Alzheimer’s diseases 6.154E-28 APOE, INS

Eating disorder 1.01 E-8 LEP, IL6, GCG, SERPINE1, TNF, INS

Organismal injury and abnormalities

Amyloidosis 2.13E-28 INS, IL6 APOE APOA1

Apoptosis of the endothelial cells 3.51E-11 RBP4, KLKB1, KNG1, CCL2, F2, LEP, AGT, IL6, APOA1, IGHG3, ATP, SERPINF1, FN1, ICAM1, TNF, GC, VTN

Damage of the genitourinary system 1.243E-15 CFB, AGT,IL6, C4A/C4B, ICAM1, TNF GC.

Inflammatory response

Degranulation of cells 5.06 E-24 PPBP, CCL2, F2, LEP, GCG, C4A/C4B, TNF

Activation of leukocytes 2.63 E-15 RBP4, KLKB1, KNG1, CCL2, F2, LEP, AGT, IL6, APOA1, IGHG3, ATP, SERPINF1, FN1, ICAM1, TNF, GC, VTN.

Metabolic disorders

Hypertriglyceridemia 3.60 E-13 APOA2, APOB, APOC3, APOE, IL6, SERPINF1, TNF,INS

Note: Genes in the data set are predicted to be involved based on measurement.
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7 genes out of 16 which are CFB, AGT, IL-6, C4B, ICAM1,

TNF, GC are increased, while HPX gene is decreasing, which

have measurements consistent with predictive increases in

damage of kidney with Z-score of 2.20, and a P value of

8.19E-15 (Figure 4A and B).

Regulation of the Dysregulated Gene

Expressions of the Data Set and Their

Impact on Biological Functions and

Diseases
Upstream Regulator Analysis of the Transcription

Regulators and Kinases Factors

Further, we used the IPA upstream regulator analysis

that would explain the changes in gene expression as

downstream targets. The aim is to understand the under-

line regulation of the expression changes seen in the

dataset of T2DM. Transcription factors are proteins

that control the rate of RNA transcription to regulate

the gene expression (up and down) based on the cell

state and organ activity to help in cell homeostasis. The

five most significant upstream transcript regulators

based on Z score in the ranking were, Signal transducer

and activator of transcription 3 (STAT3) as shown in

Figure 5, Signal transducer and activator of transcription

1 (STAT1), Hypoxia-inducible factor 1-Alpha (HIF1A),

followed by CCAAT/enhancer-binding protein alpha

(CEBPA), followed by CCAAT/enhancer-binding pro-

tein beta (CEBPB) is presented in Table 8, and dis-

played in Supplementary figures (S3).

Further, we observed the top 5 activated kinases,

which are ATM, JAK2, JAK1, MTOR, and AKT1, as

upstream regulators that affect the expression of some

genes of the data set as shown in Table 9, and supple-

mentary Figure S4.

Top Regulator Effects

Moreover, we look for the master regulator of proteins of

the dataset, which regulate other proteins using IPA stream

analysis. Also, this analysis identifies potential mechan-

isms linked with phenotype changes such as disease or

functional disorders and explain the biological role of the

upstream regulator, via its regulation on a gene or sets of

genes. Table 10 illustrates the top three regulator proteins

which regulate other proteins of the dataset. Among the

top downregulated proteins of the dataset are, INS targets

10 molecules (Figure 6A), and SPP1 targets 9 of DEG

(Figure S5a), while among the upregulated proteins are

TNF targets 32, IL6 targets 29 (Figure 6B), LEP targets

19, AGT targets 14, and APOE targets 13 molecules of the

data set (Table S11), and (Figure S5b)

Mechanistic Networks of Top Regulators

Further, in order to understand the mechanistic pathway by

which a single protein affects a downstream target protein

of the data set, we did the mechanistic analysis. For exam-

ple, insulin is the primary hormone underlying the patho-

genesis of T2DM and its comorbidities, which targets TNF,

AGT, APOA1, GCG, GHRL, ICAM1, IGKC, IL6, and LEP.

It was interesting to investigate the interaction of INS with

some of the upregulated target proteins of interest such as

TNF, IL6, and LEP, which regulate other proteins to under-

stand the mechanistic of their interactions and crosstalk

among a dataset of T2DM. INS upregulates LEP expression

directly or indirectly through intermediates such as

D-glucose, POMC, PI3 complex, which in turn affects

transcription factors such as FOXO1, STAT3, SIRT1, EP

300, and via effects on ligand-dependent nuclear receptor

such as PPARG, and NR3C1 (Figure S6). INS upregulates

TNF gene expression directly or indirectly through inter-

mediates such as D-glucose, SIRT1, EP 300, FOS, POMC,

Table 7 Top Five Functions of Each Category of the Present Study with Their p-values (Based on Core Analysis in Ingenuity Pathway

Analysis [IPA])

Top Molecular and Cellular Function per Each Category

Molecular and Cellular Category/Top Function Example p-value z-Score # Molecules

Cellular compromise/degranulation of cells 5.06 E-24 2.60 42

Protein synthesis/protein metabolism 7.74E-24 2.88 43

Molecular transport/release of lipids

Molecular transport/quantity of Ca+2

2.11E-12

2.25E-20
3.70

3.31

15

27

Lipid metabolism/fat acid metabolism 9.71E-22 3.62 32

Small molecule biochemistry/release of Ca+2 1.15E-11 2.75 14
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PI3 complex which in turn affects the transcription factors

such as FOXO1, FOXO3, REL, STAT3, and via effects on

ligand-dependent nuclear receptor such as PPARG, and

NR3C1 and via the effect on lipid metabolism which acts

directly or via c-JUN (Ap1) kinase (Figure S6). In similar

basis, INS upregulates IL6 expression directly or indirectly

(Figure 7A) through intermediates such as D-glucose,

SIRT1, EP 300, FOS, POMC PI3 complex which in turn

affects transcription factors such as FOXO1, FOXO3, REL,

STAT3, and via effects on ligand-dependent nuclear recep-

tor such as PPARG, and NR3C1 and via the effect on lipid

which acts directly or via c-JUN (Ap1) kinase. The mechan-

ical network analysis demonstrated two upregulated protein

of the dataset., LEP targets 16 genes directly, and 28 genes

indirectly of the data set via 21 possible mechanistic reg-

ulations (Figure S6), and IL6 targets 29 genes directly and

34 genes (Figure 7B) indirectly of the data set via 23

mechanistic regulators, TNF targets 32 genes directly, and

27 genes (Figure 7C) indirectly of the data set via 21

mechanistic regulators and one of the downregulated pro-

tein is INS which targets 10 genes directly and 34 genes

indirectly via 20 mechanisms of mechanistic regulations.

The protein-protein interaction involves many hubs

such as kinase, ligand-dependent nuclear receptor, tran-

scription factor regulators, endogenous chemical,

enzymes, and growth factors. As displayed in

Figure (7B and C) for IL6 and TNF as the primary

triggers of other proteins of the data set of T2DM.

Such mechanistic interaction of proteins could explain

the actions of such DRGs in diabetes and how it can

modify insulin action on metabolic, cellular,

and biological process/and disorders. (see supplement

Figures S7a-d) and its uses as biomarkers in athero-

sclerosis and hypertension (Figure 8)

Figure 3 Molecular transport category. Displays DRGs, which are upregulated (red) and downregulated (green) genes involved in molecular transport, quantity of metal ions. Brown

arrow, increase prediction; yellow arrow, decreased prediction; and gray arrow, no known predicted effects. RPBP, KNG1, ORM1, CCL2, GHRL, F2, APOC3, AGT, GCG, TTR, PTH,

APOE, NAD, ATP, FN1, ICAM1, INS, PYY, and TNF, increase prediction of quantity of metal ions. GCN, SPP1, IAPP, phosphate as IL6 decrease prediction of quantity of metal ions.

Abbreviation: C, causative relationship.
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Network Analysis
We investigated the interactions among the DRGs, path-

ways, regulators, and other molecules in type 2 diabetics

and identified 12 eligible networks associated with various

biologic processes, functions, and diseases-as displayed in

a table (Table S12).

Figure 4 Renal diseases. (A) Networks display DEGs which is upregulated (red) and downregulated (green) genes involved in damage of kidney in T2DM based on the

multiple corrections of the log P value. The deep orange arrow indicates the prediction of an increase of activation, yellow arrow indicates a decreased prediction of

activation, and grey arrow could affect. IL6, ICAM1, GC, CFB, C4A/C4B, AGT, and TNF increase the prediction of kidney damage. (C), Causative and (CO), correlation

relationships. (B) Network displays the role of acute inflammatory response pathway and cascade involving TNF and IL6 as an upstream regulator which affects the upstream

transcription regulators; NFKB and NF-IL6 and kinases such as c-jun, and c-fos, which affects downstream targets related to damage of kidneys such as IL6, ICAM1, GC,

CFB, C4A/C4B, AGT, and TNF which increase prediction of kidney damage.
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Network 1 included the top functions and diseases, which

are Cellular Compromise, Inflammatory Response, and

Neurological Disease, which comprise 16 DRGs. At the

same time, the transcription factor NFKB complex is a hub

for acute phase response signaling, cell functions such as

degranulation, inflammatory response, and dementia as an

example of a neurological disorder, as shown in (Figure 9A).

Network 2 displays the top functions and diseases which are

Lipid Metabolism, Molecular Transport, Small Molecule

Biochemistry which comprise 14 DRGs; Apolipoproteins

(APOC1, APOC2, APOC3, APOA2, APOA4) which are

connected to the hubs of nuclear complexes NCOR-LXR-

Oxysterol-RXR-9 cis linked to retinoid signaling activation,

and FXR-ligand FXR-Retinoic linked to FXR-RXR activation

and bile acid metabolism. The networks display proteins

involved in blood hemostasis and coagulation such as F9,

KLKB1, SERPINC1, HPX1, which crosstalk with each other

and connected to Apolipoproteins via PON1. ERK1/2, which

are extracellular signal-regulated kinases, acts as a hub, which

is regulated by RBR4, RETN, and HPX, as shown in

(Figure 9B).Network 3 displays the top functions and diseases,

which are Developmental Disorder, Humoral Immune

Response, Inflammatory Response, which comprise 13

DRGs. The network display two canonical pathways; the

acute phase response signaling, which includes AFM, TNF,

CFB, CRB, SERPING1, and CIS, and hub of NFKB family.

The other crucial canonical pathway (CP) is the complement

pathway, which includes genes such as CF1, CRB,

SERPING1, CIS1, CIR, CFB, and complete component1 as

a hub. The network displays the extensive crosstalk of TNF,

SERPING1, and complement in network 3. Moreover, the

figure display molecules involved in two crucial disorders

associated with this network in T2DM, which are immunode-

ficiency and rheumatoid diseases (RD). In RD, many mole-

cules are involved, such as complete component1, FCN, TNF,

CFB, C1Q, and C1Q, as shown in Figure 9C. Network 4

displays the associated top functions and diseases, which are

Cell-To-Cell Signaling and Interaction, Cellular Movement,

Inflammatory Response, which comprise 9 DRGs. The top 3

CP are Hepatic Fibrosis, Atherosclerosis signaling, and GP6

signaling pathway. The immune response of macrophage as

cell-to-cell signaling disorders involves 3 DRGs, which are

IL6, LUM,VTN, the cellularmovement disorders include IL6,

VTN, and connective tissue disorders include collagen type11,

IL6, LUM, PLG, and PRG4. Moreover, severe injury such as

Figure 5 Upstream regulators-TF. Networks display target genes that are upregu-

lated (red) and downregulated (green) genes in response to the top activated

transcription factors as an upstream regulator in the data set of T2DM. Signal

transducer and activator of transcription 3 (STAT3), relations in arrows are expres-

sion (E), protein–DNA interaction (PD), phosphorylation (P), and transcription (T).

Arrows: brown, increase expression; golden arrow and dotted arrow, decreased;

and grey, not predicted effect. Expression of HP, CCL2, LEP, SERPINA3, AGT,

AHSG, ATP, APO4, SERPINE1, and ICAM1 is activated. The expression of MMP is

inhibited. Others are affected but not predicted.

Table 8 Top Five Upstream Regulator Transcription Factors Affecting the Expression of the Genes of the Data Set of the Present

Study with Their p-values, Z-Score, and Target Molecule (Based on Core Analysis in Ingenuity Pathway Analysis [IPA])

Name Predicted

Activation

State

Activation

z-Score

p-value

of

Overlap

Target Molecules # of molecules Activated of the Data

Set

STAT3 Activated 2.569 1.28E−08 AGT,AHSG,APOA4, ATP,CCL2, CFB,FN1, HP,ICAM1, IL6 10(15)

STAT1 Activated 2.521 1.28E-11 AGT,APOC2, APOE,C1R,C1S,C4A/C4B,CCL2, CFB,

ICAM1, IL6

9 (15)

HIF1A Activated 2.771 1.54E−07 AGT,APOE,ATP,FN1, HP,IL6, KRT14,LEP,MMP9,SERPINE1 9 (12)

CEBPA Activated 2.046 3.12E-10 AGT,APOA4,APOB,APOC3,F9,HP,HPR,ICAM1,IL6,KRT14 9 (15)

CEBPB Activated 2.288 3.85E-16 AGT,APOB,APOC3,CCL2,CP,FBLN1,HP,HPX,ICAM1,

IGKC

11(20)

Note: Data represent active downstream target genes out of all downstream genes in parenthesis.
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cardiac hypertrophy is displayed, which indicates the involve-

ment of several DRGs of IL6, LUM, LRG1, PLG, with other

molecules such as Alpha actinin, PDGF, Tgf beta, and TLR2

and TLR4. These toxic injuries of liver, heart, and kidney are

severe complications in long-term and uncontrolled T2DM, as

shown in Figure 9D. Other networks are involved in different

diseases and functions related to T2DM and its comorbidities

such as Cancer, Cardiovascular Disease, Organismal Injury,

and Abnormalities (network 5).

Discussion
The pathogenesis of T2DM and its associated comorbidities is

presently challenging to identify specific biomarkers and

pathways involved in its complications. Diabetes is a chronic

polygenic disorder resulted from several biological processes

that interact in a dense network, rather than from an abnorm-

ality of a single effector gene product. Since the biological

functions are the results of molecular interactions, the func-

tional annotations of differentially expressed genes should

include the effect of many genes on different pathways and

their interactions on the different biologic processes and net-

works that have a potential impact on T2DM. Understanding

the biological pathways and their network information is use-

ful in predicting the risk and understanding the progress of the

disease using the integration of proteomics and metabolic

dataset.

In the current study, IPA software was used to integrate the

fold expression of DRGs for the development of molecular

pathways and networks in T2DM. As illustrated in this study,

the data explore significant pathways in T2DM subjects com-

pared to control subjects to gain more understandings of the

pathogenesis towards diabetic complications. This study iden-

tified differentially dysregulated genes as potential prognostic

biomarkers involved in critical biological processes and path-

ways of proteins that are allied with T2DM comorbidities. The

most important findings of this study are the identification of

the upstream regulators which affect the gene expression such

as transcription factors STAT3, STAT1, and HIF1A, cytoplas-

mic kinases such as JAK kinases and highlight their mechan-

istic actions that affect the expression. Furthermore, the

findings of the present study identified the most commonly

expressed genes: Tumor Necrosis Factor, TNF, Interleukin 6;

IL6, Leptin; LEP, Angiotensinogen; AGT, Apolipoprotein E;

APOE,Coagulation Factor II, Thrombin; F2, Secreted

Phosphoprotein 1; SPP1,Resistin; RETN, and Insulin; INS

that could be used as potential prognostic biomarkers. The

data recognized that IL6 is the top regulator of the DRGs,

followed by LEP. The study identified several networks

which explore the dysregulation of several functions, including

Table 9 Top Five Upstream Kinase Factors Affecting the Expression of the Genes of the Data Set of the Present Study with their p-

values, Z-Score, Target Molecule and Numbers of Mechanistic Works. (Based on Core Analysis in Ingenuity Pathway Analysis [IPA])

Upstream

Regulator

Predicted

Activation State

Activation

z-Score

p-value of

Overlap

Target Molecules in Dataset Mechanistic

Network

ATM Activated 2.607 2.16E−08 CLU, L6, LEP, NAD+, NADP, SERPINE1 (7) 40 (21)

JAK2 Activated 2.211 3.64E−04 CCL2, ICAM1, IL6, TF, TNF (5) 33 (19)

JAK1 Activated 2.189 8.77E−06 CCL2, ICAM1, LRG1, TF, TNF (5) 49 (24)

MTOR Activated 2.187 2.86E−03 CCL2, FN1, IL6, LEP, MMP9, TNF (6) 54 (22)

AKT1 Activated 2.070 1.39E-11 APOC3,ATP,C1QC,CCL2,CLU,FN1,IL6,

LEP,MMP9,PLG(14)

56 (23)

Note: Data in brackets represent numbers of direct mechanistic network affecting gene expression out of all networks (direct and indirect).

Table 10 Top Regulator Proteins That Affect the Expression of

Several Proteins of the Data Set of the Present Study with Their

p-values, Z-Score, and Target Molecule (Based on Core Analysis

in Ingenuity Pathway Analysis [IPA])

Top

Regulator

Activation

z-Score

p-value

of

Overlap

Target Molecules in

Dataset

INS 0.967 2.15E−09 AGT,APOA1,ATP,GCG,

GHRL,ICAM1,IGKC,IL6,

LEP,TNF

LEP 2.185 8.71E-14 APOA1,APOA2,APOA4,

APOH,CCL2,GHRL,HPX,

ICAM1,IL6,INS,ORM1,

phosphate,RETN,

SERPINE1,SPP1,TN

IL6 3.175 1.81E-20 AGT,APOA1,APOB,

APOE,ATP,CCL2,CLU,CP,

FN1,GCG,HP,HPX,

ICAM1,KRT14,LEP,LRG1,

MMP9,ORM1,PLG,PON1,

PPBP,SAA4,SERPINA3,

SERPINE1,SPP1,TF,TTR
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cell components, and molecular transport process associated

with inflammatory responses that modify the insulin pathway.

Top comorbidities and complications associated with DRGs

are neurological and psychological disorders, organ injuries

related disorders such as renal damage, and connective tissue

disorders, and acute inflammatory disorders.

In this study, we identified 94 genes that were differen-

tially dysregulated in Arab subjects with T2DM compared to

healthy, non-diabetic controls. In order to explore the

mechanisms causing changes in gene expression, we identi-

fied upstream regulators in order to provide biological insight

into the observed expression changes. The essential top

upstream regulator identified was IL6 of the data set, fol-

lowed by transcription factors and kinases. IL6 is the master

of all regulators, which controls 63 genes of the dataset, and it

exerts its effects on the observed gene expression via 23

regulatory mechanisms with activation of Z-score (3.175).

IL6 interacting directly on PI3 (Peptidase Inhibitor 3) com-

plex, P38MAPK (stress signaler p38 mitogen-activated pro-

tein kinase), AKT (Serine/Threonine Kinase), and affects

TNF gene expression and also through other regulatory

molecules such as STAT3 (Signal Transducer And

Figure 6 Top regulator effects (A) Regulator effects of the top downregulated proteins

(INS) on target proteins of the dataset. Target genes that are upregulated (red) and

downregulated (green) genes. INS activates the expression of LEP, IL6, GCG, APOA1,

IGKC, and TNF. INS inhibits expression of GHRL, AGT, ATP, and ICAM1. Brown,

increased and golden arrow, decreased. Relations in arrows are expression (E), phos-

phorylation (P), and transcription (T). (B) Regulator effects of the top upregulated

protein (IL6) on target proteins of the dataset. Target genes that are upregulated (red)

and downregulated (green) genes. brown arrow: increase expression; golden arrow:

decreased; and grey: not predicted effect. See Supplementary tables. Relations in arrows

are expression (E), phosphorylation (P), and transcription (T).

Figure 7 Mechanistic networks-protein interaction. (A) Networks display interac-

tions of INS with some of the main target proteins of interest, such as IL6. The

pointed arrowheads represent activating relationships, and blunt arrowheads repre-

sent inhibitory relationships. Trigger gene: INS; Upstream regulators: TFs; Target

genes: IL6. (B) Network display interactions of IL6 with some of the main target

proteins of interest such as INS, AGT, LEP, SPP1. The pointed arrowheads represent

activating relationships, and blunt arrowheads represent inhibitory relationships.

(C) Display interactions of TNF with some of the main target proteins of interest

such as INS, IL6, LEP, and SPP1. Trigger gene: TNF; Upstream regulators: kinases

and ligand nuclear receptors; Target genes: INS,IL6, LEP, and SPP1.
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Activator Of Transcription 3), NFKBIB (NF-kappa-B inhi-

bitor beta), and FOXO1 (forkhead box O1), (Figures 6

and 7B). The set of 23 regulators in total connects to the 63-

dataset gene. IL6 is a growth factor with cytokine activity and

protein binding. Interleukin 6 (IL-6), a multifunctional cyto-

kine and has been linked to the pathogenesis of T2DM.17

Increasing the level of circulating IL-6 is a predictor biomar-

ker of T2DM, especially in obese subjects and could be

involved in the development of inflammation and insulin

resistance.18

Furthermore, IL6 downregulates the expression of the

insulin gene, which contributes to the pathogenesis of

T2DM and its related comorbidities. IL6 is participating

in numerous biological processes such as acute inflamma-

tory response as one of the top canonical pathways asso-

ciated with inflammatory response disease such as

activation of leukocytes and degranulation of the cells,

injury of different organs such as renal damage, connective

tissue disorders such as rheumatoid arthritis. It also affects

many molecular functions, such as fat and protein meta-

bolism. The complex signal transduction mechanism of

IL-6/STAT3 may explicate the widespread effects of the

IL6 as a cytokine.19 Monitoring of IL6 in T2DM is of

clinical significance as it is involved in many related

complications such as atherosclerosis (Figure 8), hyperten-

sion (Figure 8), renal damage (Figure 4), metabolic,

inflammatory disorders, and organs and tissues damage

(Table 5).

Moreover, we detected several transcription factors (TF) as

upstream regulators including Signal transducer and activator

of transcription 3 (STAT3), Signal transducer and activator of

transcription 1 (STAT1), Hypoxia-inducible factor 1-Alpha

(HIF1A), CCAAT/enhancer-binding protein alpha (CEBPA),

and CCAAT/enhancer-binding protein beta (CEBPB). Signal

transducer and activator of transcription 3 is one of STAT

family, known as acute-phase response factor, which regulates

downstream target molecule such as; IL6, LEP, JAK2 (Janus

Kinase 2), LIF (LIF Interleukin 6 Family Cytokine), IL10

(Interleukin 10), EGF (Epidermal Growth Factor), SRC

(Proto-Oncogene, Non-Receptor Tyrosine Kinase), IL21

(Interleukin 21), SOCS3 (Suppressor Of Cytokine

Signaling 3), JAK (Janus Kinase), IL6ST (Interleukin 6

Signal Transducer), and binds with other TFs such as EGFR

(Epidermal Growth Factor Receptor), STAT1, JAK2 (Janus

Kinase2), FOS (Fos Proto-Oncogene, AP-1 Transcription

Factor Subunit), PIAS3 (Protein Inhibitor Of Activated

STAT 3), IL6ST, SRC, EP300 (E1A Binding Protein P300),

JUN (Jun Proto-Oncogene, AP-1 Transcription Factor

Subunit), RELA (RELA Proto-Oncogene, NF-KB Subunit),

JAK1, CDKN1A (Cyclin-Dependent Kinase Inhibitor 1A),

HIF1A, STAT2. STAT3 is regulated by BCL2L1 (protein

phosphatase 1, regulatory subunit 52), MYC (MYC proto-

oncogene,), SOCS3, VEGFA (Vascular Endothelial Growth

Factor A), IL6, CCND1 (Cyclin D1), STAT3, VEGF

(Vascular Endothelial Growth Factor F), IL21, BIRC5

(Baculoviral IAP Repeat Containing 5), and HIF1A, which

Figure 8 Network display utility of DRGs as predictive biomarkers for two comorbidities associated with T2DM: atherosclerosis and hypertension. APOA1 and IL6 as

diagnostic for atherosclerosis, and CCL2, TNF, LEP, ICAM1, IL6, INS, SERPINE1, and RETN as efficacy biomarker for treatment. For hypertension, TNF and IL6 for diagnosis

and CCL2, LEP, TNF, ICAM1, and IL6 as efficacy biomarkers for treatment.
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indicates its pleiotropic cellular effects such as expression,

proliferation, apoptosis, growth, differentiation, andmigration.

In the current study, STAT3 regulates the expression of AGT,

AHSG (Alpha 2-HS Glycoprotein), APOA4 (Apolipoprotein

A4), ATP, CCL2 (C-C Motif Chemokine Ligand 2), CFB

(Complement Factor B), FN1 (Fibronectin 1), HP

(Haptoglobin), ICAM1 (Intercellular Adhesion Molecule 1),

and IL6 (Table 8, Figure 5). The current findings of the role of

STA3, and STAT1 as TFs, indicates its significant role in

acute-phase response and inflammation, which is a hallmark

of the biological process and related disorders associated with

comorbidities of T2DMsuch as the damage of kidneywhich is

enriched in the dataset. Previous studies indicated the role of

STAT 3 protein in insulin resistance and diabetes and related

disorders such as damage of kidney, degranulation of cells,

and apoptosis of endothelial cells in microangiopathy.20 Such

exploration of the role of the transcription factors and its

downstream target genes could explain the numerous compli-

cations associated with T2DM.

Further, as upstream regulators that affect the gene

expression of the dataset, we identified several kinases

(Table 9, Figure S4), which can target several genes of

the data set. AKT (Protein kinase B, PKB) is one of 3

closely related serine/threonine-protein kinases (AKT1,

Akt2, and AKT3), which regulates metabolism, prolifera-

tion, cell growth, and angiogenesis.21 The dataset of the

present study showed that AKT is regulated by insulin,

EGF (Epidermal Growth Factor), PDGF (Platelet-Derived

Growth Factor complex), TNF, and IGFI (Insulin-Like

Growth Factor 1), and it regulates downstream several

Figure 9 (A–D) Biological networks. The top four networks are showing interactions between dysregulated genes, functions, diseases, and upstream regulators in T2DM.

Details are displayed in each figure. (A) NW1: The network displays cellular components, inflammatory responses, and neurological diseases. The network displays the

canonical pathway and cellular components regulated by the DRGs. The upregulated (red) and downregulated (green) associated with dementia as a neurological

complication of T2DM. (B) NW2: The network displays lipid metabolism, molecular transport, and small molecular biochemistry. The network displays the cellular

functions and process (fatty acid metabolism, efflux of cholesterol) and inflammatory responses (IR) regulated by the DRGs. The upregulated (red) and downregulated

(green) associated with dyslipidemia and glucose metabolic disorders and Alzheimer’s as neurological complications of T2DM. (C) NW3: The network displays develop-

mental disorders, humoral immune response, and inflammatory responses. The network displays the canonical pathway and cellular process regulated by the DRGs. The

upregulated (red) and downregulated (green) associated with immunodeficiency and rheumatoid arthritis as connective tissue disorders as a complication of T2DM. (D)

NW4: The network displays cell to cell signaling and interaction cellular movements and inflammatory responses. The network displays the canonical pathway and cellular

process regulated by the DRGs. The upregulated (red) and downregulated (green) associated with severe renal, hepatic, and cardiac injuries as complication of T2DM.
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TFs such as GS3 B (Glutamine synthetase root isozyme

B), NOS3 (Nitric Oxide Synthase 3), FOXO1 (Forkhead

Box O1), mTOR (Mechanistic Target Of Rapamycin

Kinase), and NFKB (Nuclear Factor Kappa B). It affects

glucose metabolism function through translocation of the

SLC2A4/GLUT4 (Solute Carrier Family 2 Member 4)

glucose transporter to the cell surface post-insulin signal-

ing effect.21,22 The analysis of the present findings of the

current study demonstrated that the expression of the dys-

regulated gene is controlled by many factors such as

transcription factors, cellular kinases, growth factors and

cytokines such as IL6, TNF, and LEP, and all of them are

involved in consequence of the biological process, path-

ways and diseases associated with T2DM, as we discussed

further in next paragraphs.

The canonical pathway analysis by the core analysis of

IPA (Figure 1) indicated several critical signaling path-

ways involved in the pathogenesis of T2DM and its

comorbidities, such as Retinoid X Receptors (RXRs),

and Acute Phase Response Signaling in the dataset of T2

DM (Table 3, and supplementary Tables S2–S7). RXRs

are nuclear receptors that affect biologic functions such as

lipid metabolism, molecular transport, and small molecule

biochemistry. Activation of RXR is involved in cholesterol

efflux in macrophages through an effect by the following

DRGs of apolipoproteins family; APOE, APOC1, APOC2,

APOC4, while inhibiting APOA5. In hepatocytes, activa-

tion of APOA4 enhances cholesterol efflux. The apolipo-

protein family is transporters that are involved in lipid

metabolism, which altered in diabetes and predisposed to

several disorders such as atherosclerosis and cardiovascu-

lar diseases.23 Furthermore, TNF alpha is one of the DRGs

which is involved in the transport of lipids, steroids, and

efflux of cholesterol. TNF uses different signaling path-

ways such as NFKBIA, and P38MAPK to exert its effect

on lipid transport.24 Such data are supported with the

related functions observed in the present study such as

fat acid metabolism, and lipolysis (Figure S2), and are

interconnected to hypertriglyceridemia as a top disease

related to metabolic disorder and considered as the leading

platform and risk factor for multiple disorders such as

cardiovascular disorders, and progressive neurological dis-

orders (Table 5). The data of the present study revealed

another nuclear receptor that is the Farnesoid X Receptor

(FXR). The FXR is a member of the nuclear family of

receptors and has emerged as a critical player in the con-

trol of numerous metabolic pathways such as a sensor of

bile acid and its regulation (Figure 2). Bile acid receptor

plays a vital role in fat and glucose metabolism.25 The

activation of the membrane G-protein receptor 5 (TGR5)

by bile acids is associated with metabolic actions such as

ameliorating insulin resistance via GLP-1 secretion.26

Furthermore, the acute phase response pathway is one of

the significant pathways observed in the current dataset. The

pathway and its molecules are involved in inflammation

included upregulated proteins via NFKB (Nuclear Factor

Kappa B) as an upstream regulator, which is connected with

2761 nodes and could elucidate the plethoric effects of the

acute phase response signaling pathway. One of these disor-

ders associated with acute inflammatory response is the

damage of the kidney. (Figure 4A and B) displays the pathway

which identifies that TNF and IL6 are upstream regulators

mainly via binding of TNF to TNF receptors at the plasma

membrane where it activates a cascade of nuclear factors such

as jun (Jun Proto-Oncogene), Ep300 (E1A Binding Protein

P300), NF-kB (Nuclear Factor Kappa B), and NF-IL6 which

in turn activates downstream targets of several proteins. The

following up-regulated proteins as downstream targets are;

Complement factor B; CFB [a marker of acute injury in

sepsis],27 Angiotensinogen; AGT [a biomarker of diabetic

nephropathy],28 Interleukin 6; IL6 [a biomarker of ischemic

acute kidney injury, diabetic nephropathy, IgA nephropathy,

and lupus nephritis],29 and Complement component 4, bind-

ing protein, alpha and beta (CA4/C4B) [IgA nephropathy],

Intercellular adhesion molecule 1 (ICAM1) [a biomarker of

glomerulonephritis],30 Tumor necrosis factor (TNF) [a bio-

marker of nephropathies, including immune complex-

mediated glomerulonephritis],31 and Vitamin D Binding

Protein (GC) [a biomarker of diabetic nephropathy],28 all are

involved in the damage of the kidney.

Numerous essential metals are essential for the biological

functions of several enzymes, proteins, and transcriptional

regulators. It is also vital in many biochemical reactions

for cell functions in different tissues. For instance, Zn,

Mg, and Mn are cofactors of several enzymes that

participated in various biological pathways. Zn is implicated

in the biosynthesis and secretion of insulin hormone from the

beta-cells of the pancreas. Likewise, Cr augments the activity

of insulin receptors on muscle cells, which increases the

insulin-stimulated glucose uptake.32 Several studies have

described the pathogenic role of some essential metals

might harmfully disturb pancreatic functions that lead to

the development of diabetes.32 The data set of the current

study showed that many DRGs is involved in increased

prediction to amount of metal ions in T2DM such as CCL2

(C-C Motif Chemokine Ligand 2), F2 (Thrombin), FN1
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(Fibronectin 1), GCG (Glucagon), GHRL (Ghrelin And

Obestatin Prepropeptide), APOE, APOC3, AGT, TTR

(Transthyretin), TNF, PYY (Peptide YY), PTH

(Parathyroid Hormone), PPBP (Pro-Platelet Basic Protein),

PLG (Plasminogen), ORM1 (Orosomucoid 1), ICAM1

(Intercellular adhesion molecule 1) as shown in (Figure 3).

For example, TNF regulates the transport of divalent metals

such as Zinc in cells, via the control of ZIP-importers and

metallothionein gene expression.33

Complications observed with T2DM include disorders

affecting the heart, blood vessels, nerves, eyes, liver, and

kidneys.34 Hyperglycemia and insulin resistance have been

reported as crucial players in the development of

microvascular and macrovascular complications, including

atherosclerosis.35 Overproduction of ROS species of

endothelial dysfunction and inflammation precipitates the

development of diabetic vascular disease.36,37 Close analysis

of the data set (Figure S7b), shows the metabolite KNG1

(Kininogen 1) having a direct positive relationship of regula-

tion for ROS generation,38 while FN1 (Fibronectin 1) regu-

lates endothelial cell proliferation,39 F2 (Coagulation factor

II) regulates endothelial cell function such as apoptosis40 and

PLG (Plasminogen) negatively regulates inflammation.41 In

attempting to monitor the onset of diabetic vascular disease,

over-expression of KNG1, FNI, F2, and PLG could serve as

prognostic biomarkers to monitor early vascular complica-

tions. Moreover, therapeutic applications to counteract vas-

cular compromise, resolving of oxidative stress in T2DM

patients could be achieved by regulating the expression of

APOA1 which inhibits oxidative stress42 and RETN (resis-

tin) which regulates the inflammatory response.43

Amyloidosis is a group of diseases in which misfolded

proteins that result in progressive organ damage are formed

in different tissues (Table 4). The clinical presentation

depends on its location, and the liver, kidney, and heart are

commonly affected (Table S9), causing liver cirrhosis,

nephrotic syndrome, and heart failure, respectively.44

Several disorders were documented in the present study

that dysfunction of the endothelium is considered as

a crucial component in the pathogenesis of vascular disease

including apoptosis, and oxidative stress (Figure S7b), which

eventually leads to the development of diabetic-related com-

plications such as atherosclerosis, diabetic retinopathy, and

nephropathy.45 The damage of the genitourinary system

includes several disorders such as urinary tract infection,

abscess, chronic kidney disease, nephrotic syndrome, and

urinary bladder, and urethral disorders.46 Disorders related

to degranulation of cells, such as the chemotactic activity of

neutrophils with a reduction in the phagocytosis and bacter-

icidal activity (Figure S1) from diabetic patients is impaired,

which predispose to infections .47 Further, we demonstrated

increased activation of leukocytes (Table 5) with increased

release of inflammatory sets of proteins such as IL6, and

TNF, which could play an important role in inflammatory

disorders (Figure 4A and B) associated with diabetes such as

diabetic nephropathy .48

The coagulation pathway (Figure S7a) plays a critical

role in the pathogenesis of cardiovascular disease in patients

with neuropathy.49 Many diabetes patients die of cardiovas-

cular complications. The examination of Figures S7a showed

manymetabolites that affect the coagulation in some fashion.

INS regulates vascularization; APOH, F2, and ICAM regu-

late platelet activation and adhesion; AGT regulates blood

vessel contraction; TNF and CCL2 regulate blood chemo-

kine in circulation; F9 regulates onset Hemophilia B, and

PON1 inhibits onset cardiovascular disease. Directions of

therapeutic goals should aim at monitoring and decreasing

over-expression of the metabolites contributing to coagula-

tion diseases and increasing the counterattack of PON1

(Paraoxonase 1) to prevent cardiovascular morbidity.50

Other cellular processes plagued by T2DM patients include

compromised wound healing, which is regulated by TNF and

LEP metabolites; regulating their over-expression could

resolve wound healing complications.51

Insulin action pathway networks identified dysregulation

of cellular processes such as glucose and lipid metabolism,

which plays a vital role in the pathogenesis of T2DM

(Figure S7 b-d). Monitoring the coupled expression of dysre-

gulated proteins such as IL6, INS, LEP, IAPP (Islet Amyloid

Polypeptide), AGT, TNF, CCL2, GHRL, KNG1 (Kininogen

1), GCG, RETN, and C3 (Complement C3) could be used as

a predictive biomarker of T2DM comorbidities. For instance,

AGT (angiotensinogen) plays an essential role in counteracting

both the cardiovascular and non-cardiovascular actions of

AngII.52 Recent data have revealed that chronic administration

of Ang 11 improves the action of insulin in glucose and lipid

metabolism in obese mice.53 Potential mechanisms of this

beneficial effect included activation of insulin signaling, inhi-

bition of the adverse actions ofAngII, and augmented transport

of insulin to the target tissues.54,55

We observed an intersection between canonical signaling

in T2DM and several DRGs that are tangled in neurological

diseases, metabolic disorders, connective tissue disorders,

immunodeficiency, and renal injuries associated with cellular

functions and canonical pathways (Figure 9a-d). These com-

munications are mediated through several factors, such as

Cheema et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:132428

http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com/get_supplementary_file.php?f=244432.docx
http://www.dovepress.com
http://www.dovepress.com


NFκB, Akt, ERK (extracellular signal-regulated kinases),

TNF, and IL6. These factors were identified for their con-

tributions in various diseases. Such networks indicate the

complexity of the disorders associated with T2DM in terms

of the target genes and their proteins on the different biolo-

gical, cellular, and molecular functions which interact to

cause a particular disorder. Even the complexity is evident

in the current study as we identified in some examples that

the upstream regulators affect abundant molecules such as

growth factors like leptin; cytokines like TNF, and IL6;

transcription factors such as HIFA, STAT, CEBPA, NFκB;

and several kinases such as ERK, mTOR, AKT, and others.

Gathering information’s of the DRGs of the dataset,

and their role in the various biological process with asso-

ciated comorbidities in T2DM could help in understanding

the pathogenesis of various disorders, enhance the utility

of these genes as biomarkers for prediction, prognosis,

complication and response to treatment, and design of

new drugs that can be used in management.

Using the analysis of current data integration, we were

able to answer some questions of interest. For example,

TNF as one of the upstream regulators that are involved in

rheumatoid arthritis, and the clinical utility of Adalimumab

as antibody and binder to TNF target, could be used for the

treatment of active rheumatoid arthritis, which is predicted

to inhibit TNF as a target.56 Another question, which dis-

ease states could develop based on the activation of the

acute phase response signalling signaling pathway in

T2DM, the answer, for example, could be involved in the

damage of the kidney, immunologic, and neurological dis-

orders (Figures 4, 9A and C). STAT3 as an upstream reg-

ulator regulates 15 downstream target genes of the dataset

and STAT3 could be involved in disorders related to inflam-

matory disorders such as connective tissues,57 vascular dis-

orders such as atherosclerosis, angiogenesis,58 neurological

disorders such as Alzheimer’s disorders59 and others based

on the downstream target of the DRGs (Table 5, Figure 5).

We analyzed the pathways, functions, diseases, and regula-

tors to understand which gene or genes of that dataset could

be used to monitor the prognosis, diagnosis, and efficacy of

a particular disorder such as hypertension (IL6, TNF) for

diagnosis of hypertension, while CCL2, IL6, LEP, and HPX

for the efficacy of hypertension management, and, athero-

sclerosis and hemophilia (Figure 8, and Figure S7a). For

example, ANG could be used to monitor the efficacy of

Aliskiren and Irbesartan in the treatment of T2DM asso-

ciated with renal disorders.60,61

In summary, the incorporation of metabolomics and

proteomics data through integrative pathway analysis

using different tools would help in understanding the role

of various biomarkers in the identification of the biological

processes, pathways, and pathophysiology that are asso-

ciated with the comorbidities of T2DM. We identified the

most commonly expressed genes of the study are the fol-

lowing TNF, IL6, LEP, AGT, APOE, F2, SPP1, RETN, and

INS that could be used as potential prognostic biomarkers.

The data recognized that IL6 is the top regulator of the

DRGs, followed by LEP. LXR/RXR and acute phase

response signalling pathways are dominant pathways

involved in renal damage, insulin resistance, dyslipidemia,

and cardiovascular disorders. We identified the role of

upstream regulators such as STAT3 as a transcription factor

that is involved in connective tissue disorders and athero-

sclerosis as it targets many proteins involved in such dis-

orders. ANG could be used as an efficacy biomarker of

renal disorders. TNF is involved in the regulation of metals

such as Zinc, which affects B-cell functions and insulin

secretion. Therefore, such information could help to recog-

nize those patients at higher risk for a specific complication

and its response to a particular class of anti-diabetic drugs.

Prospective studies should be performed to validate the

results obtained from the current work for the utility of the

biomarkers using clinical studies.

A limitation of this study was a difference in the mean

age of the control and diabetic: the age of the patents is older

than the control, which could affect results. Therefore, we

did an AUC analysis of some target biomarkers, as shown in

supplementary Table 1, and previously published.5,6 The

data showed that these markers were differentially

expressed in the diabetic cohort, regardless of the age of

the individual.
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