
1Scientific Reports | 5:12105 | DOI: 10.1038/srep12105

www.nature.com/scientificreports

Nonparametric Risk and 
Nonparametric Odds in 
Quantitative Genetic Association 
Studies
Wei Zhang & Qizhai Li

The coefficient in a linear regression model is commonly employed to evaluate the genetic effect 
of a single nucleotide polymorphism associated with a quantitative trait under the assumption that 
the trait value follows a normal distribution or is appropriately normally distributed after a certain 
transformation. When this assumption is violated, the distribution-free tests are preferred. In this 
work, we propose the nonparametric risk (NR) and nonparametric odds (NO), obtain the asymptotic 
normal distribution of estimated NR and then construct the confidence intervals. We also define the 
genetic models using NR, construct the test statistic under a given genetic model and a robust test, 
which are free of the genetic uncertainty. Simulation studies show that the proposed confidence 
intervals have satisfactory cover probabilities and the proposed test can control the type I error rates 
and is more powerful than the exiting ones under most of the considered scenarios. Application 
to gene of PTPN22 and genomic region of 6p21.33 from the Genetic Analysis Workshop 16 for 
association with the anticyclic citrullinated protein antibody further show their performances.

In binary-trait genetic association studies, the relative risk (RR) is commonly employed to show the 
degree of risk of the genetic variants associated with human complex diseases. The RR has two impor-
tant features that it compares the probability of an event occurring in an exposed group to that of the 
event occurring in a non-exposed group and the reference group ensures the proper comparison. As an 
alternative, the coefficient in a linear regression model can be reported to show the association strength 
between the genetic variant and the quantitative trait. When the trait values follow the normal distribu-
tion or are normally distributed after a certain transformation such as the Box-Cox transformation, the 
corresponding statistical analyses are valid. However, the assumption of normality is often violated in 
practice. For example, for the anticyclic citrullinated protein antibody (anti-CCP) to be analyzed later, 
neither the observed values nor their logarithm transformation versions satisfy the normal assumption 
due to truncation. Sometimes, even though some transformations can be used, different transformations 
might result in different conclusions.

The Kruskal-Wallis test1, the Jonckheere-Terpstra test2,3, the U-statistics-based tests4,5, and the non-
parametric trend test6 can be used to evaluate the association between the genetic variants and the 
quantitative traits for the non-normal trait values. The distributions or the approximate distributions of 
the test statistics are derived under the null hypothesis that the genotypes are not associated with the 
traits. However, there is no genetic effect size defined. Recently, Konietschke et al.7 employed the relative 
effect ( ) ( )θ = ∑ 
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2  size to measure the genetic effect, where Xj denotes a 
random variable taking the phenotype values corresponding to genotype j, j =  0, 1, 2. Based on θj, they 
constructed the maximal test considering three genetic models: recessive, additive and dominant models. 
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Also, Brunner and Munzel8 defined it as relative treatment effect in solving Behrens-fisher problem and 
Ryu9 called it ordinal effect size measure for the ordered categorical data. However, they did not study 
the performances of the estimators for θj and their confidence intervals, especially under the alternative 
hypothesis that the genetic variant is associated with the trait, which is of great interest to investigators 
when a positive finding has been found.

In this paper, we define the nonparametric odds (NO) as λ i =  Pr(Y0 <  Yi)/[1 −  Pr(Y0 <  Yi)], where Yi 
denote the trait value that the subjects taking in the group with genotype i, i =  1, 2. Compared to θj, j =  0, 
1, 2, NO has three salient features. First, it gives a comparison of the difference between two groups; 
the second is that the reference group with genotype value 0 can guarantee a reasonable comparison; 
third, it equals 1 under the null hypothesis. This paper is organized as follows. In the “Results” section, 
simulations and real data analysis are conducted to illustrate the performances of the proposed proce-
dures. Some further topics and issues are present in the “Discussion” section. In the “Methods” section, 
we describe the NO, give its point and confidence interval estimates, and construct the test statistic for a 
given genetic model and a robust test, which is free of genetic models. At last some technical details are 
given in the Supplementary Material.

Results
Simulation Settings.  We conduct simulation studies to explore the performances of the proposed 
procedures. Consider the linear model β β= + + εY G0 1 , where = ( , , , )τY y y yn1 2  denotes the 
trait value, = ( , , , )τG g g g n1 2  denotes the genotype value at a single nucleotide polymorphism (SNP) 
locus with ∈ , ,g {0 1 2}i  being the count of a certain allele, and ε ε ε ε= ( , , , )τ n1 2  denotes the ran-
dom error with ϵi i.i.d. following a truncated generalized extreme value distribution (a heavy-tailed 
distribution), tGEV(0,0,1,0) with the shape parameter 0, the location parameter 0, the scale parameter 1 
and the truncated point 0. We consider β0 =  0.5, β ∈ , . , .{0 0 25 0 50}1  and three minor allele frequencies 
(MAFs) with 0.15, 0.30 and 0.45. We consider three sample sizes with 500, 1,000 and 1,500, where the 
results for the sample size of 500 and 1,000 are shown in the Supplemental Material. 2,000 replicates are 
conducted to calculate the character statistics for each scenario.

Biases, mean squared error and confidence Interval.  Table 1 shows the empirical bias, the square 
root of mean square error (sMSE), the cover probability (CP) and the interval length (IL) for 
β ∈ . , .{0 25 0 5}1  and MAFs ∈ . , . , .{0 15 0 30 0 45}. From Table 1, we can find that the proposed three con-
fidence intervals have good cover probabilities with the estimated CP being close to the nominal level of 
95%. For example, when β1 =  0.25 and MAF =  0.15, the cover probabilities of the Standard Interval, the 
Wilson Interval and the Log-Delta Interval for λ 1 are 95.3%, 95.1% and 95.1%, respectively, which is very 
close to the nominal level of 95%. When β1 =  0.5 and MAF =  0.30, the cover probabilities of the the 
Standard Interval, the Wilson Interval and the Log-Delta Interval for λ 2 are 94.6%, 94.9% and 94.9%, 

MAF Bias sMSE

Standard Interval Wilson Interval
Log-Delta 

Interval

CP IL CP IL CP IL

Inferring λ1(=1.43) under β1 = 0.25

0.15 − 0.0085 0.092 0.953 0.369 0.951 0.367 0.951 0.367

0.30 0.0384 0.096 0.936 0.354 0.939 0.353 0.939 0.353

0.45 − 0.0052 0.101 0.948 0.404 0.947 0.402 0.948 0.402

Inferring λ2(=1.97) under β1 = 0.25

0.15 0.0160 0.350 0.932 1.382 0.932 1.329 0.932 1.336

0.30 − 0.0038 0.184 0.953 0.757 0.953 0.748 0.953 0.749

0.45 − 0.0200 0.168 0.951 0.677 0.949 0.671 0.949 0.672

Inferring λ1(=1.97) under β1 = 0.5

0.15 − 0.0047 0.126 0.953 0.504 0.952 0.501 0.952 0.501

0.30 0.0072 0.125 0.956 0.506 0.955 0.504 0.955 0.504

0.45 − 0.0010 0.154 0.945 0.595 0.944 0.591 0.944 0.591

Inferring λ2(=3.58) under β1 = 0.5

0.15 0.0596 0.589 0.940 2.314 0.942 2.204 0.943 2.212

0.30 0.0085 0.350 0.946 1.394 0.949 1.369 0.949 1.371

0.45 0.0982 0.371 0.932 1.379 0.938 1.355 0.938 1.357

Table 1.   The empirical bias, sMSE, CP and IL of NO.
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respectively. The Wilson Interval has the smallest IL and the standard interval have the largest IL among 
them.

Table 2 show the results of empirical biases, sMSE, CP and IL of the proposed procedures under the 
recessive, additive and dominant models. Similar findings are obtained to those from Table  1. All the 
three confidence interval estimation procedures can keep the cover probabilities correctly and the IL of 
the Wilson Interval is the shortest among the three confidence intervals. The Standard Interval usually 
gives large IL. For example when MAF =  0.15, β1 =  0.25 and the genetic model is recessive, the empir-
ical CP of the Standard Interval, the Wilson Interval and the Log-Delta Interval are equal to 94.2%, 
94.8% and 94.9%, respectively, and the IL of the Wilson interval is (1.313), which is smaller than those 
of the Standard Interval (1.363) and the Log-Delta Interval (1.319). In general, all the three confidence 
interval estimation procedures can be used in practice. If we want to choose one, the Wilson Interval is 
recommended.

Type I error rates.  We first evaluate the empirical type I error rates of the the proposed ZR, ZA and 
ZD compared with the exiting Kruskal-Wallis test, F test and Jonckheere-Terpstra test under a given 
genetic model. To make a fair comparison, we construct the Kruskal-Wallis, F and Jonckheere-Terpstra 
tests under thee genetic models separately. For the simplicity of notations, we denote the Kruskal-Wallis 
test, F test and Jonckheere-Terpstra test under the recessive model by KW-R, F-R and JT-R, respectively, 
under the additive model by KW-A, F-A, and JT-A, respectively, and under the dominant model by 
KW-D, F-D and JT-D, respectively. Besides three MAFs of 0.15, 0.30 and 0.45, we also consider MAF of 
0.05. The nominal significance level is set to be 0.05. Table 3 shows the empirical type I error rates. As 
expected, for MAFs of 0.15, 0.30 and 0.45, all the considered procedures can control type I error rates. 
For example, when MAF is 0.15, the empirical type I error rates of the KW-R, KW-A, KW-D, F-R, F-A, 
F-D, JT-R, JT-A, JT-D, ZR, ZA, and ZD test are 0.043, 0.048, 0.055, 0.041, 0.048, 0.051, 0.035, 0.041, 0.042, 
0.041, 0.051, and 0.054, respectively. We next explore the empirical type I error rates of the robust tests: 
Konietschke et al.’s test7 (for convenience, denote it by KLH) and MAX3. Table  3 gives the results. It 
indicates that both KLH and MAX3 can control the type I error rates for MAFs of 0.15, 0.30 and 0.45. 

MAF Bias sMSE

Standard Interval Wilson Interval Log− Delta Interval

CP IL CP IL CP IL

Inferring λ2R(=1.97) under the recessive model with β1 = 0.25

0.15 0.0438 0.342 0.942 1.363 0.948 1.313 0.949 1.319

0.30 0.0092 0.174 0.948 0.701 0.948 0.694 0.948 0.695

0.45 − 0.0201 0.135 0.948 0.528 0.945 0.525 0.945 0.525

Inferring λ2R(=3.58) under the recessive model with β1 = 0.5

0.15 0.0535 0.593 0.933 2.264 0.930 2.160 0.931 2.168

0.30 0.0458 0.314 0.946 1.225 0.946 1.208 0.946 1.210

0.45 0.0088 0.252 0.949 0.989 0.950 0.980 0.950 0.981

Inferring λ1A(=1.43) under the additive model with β1 = 0.25

0.15 − 0.0153 0.080 0.938 0.306 0.938 0.305 0.938 0.305

0.30 − 0.0029 0.062 0.954 0.249 0.954 0.249 0.954 0.249

0.45 − 0.0018 0.061 0.939 0.239 0.939 0.239 0.939 0.239

Inferring λ1A(=1.97) under the additive model with β1 = 0.5

0.15 0.0077 0.104 0.943 0.413 0.945 0.412 0.945 0.412

0.30 0.0055 0.089 0.946 0.352 0.945 0.351 0.945 0.351

0.45 − 0.0060 0.089 0.949 0.348 0.949 0.347 0.949 0.347

Inferring λ1D(=1.97) under the dominant model with β1 = 0.25

0.15 − 0.0033 0.128 0.935 0.492 0.933 0.490 0.933 0.490

0.30 0.0041 0.123 0.952 0.491 0.953 0.489 0.953 0.489

0.45 0.0028 0.145 0.951 0.578 0.948 0.574 0.948 0.574

Inferring λ1D(=3.58) under the dominant model with β1 = 0.5

0.15 0.0440 0.243 0.943 0.952 0.947 0.944 0.947 0.945

0.30 0.0434 0.262 0.943 1.020 0.947 1.010 0.947 1.011

0.45 − 0.0165 0.321 0.940 1.248 0.937 1.230 0.937 1.232

Table 2.   The empirical bias, sMSE, CP and IL of NO under different genetic model.



www.nature.com/scientificreports/

4Scientific Reports | 5:12105 | DOI: 10.1038/srep12105

For MAF of 0.05, KLH is too optimistic with the empirical type I error rates 0.174, which is by far larger 
than 0.05. We then consider a stringent nominal level of 5 ×  10−4. Similar results are observed, see Table 
S19 for details in the Supplementary Material. For the F, Jonckheere-Terpstra and KLH procedures, We 
use the existing R-software package to calculate the corresponding p-values. Specifically, the function lm 
in the package stats to compute the statistical significance of the F test, the function jonckheere.test in 
the package clinfun to compute that of the Jonckheere-Terpstra test, and the function nparcomp in the 
package nparcomp to compute that of the KLH test.

Power Comparison.  We conduct simulation studies to compare the power among the above tests. We 
use the same simulation settings as above and set β0 =  0.50, β ∈ , . , .{0 0 25 0 5}1  and the error term 
ε ~ tGEV(0, 0, 5, 0). n =  1,500 and 2,000 replicates are conducted to calculate the power. The nominal 
significance level is 0.05. Figure 1 shows the empirical power of ZR, ZA, ZD, KW-R, KW-A, KW-D, F-R, 
F-A, F-D, JT-R, JT-A, and JT-D. It indicates that the proposed tests is more powerful than the other tests, 
especially under the recessive and additive model, sometimes there is more than 10% power increase. 
For example, when the MAF is 0.10, β1 =  0.50 and the genetic model is additive, the empirical powers 
of ZA, KW-A, F-A, and JT-A are 0.585, 0.419, 0.311, and 0.453, respectively, and when the MAF is 0.25, 
β1 =  0.50 and the genetic model is recessive, the empirical powers of ZR, KW-R, F-R, and JT-R are 0.717, 
0.618, 0.390, and 0.552, respectively.

Figure 2 shows the empirical power of four tests, KW-A, F-A, ZA and MAX3. Since for MAF of 0.05 
and that being less than 0.15, KLH cannot control the type I error rate under the nominal significance 
level of 0.05 and 5 ×  10−4, respectively, we do not include it here to make a fair comparison. From 
Figure 2, it can be seen that MAX3 performs more powerful than the other compared test under most 
of scenarios, especially when the genetic models are recessive and dominant models. For example, when 
MAF =  0.30, β1 =  0.5, and the genetic model is recessive, the powers of the KW-A, F-A, ZA, and MAX3 
are 0.693, 0.276, 0.493, and 0.770, respectively. Under the additive model, ZA performs the best among 
them, it is reasonable since the data are generated under it. So, MAX3 is the most robust test among 
them.

Applications to the gene PTPN22 and the genomic region of 6p21.33.  It is well known that the 
genetic variants are deleterious to rheumatoid arthritis (RA)10. The anti-CCP taking continuous values, 
are much more common in the blood of individuals with RA than those without it11. The specificity 
using the anti-CPP to diagnose RA lies between 87.8% and 96.4%12. The gene PTPN22 and genomic 
region of 6p21.33 were reported to be associated with RA13,14. We apply the proposed procedures to the 
gene PTPN22 data including 25 SNPs and the genomic region of 6p21.33 including 45 SNPs from the 
Genetic Analysis Workshop 1615. The data consists of 868 cases and 1,194 controls, where 868 subjects 
have the anti-CCP measure and 1,194 do not have them. The minimum value of anti-CCP for these 
868 individuals is 20.053. As shown in Li et al.6, neither the original values of anti-CCP (p-value using 
Shapiro-Wilk test is 10−16) nor their logarithm transformation ones (p-value is 3.9 ×  10−9) follow the 
normal distribution. It is most likely that the observed anti-CCP measurements come from a truncated 
distribution since the anti-CCP is often measured to confirm RA and so it is not measured in controls. 
So the statistical analysis under the normal assumption is not reasonable.

Here we only use the genotype data in cases since the anti-CCP values are missing in controls. Table 
S20 in the Supplemental Material shows the p-values of 25 SNPs in gene PTPN22 and Table S21 shows 
the p-values of 45 SNPs in the genomic region of 6p21.22 using the KW-A, F-A, ZA, and MAX3. To 
evaluate the accuracy of the derived formulas, we also include 100,000 permutations to calculate the 
p-value of MAX3 in the table. The p-value results using permutation is very close to that derived from 
the asymptotic distribution. We find that the minimum p-value for 25 SNPs is 0.018 using MAX3. Under 
the significance level of 0.05, and after the Bonferroni correction, no significance reveals. The reason 
might be that we do not use the data whose anti-CCP measures are less than 20.053. For the genomic 
region of 6p21.22, there is one SNP rs2734583, which is significant under the significance level of 0.05, 
and the Bonferroni correction. The p-values using KW-A, F-A, ZA and MAX, are 0.0004, 0.0009, 0.0014, 
and 0.0008, respectively.

MAF KW-R KW-A KW-D F-R F-A F-D JT-R JT-A JT-D KLH ZR ZA ZD MAX3

0.05 0.048 0.045 0.054 0.048 0.059 0.059 0.037 0.040 0.044 0.174 0.016 0.055 0.053 0.032

0.15 0.043 0.048 0.055 0.041 0.048 0.051 0.035 0.041 0.042 0.060 0.041 0.051 0.054 0.046

0.30 0.052 0.049 0.047 0.051 0.052 0.054 0.038 0.037 0.037 0.053 0.053 0.049 0.047 0.047

0.45 0.040 0.049 0.047 0.045 0.045 0.045 0.036 0.037 0.037 0.048 0.039 0.051 0.044 0.046

Table 3.   The empirical type I error rates of the Kruskal-Wallis test1 (KW-R, KW-A, KW-D), the F test 
(F-R, F-A, F-D), the Jonckheere-Terpstra test2,3 (JT-R, JT-A, JT-D), KLH7 and the proposed test (ZR, ZA, ZD)  
and the proposed MAX3. The nominal level is 0.05 and 2,000 replicates are conducted.
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Discussions
Linear regression model is a classical approach to evaluate the association between the genetic variants 
and the continuous traits, where the coefficient in the model indicates the magnitude of the risk of a 
candidate SNP. When the trait values are normally distributed, most statistical analysis techniques are 
available. When it is violated, although the linear model can still be done, the estimated coefficient can 
not measure the real strength of the deleterious SNP. The log-transformation or the Box-Cox transforma-
tion is often employed to handle the non-normal quantitative trait. However, different transformations 
might result in different conclusions. In this work, we define the NR and NO, and give their point and 
confidence interval estimates under the general framework. Then we define the recessive, additive and 
dominant genetic models using NO and propose the corresponding point and confidence interval esti-
mates. We also provide three test statistics under different genetic models and a robust test being free 
of genetic model. Extensive simulation studies shows that the cover probabilities of the proposed proce-
dures are satisfactory, because they are close to the nominal level, and the proposed test is powerful than 
the exiting procedures under a given genetic model. Applications to GAW16 data for anti-CCP further 
show the performances of the proposed procedures.

Figure 1.  The empirical power of the Kruskal-Wallis test (KW-R, KW-A and KW-D), the Jonckheere-
Terpstra test (JT-R, JT-A and JT-D), the F test (F-R, F-A and F-D) and the proposed nonparametric test 
(ZR, ZA and ZD) derived under a given genetic model. The first column is for β1 =  0.25 and the second 
column is for β1 =  0.5.
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There are several issues that can be further investigated. First in this work we study only the scenario 
for the common allele under the hypothesis of common disease common allele. Under the hypothesis of 
common disease rare allele, how to extend the proposed procedure to this situation is worth considering, 
where the large sample theory does not hold. Secondly, we focus on the biallelic marker, the proposed 
procedures can be readily extended to multiallelic locus, and we can similarly define the NR and NO and 
construct the confidence intervals of NO. Thirdly, it is well known that family-based association studies 
is less susceptible to the confounding factors than population-based studies, so a trio design with two 
parents and an offspring could be considered in the future.

Confounding factors can not be ignored and adjusting for covariates is an important issue in 
population-based genetic association studies. For example, The hidden population structure can lead 
to many false-positive findings and correcting for population stratification has become a routine in 
genome-wide association studies (GWASs)16,17. To remove the effect of the covariates, we can use the 
same strategies as EIGENSTRAT16. We first compute the residuals of the trait after regressing out the 
covariates and then take the residuals as the new outcome rather than the original trait values. Simulation 
results shown in the Supplemental Material are consistent with those without considering the covariates.

In the proposed NR and NO, we do not consider the ties among the observations because the prob-
ability of the event that there are ties in the observations for the phenotype taking continuous values is 
zero. However, if there are ties among the sample, we can add ( ). <Y Y0 5 Pr i i1 2

 with < ∈ , ,i i {0 1 2}1 2  

Figure 2.  The empirical power of KW-A, F-A, ZA and MAX3. The first column is for β1 =  0.25 and the 
second column is for β1 =  0.5.
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to the formulas of NR and NO, and 0.5 ×  (number of ties between group with genotype i1 and group 
with genotype i2)/( )n ni i1 2

 to the estimators.
To calculate λ 1A under the additive model, the linear combination of λ̂1 and λ̂12 is used. Here, we 

adopt the proportion of sample size for each NO estimate over the total sample sizes as the weights. There 
are also some other available weights. For example, the MSE-based weights proposed by Zhong and 
Prentice18 to reduce the bias of log-odd ratios in a two-stage GWAS, and the square root of the sample 
proportion given by19 to jointly analyze the test statistics in a two-stage GWAS. So a comparison of the 
efficiency of these weights is a valued topic.

In the Supplementary Material, we prove that both , = ,f̂ i 1 2i  and ξ̂ follow the standard normal 
distribution as min{n0,n1,n2} goes to infinity. However, how many samples we need to get an accurate 
estimation? Based on the simulations, 1,000 more sample size is needed to get a reasonable estimate. In 
the current GWASs, the sample size is tens of thousands. For example, the Wellcome Trust Case Control 
Consortium (2007)20 used about 2,000 cases for each of seven diseases and 3,000 shared controls to 
detect the deleterious SNPs. Another example was Landi et al.’s (2009)21 Lung GWAS, where 5,939 cases 
and 5,848 controls were genotyped to identify the hereditary contribution to adenocarcinoma.

In the simulations, we consider the situation where the MAF is greater than 0.1, the sample size is 
larger than 1,000 and the distribution is truncated generalized extreme value distribution. Actually, we 
also conduct the simulation studies considering that MAF is 0.05, the sample size is 1000 and 500, and 
the distribution is normal distribution and centralized t distribution. Results given in the Supplemental 
Material indicate that the proposed test is more powerful than the existing ones under most of the con-
sidered scenarios.

The proposed NR and NO can estimate the non-parametric disease risk and odds in studies with 
“prospective sampling” such as a cohort study. However, in case-control studies, the case/control ratio 
for recruited subjects is different from the true one in the population. The derived tests can still be used 
to detect the association between the quantitative trait and genetic variants in case-control association 
studies. Finally, the proposed procedure has been coded in R verion 3.1.1 and is freely requested from 
the corresponding author.

Methods
NR and NO.  Suppose that n subjects are enrolled from a source population in a quantitative trait 
genetic association study. A biallelic SNP is considered here. Assume that the genotype is coded as 0, 1, 
and 2, corresponding to the count of a certain allele. Let ( , ), = , , ,y g i n1 2i i  be the observed sample, 
where yi and gi denote the trait value and genotype value of the ith subject. For the convenience of nota-
tions, let the first n0 subjects have the genotype 0, the second n1 subjects have the genotype 1, and the 
last n2 subjects possess the genotype 2. Suppose that the group with genotype 0 is the reference group. 
Denote fi =  Pr(Y0 <  Yi), where Y0, Y1 and Y2 denote the random variables that take the values in three 
sets , , ,{ }y y yn1 2 0

, , , ,+ + +{ }y y yn n n n1 20 0 0 1
, and , , ,+ + + + { }y y yn n n n n1 20 1 0 1

, respectively. Here we 
do not consider that there exit ties in the sample because the probability of the ties between two genotype 
groups is zero when the random variables Y0,Y1 and Y2 are continuous. fi shows the probability that the 
trait values in a group with genotype i is stochastically larger than those in the reference group with 
gentoype 0, i =  1,2. We call f1 and f2 the nonparametric risk (NR). Then we define the NO as λ i  
=  fi/(1 −  fi), i =  1, 2. We point out that when any of the f1 or f2 is one, the estimator for λ 1 or λ 2 is not 
defined, although this is unlikely to occur in practice. The null hypothesis is H0 : f1 =  f2 =  0.5 or λ 1 =  λ 2 =  1. 
The alternative hypothesis is H1 : f2 ≥  f1 ≥  0.5 and f2 >  0.5 or equivalently, λ 2 ≥  λ 1 ≥  1 and λ 2 >  1.

The empirical estimators of f1 and f2 are, respectively,
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The estimators of the variances of f̂ 1 and f̂ 2 are, respectively,
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The estimator of the covariance between f̂ 1 and f̂ 2 is

( )∑ ∑ ∑σ =








< − /
















( < ) − /







.

( )
,

= = +

+

= + +

ˆ
n n

I y y
n

I y y1 1 1 2 1 1 2
5i

n

j n

n n

i j
k n n

n

i k1 2
2

0
2

1 1 1 2 1

0

0

0 1

0 1

Confidence interval.  From the theorem in the Supplementary Material, we know that ( ) σ− /ˆ ˆf fi i i 
asymptotically follows a standard normal distribution. So the confidence intervals of fi at the significance 
level of 1 −  α (0 <  α <  1) is

σ σ
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
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, = , , ( )α α− −
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where −αz1 2
 is the 1 −  α/2 quantile of the standard normal distribution. Since λ i is a strictly monotonic 

increasing function of fi, the Standard Interval of λ i is

( ) ( )
 / − , / − 

, = , . ( )f f f f i1 1 1 2 7iL iL iU iU

Besides the Standard Interval, we can also construct the Wilson Interval22,23. f̂ i can be thought to esti-
mate the success probability of a binomial distribution with two parameters (Ni, fi) where Ni represent the 
number of trials and fi is the success probability. We estimate the efficient Ni by setting ( )σ = − /ˆ ˆ ˆf f N1i i i i

2 . 
Then the number of successes is = ˆX N fi i i, i =  1, 2. So, the Wilson Interval has the form of 
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The Log-Delta interval is obtained by using the delta method on the logarithm of λ i, i =  1, 2. Denote 

ζ =
−

lni
f

f1
i

i

 and ζ = , = ,
−

ˆ ˆ

ˆ iln 1 2i
f

f1
i

i

. Based on the result of the theorem in the Supplementary 

Material and the delta method, we have
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i i
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Then the confidence intervals of ζi at the significance level of 1 −  α is
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( ) ( )( ) ( )ζ ζ ζ σ ζ σ, = 
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Since λ i =  exp(ζi) is a strictly monotonic increasing function of ζi, the Log-Delta interval of λ i is

ζ ζ( ), ( ) , = , . ( )i[exp exp ] 1 2 12iL iU

Considering Genetic Models.  A genetic model refers to a specific mode of inheritance. The com-
monly used genetic models in binary trait genetic association studies are recessive, additive and domi-
nant models. For the non-normal distributed quantitative trait, the genetic models and the corresponding 
point estimates of NO are given in Table 4, where we define the additive model in the scale of NO as 
λ 1 =  λ 12 >  1 and λ 2 >  1 with λ 12 =  f12/(1 −  f12) and f12 =  Pr(Y1 <  Y2). In other words, the odds of trait 
values in the group with genotype 2 relative to those in group with genotype 1 is equal to that of trait 
values in group with genotype 1 relative to those in group with genotype 0. Based on the definitions, 
λ 1 =  λ 12 is equivalent to f1 =  f12.

Using the notations in Table 4, we substitute f̂ 2 by f̂ R2  and f̂ 1 by f̂ D1  and the corresponding three 
confidence intervals for f1R and f1D can be obtained. The construction of the confidence interval for 
λ 2A under the additive model is similar to that of f̂ 2. We now derive the confidence interval of λ̂ A1 . 
Denote = ∑ ∑ ( < )= +
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, From the theorem in the Supplementary Material, 
we know that ( , )τˆ ˆf f1 12  asymptotically follows a bivariate normal distribution with mean vector 
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τ
f f1 12  and covariance matrix Δ . The consistent estimate of Δ  is
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Thus the variance of f̂ A1  is

Genetic models NOs

Recessive λ 1 =  1 and λ 2 >  1

Additive λ 1 =  λ 12 >  1 and λ 2 >  1 where λ =
−

f
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1 12

 and f12 =  Pr(Y1 <  Y2)
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Table 4.   NO and their point estimates under different genetic models.
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. Under H0, 

( ) σ− /ˆ ˆf fA A A1 1 1  asymptotically follows a standard normal distribution. Similar to the above procedures, 
we can construct the Standard Interval, the Wilson Interval and the Log-Delta Interval.

Nonparametric Test Statistic under a given genetic model.  We construct the nonparametric test 
statistics under the recessive, additive and dominant models to test H0. The test statistic under the reces-
sive model is ( ) σ= − / /ˆ ˆZ f 1 2R R R2 2 , where
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where Φ (.) denotes the cumulative distribution function of the standard normal distribution.
Under the additive model, the test statistic is =
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Similar to the recessive model, the test statistic under the dominant model is ( ) σ= − / /ˆ ˆZ f 1 2D D D1 1 . 
The definition of f̂ D1  is given in Table 4, and
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MAX3.  In the above section, we define λ 1 and λ 2 and give some asymptotical statistical properties. 
However, they do not consider the genetic model. The test statistic ZA is obtained by combining the data 
of subjects with genotype 0 and 1, and ZD is obtained by combining the data of subjects with genotype 
1 and 2. ZA is obtained by weighting λ 1 and λ 2. They can be seen the combination of λ 1 and λ 2 to some 
extent under the fixed genetic model. When the genetic model is fixed for a given SNP, one can use the 
above tests to do the association studies. However, the mode of genetic inheritance is often unknown in 
practice. The test obtained under an improper model might lose power substantially. So, a robust test, 
which is free of genetic model is preferred. Let’s consider a robust test

= , , , ( )Z Z ZMAX3 max{ } 23R A D

the maximum value of three nonparametric tests. Under H0, (ZR, ZA, ZD)τ follows a three dimensional 
normal distribution24 with mean (0, 0, 0) and covariance matrix γΓ = ( ), ×x x 3 31 2

, , ∈ , ,x x R A D{ }1 2 , 
where ( )γ = ,, Z Zcorrx x H x x1 2 0 1 2

 is the covariance of the statistics Z x1
 and Z x2

 under the null hypothesis, 
which is given in the Supplementary Material. The detailed derivations of γRA, γAD and γRD are also pre-
sented in the Supplementary Material. Then for the observed value of MAX3, we use the function 
pmvnorm in R pacakge mvtnorm to calculate its p-value.
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