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In the present research, we explore the possibility of utilizing a hardware-based
neuromorphic approach to develop a tactile sensory system at the level of first-order
afferents, which are slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I)
afferents. Four spiking models are used to mimic neural signals of both SA-I and FA-
I primary afferents. Next, a digital circuit is designed for each spiking model for both
afferents to be implemented on the field-programmable gate array (FPGA). The four
different digital circuits are then compared from source utilization point of view to find
the minimum cost circuit for creating a population of digital afferents. In this way, the firing
responses of both SA-I and FA-I afferents are physically measured in hardware. Finally,
a population of 243 afferents consisting of 90 SA-I and 153 FA-I digital neuromorphic
circuits are implemented on the FPGA. The FPGA also receives nine inputs from the
force sensors through an interfacing board. Therefore, the data of multiple inputs are
processed by the spiking network of tactile afferents, simultaneously. Benefiting from
parallel processing capabilities of FPGA, the proposed architecture offers a low-cost
neuromorphic structure for tactile information processing. Applying machine learning
algorithms on the artificial spiking patterns collected from FPGA, we successfully
classified three different objects based on the firing rate paradigm. Consequently, the
proposed neuromorphic system provides the opportunity for development of new tactile
processing component for robotic and prosthetic applications.

Keywords: tactile sensing, spiking network, digital circuit, mechanoreceptor, primary afferents

INTRODUCTION

The sense of touch covers the whole body using a variety of receptors in different depth of skin.
Information coming from muscles and tendons (kinesthetic sensing) and rich signals from touch
receptors embedded in the skin (cutaneous sensing) play a crucial role in our sensory experience,
and thus, we are able to actively communicate with our surrounding world. Specifically, when we
interact with an object, information about that object characteristics such as its shape and texture is
carried in the spatiotemporal pattern of action potentials evoked in a variety of tactile afferents.
These action potentials or spikes are transmitted by the primary afferents to the spinal cord,
cuneate nucleus, thalamus, and finally somatosensory cortex for decoding and decision making.
Consequently, we are able to recognize objects based on tactile exploration (Dahiya et al., 2010,
2013). The specialized mechanoreceptors in the human glabrous skin are composed of two main
types, based on their functionality and their receptive field, (1) slowly adapting (SA) afferent and

Frontiers in Neuroscience | www.frontiersin.org 1 January 2020 | Volume 13 | Article 1330

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01330
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.01330
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01330&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/articles/10.3389/fnins.2019.01330/full
http://loop.frontiersin.org/people/455215/overview
http://loop.frontiersin.org/people/680942/overview
http://loop.frontiersin.org/people/454963/overview
http://loop.frontiersin.org/people/213104/overview
http://loop.frontiersin.org/people/87469/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01330 December 31, 2019 Time: 13:30 # 2

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

(2) the fast adapting (FA) afferent (Dahiya and Valle, 2012;
Tiwana et al., 2012). The SA type 1 (SA-I) and type II (SA-
II) afferents innervate Merkel and Ruffini cylinder, respectively,
and are mostly sensitive to static stimuli. The FA type 1
(FA-I) and type II (FA-II) afferents, which are sensitive to
transient events such as vibration, innervate the Meissner
corpuscle and Pacinian corpuscle, respectively (Lucarotti et al.,
2013). In this study, we focus on the SA-I and FA-I tactile
afferents, which are necessary elements for object manipulation
(Johansson and Flanagan, 2009).

Recent approaches aim to mimic the behavior of the biological
tactile receptors using advanced skin dynamics (Saal et al.,
2017) and neuromorphic models (Oddo et al., 2016) to progress
the efficiency and performance over traditional techniques.
Application of spiking neural networks and neuromorphic
approaches in tactile systems are increasing in the past few
years (Kim et al., 2009; Friedl et al., 2016; Oddo et al.,
2016; Yi and Zhang, 2016). Pearson et al. (2006, 2007, 2011)
developed a biomimetic vibrotactile sensory system using leaky
integrate-and-fire neuron models, which replicates rat whiskers
for enabling a robot to navigate its environment. To discriminate
local curvature of an object, Lee et al. (2013) used a fabric-based
binary tactile sensor array. The tactile signals were converted
into spikes using the Izhikevich model (Lee et al., 2014). For
decoding Braille letters, a closed perception-action loop was
made by converting force sensor data to spike trains using the
leaky integrate-and-fire model (Bologna et al., 2011, 2013). An
Izhikevich neuron model was used by Spigler et al. (2012) for
characterizing surface properties. Zhengkun and Yilei (2017)
transformed the outputs of polyvinylidene difluoride tactile
sensors to spike trains using the Izhikevich model and then
applied machine learning algorithm for classification of surface
roughness. Rongala et al. (2017) classified 10 naturalistic textures
by converting the outputs of an array of four piezoresistive
sensors into spike trains. They used the Izhikevich model and
analyzed the obtained spiking patterns (Rongala et al., 2017).
Using the same sensor, Oddo et al. transduced haptic stimulus
into a spatiotemporal pattern of spikes and then applied them
to the rat skin afferents using stimulation electrodes. In this
way, they showed a potential for neuro-prosthetic approach to
communicate with the rat brain (Oddo et al., 2017). Moreover,
neuromorphic techniques have been used to induce tactile
sensation for differentiating textures using SA-like dynamics
through nerve stimulation of an amputee (Oddo et al., 2016) and
to enhance grip functionality of the prosthesis (Osborn et al.,
2017). In Osborn et al. (2018), it was focused on pain detection
through a neuromorphic interface and initiated an automated
pain reflex in the prosthesis.

One of the most common methods to realize the neural
computational models is developing digital circuit due to its
high efficiency for practical applications (Cassidy et al., 2011).
Digital execution with field-programmable gate array (FPGA)
affords flexibility necessary for algorithm exploration while
filling time and performance constraints. Therefore, FPGAs
have increasing applications in the neural computing area
(Nanami and Kohno, 2016). Furthermore, with the advancement
in HDL (high-level hardware description language) synthesis

tools, FPGA can also be operated as the effective hardware
accelerators (Misra and Saha, 2010; Arthur et al., 2012). Some
researchers have worked on efficient hardware implementations
(Wang et al., 2018; Zjajo et al., 2018). Grassia et al. (2016)
simulated a stochastic neuron in FPGA. An approximate
circuit technique was used for FPGA implementation of real-
time processing of tactile data to be utilized in the e-skin
applications (Franceschi et al., 2017). Ambroise et al. (2017)
proposed a biomimetic neural network implemented on FPGA
for bi-directional communication with living neurons cultured
in microelectrode array. A digital hardware realization was
proposed for spiking model of cutaneous mechanoreceptor in
order to identify the applied pressure stimulus (Salimi-Nezhad
et al., 2018). They used the Izhikevich neuron model for
simulation and then digital execution of the SA-I and FA-I
afferents on the FPGA. Indeed, their approach is the proof of
concept that digital circuit implementation of tactile afferents
has great potential. However, it is necessary to extend previous
work that considers one SA-I or FA-I digital circuit with
single input. Actually, tactile information is conveyed not only
using multiple sub-modalities but also through ensembles of
different afferent types. Consequently, developing a hardware-
based neuromorphic system to run a population of various
afferents and receive multiple inputs is necessary for modeling
study and fabrication of novel tactile sensory system for robotic
and prosthetic applications. Accordingly, in this paper, we
report that designing of a neuromorphic tactile system using a
population of 243 digital afferents includes SA-I and FA-I. To this
purpose, first, four spiking models including Izhikevich model
(Izh), linearized Izhikevich model (L-Izh), Quadratic Integrated
and Fire model (QIF), and linearized QIF model (L-QIF) are
considered for simulating the neural afferents. Next, for all of
these spiking models, an appropriate digital circuit is presented
and simulated in VIVADO. The performance comparison is
done to find which of the designed circuit is efficient from
area and power consumption viewpoint while maintaining the
characteristics of their original mathematical model. Then, the
superior circuit is further improved by replacing multipliers
with logical shifter. Consequently, the improved L-QIF was
hired for each afferent to create a neuromorphic network of
artificial SA-I/FA-I afferents. Employing an experimental setup,
the performance of the digital spiking network, which is executed
on the FPGA, is explored. In this case, the indentation data of
a 3 × 3 pressure sensor grid are sent to the FPGA through
an interface board. FPGA runs the digital circuits of the 243
spiking model of afferents and processes the incoming data of
nine pressure sensors in parallel to deliver tactile spike patterns
for the next level of processing. To the best our knowledge,
the proposed neuromorphic system is the first digital system
implementing a population of tactile afferents (both SA-I and FA-
I) while receiving multiple inputs. Finally, by applying machine
learning algorithm, the artificial spike responses are analyzed
based on the firing rate paradigm, and thus, we classify three
objects to show a real application of the proposed neuromorphic
tactile system in a haptic experiment.

The rest of the paper are prepared in this way: the spiking
models and their digital circuits are described in sections
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“Materials and Methods” and “Digital Circuits,” respectively.
The hardware implementation results are discussed in section
“Hardware Implementation.” Finally, the section “Conclusion”
concludes the paper.

MATERIALS AND METHODS

The mathematical description of four spiking models used in this
research has been explained in Appendix. Based on these spiking
models, we present an appropriate digital circuit for each model.
The designed digital circuits are compared to obtain the circuit
with minimum area and power consumption characteristics to
be used for developing a neuromorphic tactile system.

Spiking Model of Tactile Afferent
The primary afferents in the glabrous skin that convey tactile
information are SA-I, II and FA-I, II. In human hand, there are
approximately 43% FA-I afferents end with Meissner corpuscles,
13% FA-II units with Pacinian endings, 25% SA-I units innervate
Merkel cells, and 19% SA-II units with Ruffini endings (McGlone
and Reilly, 2010). Merkel receptors, located superficially in the
skin (Roudaut et al., 2012), are triggered by lower-frequency
skin deformations and are essential for texture discrimination
and fine tactile perception. The SA-I afferents, which branch and
innervate the Merkel discs, are active throughout the physical
stimulation. Meissner receptors have particularly high density on
the fingertips and respond whenever a change in the stimuli is
detected (i.e., when the stimuli is applied or when it is removed)
(Roudaut et al., 2012). The FA-I afferents, which branch and
innervate the Meissner corpuscles, have small receptive fields and
detect dynamic skin deformations (Johansson and Vallbo, 1979).
They are responsible for detection of low-frequency vibration,
slip, and motion.

Figure 1 shows the afferent model used in this study. It was
shown that this model reproduces the spike trains generated in
the FA-I and SA-I biological counterpart for various stimuli (Saal
and Bensmaia, 2015; Friedl et al., 2016; Rongala et al., 2017, 2018;
Salimi-Nezhad et al., 2018). In this model, the amount of force
value is measured by the sensor, f (t) and its variations ḟ (t) (in
mN), are weighted separately (Cx1, Cx2) to make the current I(t)
(in mA) for spike generation. Four neural models including Izh,
L-Izh, QIF, and L-QIF are used for spiking part of the afferent
model, independently. The mathematical descriptions of these
four spiking models are explained in Appendix.

DIGITAL CIRCUITS

For designing neuromorphic systems, FPGAs are frequently used
in recent years, and several successful cases were reported in the
literature. Indeed, its parallel and high-speed computation ability
afford real-time implementation of spiking neural networks.
In this section, spiking models are first discretized using
Euler method, and then the digital circuits to be executed
on FPGA are presented. For the designed digital circuits, the
resource utilization is compared to find the circuit, which has

fewer logic blocks. In this way, we can implement a large
population of afferents. The discretizing step for all equations is
h = 0.0078125 ms. In the following equations, we consider that
Cm and τ are equal to 1 F and 1 s, respectively.

The Izh Digital Circuit
Equations 21–23 describing the spiking behavior of the SA-I
model can be discretized as:

v [n+ 1] = v [n]+ h× (0.04× v [n]× v[n] + 5×

v[n] + 140− u[n] + C11 × I[n]) (1)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(2)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(3)

The scheduling diagram for this model is illustrated in
Figure 2A. Similarly, for the FA-I model, the discretized
equations are as follows:

v [n+ 1] = v [n]+ h× (0.04× v [n]× v [n]+ 5×

v [n]+ 140− u [n])+ C12 × (I [n+ 1]− I[n]) (4)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(5)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(6)

The scheduling diagram for the FA-I model is shown in
Figure 2B. It illustrates how membrane potential (v) and recovery
variable (u) of the afferent model in each iteration are generated.
There are also memory registers to store the outputs for use in the
subsequent steps. The register length, N, to solve individual state
variables is N = 32 (1 bit for sign, 13 bits for integer part, and
18 bits for fractional part) to obtain a low-error and high-speed
circuit (Salimi-Nezhad et al., 2018). It should be pointed out
that “N” directly affects the computational time and the required
precision for implementation.

The L-Izh Digital Circuit
To design the digital circuit for the L-Izh model of the SA-I
afferent, Eqs 27–29 are discretized as follows:

v [n+ 1] = v [n]+ h× (k1 × |v [n]+

62.5| − k2 − u[n] + C21 × I[n]) (7)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(8)
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FIGURE 1 | The slowly adapting type 1 (SA-I) and fast adapting type 1 (FA-I) afferents model. The SA-I responds to the absolute value of the stimulus and is active all
over the interval of the stimulus contact. The FA-I delivers spikes when stimulus has dynamic, i.e., during onset and offset phases of indentation profile. Four neural
models including the Izhikevich model (Izh), linearized Izhikevich model (L-Izh), Quadratic Integrated and Fire model (QIF), and linearized QIF model (L-QIF) are used
for spike generation of the afferent model, independently.

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(9)

Accordingly, the scheduling diagram is depicted in Figure 3A.
For FA-I afferent, the discrete equations of L-Izh model are
as follows:

v [n+ 1] = v [n]+ h× (k1 × |v [n]+ 62.5|

−k2 − u [n])+ C22 × (I [n+ 1]− I[n]) (10)

u [n+ 1] = u [n]+ h× a×
(
b× v[n] − u[n]

)
(11)

if v[n+ 1] ≥ 30 mV → then
{

v[n+ 1] ← c
u[n+ 1] ← u[n] + d

(12)

and the scheduling diagram is presented in Figure 3B. It shows
how membrane potential (v) and recovery variable (u) of the
afferent model in each iteration are produced.

The QIF Digital Circuit
Equations (33)–(34), which are responsible for producing spiking
patterns in the SA-I model, are discretized as follows:

v [n+ 1] = v [n]+ h× (M1 × v [n]× v[n] + C31 × I[n]) (13)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (14)

and the scheduling diagram for this model is presented in
Figure 4A. Also, the discretized equations for FA-I model are:

v [n+ 1] = v [n]+ h× (M1 × v [n]× v [n])+

C32 × (I [n+ 1]− I[n]) (15)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (16)

The scheduling diagram for this model is shown in Figure 4B.

The L-QIF Digital Circuit
Parallel to the method used in the previous subsections, Eqs 37
and 38 for SA-I model are discretized as follows:

v [n+ 1] = v [n]+ h× (M2 × |v [n]| + C41 × I [n]) (17)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (18)

and the scheduling diagram for this model is demonstrated in
Figure 5A. Finally, the discretized equations for FA-I model are:

v [n+ 1] = v [n]+ h× (M2 × |v [n]|)+

C42 × (I [n+ 1]− I [n]) (19)

if v[n+ 1] ≥ vpeak → then v[n+ 1] = vreset (20)

and the scheduling diagram is illustrated in Figure 5B.
The digital circuits, Figures 2–5, based on spiking model

of afferents, are the neuromorphic conversion of sensor
output to spiking patterns conveying tactile information.
Table 1 compares the resources utilized by the different
digital circuits for both SA-I and FA-I models. As it is
observed, the digital circuits for the linearized models (L-
Izh and L-QIF) are more area efficient compared with their
original counterparts (the Izh and QIF models). Also, it is
apparent that the L-QIF digital circuit uses the minimum
resources. Considering Table 1, the hardware resource
utilization even for the Izh digital circuits compared to
the circuits reported in Salimi-Nezhad et al. (2018) is
decreased. Specifically, in the present research, for the
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FIGURE 2 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the Izh spiking model. In these diagrams, there are two state
variables, v and u, so two digital circuits are designed for each variable, distinctly.

Izh digital circuits, we have used less number of DSP
for SA-I and FA-I afferents compared to the circuits
reported in Salimi-Nezhad et al. (2018).

Simulation Results
In this section, we present the results of MATLAB simulation of
four types of spiking models for both afferents (SA-I, FA-I) and
VIVADO simulations of their digital circuits. Figure 6 shows the
time responses of the SA-I spiking model with trapezoidal input.
Increasing input current causes decreasing inter-spike interval.
Figure 7 demonstrates the time responses of the FA-I spiking
model with trapezoidal input. Higher value of slope motivates the
model to produce spike patterns with higher rate. In Figures 6,
7, the first panels display the trapezoidal pulse as the input
signal, the second panels present the MATLAB simulations of the
afferent model, and the third panels demonstrate the VIVADO
simulation of the digital circuit.

Considering Figures 6, 7, the SA-I afferent fires throughout
a sustained phase of stimulus and the FA-I afferent responds
at the onset and offset phases of that stimulus. This result
is functionally in agreement with the response measured by
the observations reported in Jörntell et al. (2014). In other
words, the spiking model and their digital circuit have similar
responses and functionally are compatible with spiking activity
of biological afferent.

Population of Digital Afferents
Although in previous sections, we found that the L-QIF model
has the least area consumption in comparison with the other
three models, we can also use other techniques for further
reduction in the hardware utilization. Indeed, multipliers are
costly blocks, which consume more power and use more area
compared to the simple blocks such as adders or shifters. For this
reason, by replacing multipliers with logical shifter, the improved
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FIGURE 3 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the L-Izh model. In these diagrams, there are two state
variables, v and u, so two digital circuits are designed for each variable, separately. Compared to Figure 2, due to linearization, this model consumes less hardware
area and has less power consumption.

L-QIF is obtained with the coefficients described in Table 2.
Consequently, we expect an increase in operational frequency,
due to the lack of high-cost operation (multipliers) to slow down
the important paths. Furthermore, this approach reimburses the
limited number of available multipliers on the chip and supports
the implementation of larger spiking networks on the FPGA.
Parameter values in Table 2 are chosen to show a better and a
clear view of the spiking responses in the raster plot of population
of afferents. In this way, we modified and tuned the experimental
parameters from the simulation parameters.

Table 3 compares the improved L-QIF digital circuit with
the L-QIF circuit. It is apparent that replacing multipliers with
shift registers leads to the decrease in DSP and Slice LUTs
count, while the number of LUT Flip Flop increases. In this
way, more resources can be saved if one uses the improved
L-QIF model for spiking model of afferents. This can be quite
important when a population of afferents is implemented on the
FPGA. It should be pointed out that, although modern FPGAs

have a significant number of DSP slices, equipping prosthesis
and robotic hands with human-like skin needs implementation
of thousands of mechanoreceptors and afferents to enable
simultaneous transmission of tactile information. Therefore,
saving energy and area utilization is quite important for
practical applications. Here, we demonstrate a prototype for 243
artificial afferents that transmit spikes asynchronously conveying
spatiotemporal features necessary for tactile perception.

HARDWARE IMPLEMENTATION

The neuromorphic implementation of tactile afferents can speed
up the development of novel artificial tactile sensory systems
in the field of telerobotics and teleoperation. Consequently,
in the current research, the hardware-based neuromorphic
implementation is performed. To show the performance of
the designed circuit and to illustrate the spiking patterns of
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FIGURE 4 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the QIF model. In these diagrams, there is only one state
variable, v, the membrane potential. Compared to Figures 2, 3, the digital circuit of the QIF model is simpler, consumes less hardware area, and has less power
consumption.

FIGURE 5 | The scheduling diagram for spike generation of SA-I afferent (A) and FA-I afferent (B) using the L-QIF model. In these diagrams, there is only one state
variable, v, the membrane potential. Compared to Figures 2–4, the digital circuit for the linearized version of the QIF model is much simpler, consumes less
hardware area, and has less power consumption.

TABLE 1 | Device utilization summary for the four designed digital circuits for both afferents.

Izh L-Izh QIF L-QIF

SA-I FA-I SA-I FA-I SA-I FA-I SA-I FA-I Available

Slice LUTs 1341 1436 1098 1192 839 882 250 308 53,200

Slice registers 97 129 97 129 65 97 65 97 106,400

Slice 726 750 558 582 380 396 223 246 13,300

LUT flip flop pairs 34 34 34 34 18 18 18 18 53,200

DSP48E1 8 8 6 6 4 4 3 3 220

Izh, Izhikevich model; L-Izh, linearized Izhikevich model; QIF, Quadratic Integrated and Fire model; L-QIF, linearized QIF model; SA-I, slowly adapting type 1; FA-I, fast
adapting type 1.

a population of digital afferents, an experimental setup was
developed as demonstrated in Figure 8. It consists of nine sensing
units (a matrix of 3 × 3) connected to a ZedBoard through a
custom interfacing board. The applied force to the individual

Force-Sensitive Resistors (FSRs) provides an analog signal for
the 10-bit ADC (analog to digital convertor), which is fed to
the ZYNQ (in this case, ZedBoard). The ZedBoard (a particular
ZYNQ evaluation board) is one of the low-cost and high-speed
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FIGURE 6 | The time response of the spiking model of the SA-I afferent in 100 ms for Izh (A), L-Izh (B), QIF (C), and L-QIF (D). In these simulations, the first panels
show the input signal, the second panels display the MATLAB simulation of the mathematical model, and the third panels illustrate the VIVADO simulation of the
digital circuit. Average frequencies in 100-ms simulation for Izh, L-Izh, QIF, and L-QIF are 760, 840, 880, and 780 Hz, respectively.

devices for digital realizations of spiking neurons. It is composed
of two major sections: Programmable Logic (PL) and Processing
System (PS). The PL section is a platform that can be configured
using VHDL language and the PS section is a dual-core ARM
cortex-A9 processor that can be programmed by C language.
The output of ZedBoard is illustrated in two ways. One way
is to show on oscilloscope, and the other is to display on the
screen. Oscilloscope is used to show the spiking responses of the
individual SA-I or FA-I digital circuit, and screen is employed to
illustrate the activities of the whole population or subpopulation
of digital afferents, simultaneously.

Due to resources available in the ZedBoard evaluation kit,
we have implemented 243 digital circuits of the improved
L-QIF models in the PL section including 90 SA-I and 153
FA-I. This ratio is chosen to consider that the number of
SA-I and FA-I afferents exists in the fingertip (McGlone and
Reilly, 2010; Pasluosta et al., 2017). In our design, for each
FSR sensor, 27 digital afferents are run on the ZedBoard (10
SA-I and 17 FA-I). The hardware utilization for realization
of 243 digital afferents is presented in Table 4. It should

be mentioned that the operating frequency of ZYNQ is
100 MHz. Accordingly, in this experimental setup, the delay
from the onset of applying force to the FSRs to the appearance
of spiking responses on the ZYNQ output pins is in the
range of nanoseconds.

Considering final applications, simplicity of hardware
implementation is an important factor. This feature is
essential for development of sensory modules, which tries
to integrate sensory and processing circuits. Indeed, spike-based
representation of information has a significant potential to
improve performance and efficiency of artificial tactile sensing
systems. In this way, the proposed digital circuit enabled us to
design a hardware architecture for executing a population of
afferents on the PL. This new approach for fabricating sensory
systems artificially replicates the firing patterns of the SA-I and
FA-I afferents. The compartmentalized structure of the proposed
approach and the ability to control parameters facilitate for easy
scalability without extensive circuit redesign.

Next, using the prepared experimental setup, we touch one,
two, or three randomly selected FSR sensors simultaneously from
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FIGURE 7 | The time response of the spiking model of the FA-I afferent in 100 ms for Izh (A), L-Izh (B), QIF (C), and L-QIF (D). In these simulations, the first panels
show the input signal, the second panels display the MATLAB simulation of the mathematical model, and the third panels illustrate the VIVADO simulation of the
digital circuit.

TABLE 2 | Parameter values of the improved L-QIF digital circuit.

M2 0.25

C41 0.5

C42 16

the 3 × 3 pressure sensor matrix as illustrated in Figure 9. In
this figure, the activated sensors are shown by the red boxes.
For instance, in Figure 9D, three sensors are simultaneously
touched, while in Figures 9B,F,H, two randomly selected sensors
are touched at the same time.

The spiking responses of the touched sensors in Figure 9 are
shown in Figure 10. Figure 10A shows the spiking activity of
the all 90 SA-I digital circuits, and Figure 10B demonstrates
the spiking patterns of the all 153 FA-I digital circuits. Indeed,
we used the FPGA parallel processing capability for realizing
population of digital afferents. In Figure 10, for the first 4 s, no
sensor has been touched and only the background activity of
the population of artificial afferents is observed. Next, regarding
Figure 9A, the first sensor, S1, is touched. In this case, from

TABLE 3 | Comparison of the hardware utilization for the L-QIF and the improved
L-QIF digital circuits for both afferents.

L-QIF Improved L-QIF

SA-I FA-I SA-I FA-I Available

Slice LUTs 250 308 108 167 53,200

Slice registers 65 97 32 64 106,400

Slice 223 246 30 56 13,300

LUT flip flop pairs 18 18 29 32 53,200

DSP48E1 3 3 0 0 220

t = 4 to t = 6 s, the applied force to S1 sensor increases from
zero to a desired level. From t = 6 to t = 9.5 s, the force value
is maintained in this level. From t = 9.5 to 10.5 s, the applied
force is reduced to its initial value, which is zero. Figures 10A,B
show the firing activities of the population of artificial afferents,
which are running on the ZedBoard. The digital SA-I afferents
remain active during the period of stimulus contact, while the
digital FA-I afferents react whenever a change in the stimuli is
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FIGURE 8 | The experimental setup for evaluating the neuromorphic tactile system. A population of 90 digital SA-I afferents and 153 digital FA-I afferents are
implemented on the field-programmable gate array (FPGA). In addition to the ZYNQ evaluation board, the system is composed of two other components: a matrix of
3 × 3 sensing units and an interface circuit (equipped with a 10-bit ADC unit) between the sensing unit and the ZedBoard. The sensing unit is composed of nine
Force-Sensitive Resistors (FSRs) to deliver the detected pressure as an analog voltage signal to the interface unit. This unit filters, rectifies, and scales its input signal
and then converts it to the digital signal to be sent to the ZedBoard. Resistance of the FSRs changes by applying an external force. Depending on the amount of
pressure applied to the individual FSR sensor, digital afferents send spike trains to the screen or to the output pin of the ZedBoard to be displayed on the
oscilloscope (after analog conversion).

TABLE 4 | Hardware operation for realization of 243 afferents (SA-I/FA-I) in the
ZedBoard using the improved L-QIF digital circuit.

Used Available

Slice LUTs 33, 249 (62%) 53,200

Slice registers 15, 111 (14%) 106,400

Slice 10, 202 (77%) 13,300

LUT as logic 33, 187 (62%) 53,200

LUT as memory 62 (1%) 17,400

LUT flip flop pairs 8723 (16%) 53,200

DSP48E1 180 (82%) 220

Bonded IO 21 (10%) 200

detected. Similarly, considering Figure 9B, both sensors S3 and
S5 are touched concurrently. In this way, from t = 14 to 17 s,
the applied forces to S3 and S5 increase from zero to another
chosen level. From t = 17 to 19 s, the force value is maintained in
this selected level. From t = 19 to 20 s, the applied force is again
reduced to its initial value, which is zero. It should be pointed
out that the amount of applied force to S3 is higher than S5, and
thus, firing rate is increased, accordingly. Regarding Figure 10,
the firing rate of the artificial SA-I is proportional to the intensity
of stimulus, while firing patterns of the artificial FA-I appear when
there is a changes in the stimulus intensity. Indeed, the different

spiking sequences are evoked by applying different force profiles
to the FSR sensors.

To obtain more insights, we select four cases from Figure 10,
the colored regions, and then explore the behavior of the SA-I
and FA-I digital circuits in more detail as shown in Figures 11,
12, respectively. In other words, not only the firing patterns
of the whole population are illustrated in Figure 10, but also
we show the spiking responses of the selected afferent on the
oscilloscope screen (Figures 11, 12). Yellow, magenta, cyan, and
green illustrate the spiking patterns arising from touching S1, S2,
S4, and S8, respectively (see Figure 9). In Figures 11, 12, from
each subpopulation, one (the first) implemented artificial afferent
is chosen (the red rectangle in the colored regions) to be displayed
on the oscilloscope. In this case, the output of the selected digital
afferent after converting to analog signal is demonstrated on the
oscilloscope. In these figures, the output of the ZedBoard was
shown in yellow color (membrane voltage). As it is observed, as
the force magnitude increases, the firing frequency of the spiking
patterns for digital SA-I is also increased. This approach makes
possible to decode stimuli, while the tactile data are collected.
Moreover, it is observed from Figure 12 that the rate of spiking
responses in the offset phase is less than the onset phase for digital
FA-I, due to the smaller slope for the offset phase. Indeed, the SA-I
afferents provide encoding of pressure and FA-I afferents encode
transient performance of the signal.

FIGURE 9 | Randomly touching one (A,C,E,G), two (B,F,H), or three FSR sensors (D) from the 3 × 3 grid in the experimental setup shown in Figure 8. The
activated sensors are shown by the red boxes. Different amounts of forces with dissimilar time profiles are applied to the FSR sensors. (A) to (H) show the sequence
of touched sensors in eight stages, respectively.
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FIGURE 10 | The raster plot for firing patterns of population of 243 digital
afferents executed on the ZedBoard. The spiking patterns for 90 SA-I afferents
(A) and 153 FA-I afferents (B) are shown for 60 s. Not only the touched
sensors are selected randomly, but also the time duration and the onset and
offset velocities are different. The spiking responses of four cases were
highlighted by the colored regions to be further investigated in Figures 11, 12.

In addition, in order to show a practical application of the
proposed neuromorphic setup, we attached five FSR sensors
on a glove (each FSR sensor was allocated to a finger) and
performed some haptic experiments while sending FSR outputs
to the spiking network of tactile afferents implemented on the
ZedBoard. The subject wears the glove to pick up, hold, and put
in the place three different objects (a glass, a tape dispenser, and a
book) while the firing activity of population of afferents is being
measured. As shown in Figure 13, these objects have various size
and weights. Object A, the glass, has the lowest weight, and object
C, the book, is the heaviest one. Each experiment takes 4 s, and the
hold phase is 3 s fixed. The subject accomplished the experiment
for three cases: first by three fingers (thumb, index, and middle),
then four fingers (thumb, index, middle, and ring), and finally
with all five fingers. Each three-, four-, and five-finger experiment
was done 20 times for individual objects. Consequently, 60 trials
were collected for each object, and for every trial, firing responses
of 50 digital SA-I and 85 FA-I afferents were recorded for 4 s from
the ZedBoard. Indeed, the spiking patterns of the 135 artificial
tactile afferents were recorded for 180 trials (3 objects, 3 cases, 20
repetitions) to be analyzed by the machine learning algorithms.

Next, the machine learning approaches to interpret the
recorded firing patterns are employed. In this way, first, feature
extraction from spiking responses is accomplished using one
of the fundamental coding paradigm for neural information
processing, rate coding. The firing rate (FR) is defined by the
number of spikes occurring at the time interval 1t, FR =
(spikes) / 1t. Change of firing rate as the stimulus changes
called rate coding. It is typically pointed out that sensory
neurons transmit information by their firing rate. In this study,
the decoding algorithm is based on the spike count; that is,
different stimuli elicit a different number of spikes (Vreeken,
2003). Principal components analysis is exploited for dimension
reduction. The first, three principal components are considered.

FIGURE 11 | The firing activity of 10 digital SA-I afferents implemented on the ZedBoard. The sustained firing to the input is clear. Considering Figures 9, 10, yellow,
magenta, cyan, and green illustrate the spiking activity arising from touching S1 (A), S2 (B), S4 (C) and S8 (D) respectively (upper panels). We use a 16-bit DAC to
convert the digital outputs of the ZedBoard to analog signals to be displayed on the oscilloscope screen (lower panels). From each subpopulation, the first artificial
afferent is chosen (the red rectangle in the upper panels) to be shown on the oscilloscope screen (lower panels). The volt division was set on 5 mV.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2020 | Volume 13 | Article 1330

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01330 December 31, 2019 Time: 13:30 # 12

Salimi-Nezhad et al. A Digital Hardware System for Tactile Afferents

FIGURE 12 | The firing activity of 17 digital FA-I afferents implemented on the ZedBoard. Considering Figures 9, 10, yellow, magenta, cyan, and green illustrate the
spiking activity by touching S1 (A), S2 (B), S4 (C) and S8 (D), respectively (upper panels). Individual digital FA-I afferent fires during stimulus onset and offset and
changes in input. We use a 16-bit DAC to convert the digital outputs of the ZedBoard to analog signals to be shown on the oscilloscope screen (lower panels).
From each subpopulation, the first artificial afferent is chosen (the red rectangle in the upper panels) to be displayed on the oscilloscope (lower panels). The volt
division was set on 5 mV.

FIGURE 13 | The haptic experiment. (A) Five FSR sensors are attached to a glove. (B) Three objects: a glass, a tape dispenser, and a book. (C) The subject wears
the glove and picks up every object and holds it for 3 s and then puts in the place. The subject repeats this experiment for 20 times with three fingers, four fingers,
and five fingers, independently. The FSRs send their signal to the ZedBoard where it runs a population of 50 SA-I and 85 FA-I digital afferents. The firing patterns of
the 135 artificial tactile afferents are recorded for 180 trials (3 objects, 3 cases, 20 repetitions) to be analyzed by the machine learning algorithms. (D) Sample of
spike trains with five fingers. Green spikes show the response of the artificial SA-I afferents and blue spikes illustrate the response of artificial FA-I afferents.
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FIGURE 14 | Decoding based on the firing rate paradigm, in which different stimuli elicit a different number of spikes for the same time interval. Upper panels and
lower panels indicate spike count for SA-I and FA-I afferents, respectively. Each point indicates one trial. Twenty trials were performed for individual object, which is
indicated by a different color.

FIGURE 15 | The first three principal components (PCs) obtained from three haptic experiments. Upper panels show feature space for SA-I afferents, and lower
panels illustrate feature space for FA-I afferents.

Figure 14 shows the spike count of the population of SA-I
and FA-I afferents for three objects and three cases. Each point
indicates one trial. Feature space of the first three principle
components for all three experiments is illustrated in Figure 15.

Next, we report the classification performance of the k-Nearest
Neighbor classifier using the obtained artificial spike trains. The
classifier has three outputs: objects A, B, and C. The classifier
input is the three principal components computed forming the
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FIGURE 16 | The classification accuracy for k-Nearest Neighbor (kNN)
classifier. Classification accuracy for digital SA-I (top panel), for digital FA-I
(middle panel), and for both afferents, SA-I and FA-I (bottom panel).

total number of spikes obtained for that stimulus. Different k
values from 2 to 8 were tried. However, the results for k = 5
were reported in Figure 16. The value of k is important as a
small k might result to a classifier sensitive to noise samples,
and a large k can lead to less distinct boundaries among classes.
The k-Nearest Neighbor is a non-parametric classifier that
measures the difference between every spike train (ST) and other
spike trains. The object was properly classified when the mean
difference between the ST and spike trains from the same class
was smaller than the mean difference between the ST and spike
trains of other classes. This procedure was repeated for every ST
obtained from digital afferents.

For classification, 80% of samples were randomly grouped as
training set, and the remaining 20% samples were considered as
the test set. K-fold cross-validation was also used. Indeed, the
data samples are divided into K subsets. Each time, one of these
K subsets is used as the validation set and the remaining (K -
1) subsets form a training set. Then, the average error across
all K trials for each subset is computed (Hosseini et al., 2007).
We used K = 5 for cross-validation. The feature vectors must be
normalized in order to avoid distortions between features and
numerical problems. Finally, the mean and SD of classification
accuracy for this haptic experiment (Figure 13C) is reported in
Table 5.

The developed system makes it possible to encode force
information by a sequence of spikes, mimicking the neural
dynamics of SA-I and FA-I afferents. Indeed, the recorded
artificial spike trains from ZedBoard, which runs the SA-I/FA-
I digital circuits, carry sufficient information. In this way,
the input stimulus is discriminated even using a commercial
FSR sensor. This technical approach is an innovative one for
manufacturing sensory systems that artificially replicate the SA-
I and FA-I firing activities to be employed in the bio-robotic

TABLE 5 | Mean and SD of classification accuracy for different experiment.

3-Finger 4-Finger 5-Finger

SA-I 85% ± 3% 87% ± 8% 93% ± 6%

FA-I 83% ± 5% 92% ± 7% 92% ± 7%

Both (SA-I and FA-I) 85% ± 6% 92% ± 7% 92% ± 7%

TABLE 6 | Parameter values for the spiking models of the tactile afferents used
for simulations.

Parameter Value Parameter Value

a 0.02 s−1 b 0.2 s−1

c −65 mV d 8 mV

k1 0.75 s−1 k2 20 mV s−1

M1 1 mV−1 s−1 M2 0.0625 s−1

vpeak 30 mV vreset 0 mV

Cm 1 F τ 1 s

C11 20 C12 960

C21 24 C22 960

C31 0.015625 C32 0.5

C41 1 C42 40

and prosthetic application. The obtained spike trains are diverse
and reliable enough to be able to decode the presented stimuli
with high accuracy.

CONCLUSION

To obtain better performance and efficacy over traditional
methods, recently, there is a tendency toward creating
neuromorphic devices to mimic the biological systems. Software
simulation and hardware realization of the SA-I and FA-I
afferents might be considered as the neuromorphic approaches
for restoring tactile feedback in upper limb prostheses. This
methodology transmits tactile information more efficient, very
similar to the healthy peripheral nervous system, to the next
level, which can be the prosthesis controller. In this research,
to digitally realize a population of 243 tactile afferents (90
SA-I and 153 FA-I) on FPGA, with emphasis on real-time
functionality, a digital circuit was designed using an improved
version of the L-QIF neural model. This model has been selected
for the highest simplicity and lowest resource consumption
of hardware implementation compared to the other model
reported in this research. Using an experimental setup, we
investigated the performance of the neuromorphic tactile system
(comprising the SA-I and FA-I afferents) when it received
multiple inputs simultaneously. Using a glove equipped with
FSRs, we performed some haptic experiments and then we
analyzed the spiking responses measured from the ZedBoard.
Applying machine learning algorithm and considering firing
rate coding, the picked up object was recognized with high
accuracy from the recorded spike trains produced by the artificial
tactile afferents.

Although we did not discuss the biological plausibility of the
designed digital circuits, it was shown that they functionally
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follow the physiological observation, which is a basic step
for moving forward. It should be mentioned that, whereas
FSR transducers are integrated relatively easily with peripheral
hardware and software, their application for mimicking
mechanoreceptor response is not precise. In addition, a
compliant skin-like layer should cover the FSR sensors. Finally,
implementing a population of digital afferents might support
the possibility for future development of new generation of
tactile modules for prosthetic hands to reestablish sensory
feedback for amputee. Moreover, the obtained spike trains
from digital afferents may be further processed by the next
level, which also can be done in hardware. This will make a
neuromorphic sensory system for a mobile robot to accomplish
various real-world tasks such as texture discrimination and
object recognition.
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APPENDIX

Izhikevich Neuron Model (Izh)
Integrate-and-fire (IF) neuron models are popular and simple to simulate, which help to be used in large network computational
studies; however, they lack physiological interpretability. In contrast, conductance-based models with high biophysical realism are
expensive to simulate since they often have high-dimensional non-linear differential equations. They require the tuning of many
parameters and thus preventing their use in large networks.

Izhikevich proposed a model for spiking neuron that combines the response diversity of conductance-based models and the
computational efficiency of IF neurons. The Izhikevich model (Izh) is described as follows (Izhikevich, 2003):

v′ = 0.04v2
+ 5v+ 140− u+ C11

I
Cm

(21)

u′ = a
(
bv− u

)
(22)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(23)

v is the membrane potential of the neuron, I is the input current, and u is the membrane recovery variable. Constants a, b, c, and d are
the neuron parameters. C11 scales the input current. Cm is capacitance value for dimensionality consistency. The parameters values of
the Izh model, which were used in this research, are listed in Table 6.

Equations 21–23 are used to describe the spiking part of the SA-I model. Similarly, for FA-I model, the following mathematical
model is used to obtain the output spike train.

v′ = 0.04v2
+ 5v+ 140− u+ C12

τ

Cm
I′ (24)

u′ = a
(
bv− u

)
(25)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(26)

C12 is a constant factor that scales the input and τ is the time constant, and their values were reported in Table 6.

Linearized Izhikevich Neuron Model (L-Izh)
One solution to reduce high-cost mathematical operations is linearization. We use a piecewise-linear approximation of the Izh, which
was presented in Soleimani et al. (2012). This L-Izh is described as follows:

v′ = k1 |v+ 62.5| − k2 − u+ C21
I
Cm

(27)

u′ = a
(
bv− u

)
(28)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(29)

k1 and k2 are the constant values of the linearized model. C21 scales the neuron input. For the FA-I model, the L-Izh model can be
used as follows:

v′ = k1 |v+ 62.5| − k2 − u+ C22
τ

Cm
I′ (30)

u′ = a(bv− u) (31)

if v ≥ 30 mV → then
{

v ← c
u ← u+ d

(32)

C22 is the constant coefficient for scaling the input current. The parameter values are listed in Table 6.
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Quadratic Integrated & Fire Neuron Model (QIF)
Considerable research has been devoted to combine the economy of IF models with the physiological interpretability of conductance-
based models. An example is the Quadratic Integrated and Fire (QIF) model that has the interpretation of a mathematical reduction of
the conductance-based model of Hodgkin and Huxley (1952) (Van Pottelbergh et al., 2018). Several generalizations of the QIF model
have been studied in the literature. Shlizerman and Holmes (2012) presented the QIF model with minimum computations as follows:

v′ = M1v2
+ C31

I
Cm

(33)

if v ≥ vpeak → then v = vreset (34)

M1 and C31 are the constant coefficients. vpeak is the maximum value of membrane voltage, and vreset is the rest membrane potential.
All these parameters are reported in Table 6. Similarly, for FA-I model, we have:

v′ = M1v2
+ C32

τ

Cm
I′ (35)

if v ≥ vpeak → then v = vreset (36)

C32 scales the model input. Some neuron models such as the QIF model (Benjamin et al., 2014) and adaptive exponential integrate
and fire model (AdEx model) (Brette and Gerstner, 2005) do not instantly produce a spike. These neuron models hire alternative
non-instant functions, which control the membrane potential once it reaches the threshold voltage (Lee et al., 2018).

Linearized QIF Neuron Model (L-QIF)
Although the QIF model is a simple model, it is possible to use the linear approximation method to obtain a simpler model. Similar
to the method used in Soleimani et al. (2012), the QIF model is linearized as follows for SA-I model:

v′ = M2 |v| + C41
I
Cm

(37)

if v ≥ vpeak → then v = vreset (38)

M2 and C41 are the constant coefficients. The linearized version of the QIF model for FA-I afferent is as follows:

v′ = M2 |v| + C42
τ

Cm
I′ (39)

if v ≥ vpeak → then v = vreset (40)

C42 is the constant parameter. The parameter values reported in Table 6 are taken from Izhikevich (2003); Shlizerman and Holmes
(2012), Soleimani et al. (2012), and Rongala et al. (2018). The M2 value is selected to have minimum mean square error between the
QIF spiking model and its linearized version. The parameters in last four rows adjusted by testing various values to obtain appropriate
firing rate. Overall, high gain value causes a strong firing rate independent from the stimulus strength, and thus, the temporal structure
of spikes is less informative. Conversely, low gain factors initiate low firing rate and accordingly a long latency in spike responses (Oddo
et al., 2017). So, it is necessary to have a proper tradeoff.
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