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Ticks are important vectors of viruses that infect and cause disease in man, livestock, and

companion animals. The major focus of investigation of tick-borne viruses has been the

interaction with the mammalian host, particularly the mechanisms underlying disease and

the development of vaccines to prevent infection. Only recently has research begun to

investigate the interaction of the virus with the tick host. This is striking when considering

that the virus spends far more time infecting the tick vector relative to the vertebrate host.

The assumption has been that the tick host and virus have evolved to reach an equilibrium

whereby virus infection does not impede the tick life cycle and conversely, the tick does

not restrict virus replication and through blood-feeding on vertebrates, disseminates the

virus. The development and application of new technologies to tick-pathogen interactions

has been fuelled by a number of developments in recent years. This includes the release

of the first draft of a tick genome, that of Ixodes scapularis, and the availability of tick-cell

lines as convenient models to investigate interactions. One of the by-products of these

investigations has been the observation of familiar proteins in new situations. One such

protein family is Toll and Toll-like receptors that in vertebrates play a key role in detection of

microorganisms, including viruses. But does Toll signaling play a similar role in detection

of virus infection in ticks, and if it does, how does this affect the maintenance of viruses

within the tick?
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TICK-MICROORGANISM COEXISTENCE

The phylum Arthopoda emerged during the “Cambrian explosion” (540–485 million years ago)
creating numerous groups, many that have survived to the present day. One of these, the
Chelicerata, contains the order Acari, which in turn contains species that obtain nutrition through
blood feeding on vertebrates, collectively termed ticks. Fossil records indicate that ticks have been
present from at least the Cretaceous period (146–65 million years ago) where they could feed
on mammals (de la Fuente, 2003), and likely evolved earlier to take blood meals from reptiles
and then birds (Nava et al., 2009). Irrespective of the precise date that hematophagous behavior
evolved, it is clearly measured in millions of years and implies a long period over which ticks
were in turn parasitized by microorganisms (viruses, bacteria, and protozoa) that are found in
abundance in ticks extant today (Vayssier-Taussat et al., 2015). The presence of microorganisms
in ticks appears to have little impact on the tick, although presumably there is an energetic cost to
harboring such microorganisms. Some authors have characterized this as a combination of conflict
and cooperation (de la Fuente et al., 2016). However, recent studies demonstrated that ticks do
respond in a coordinated fashion to infection with pathogens of mammals (Alberdi et al., 2016), at
least in order to control infection if not eliminate it.
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One of the major groups of microorganisms associated with
transmission by ticks is the viruses (Labuda and Nuttall, 2004).
The interaction of most tick-borne viruses with vertebrate hosts
leads to a transient infection that causes morbidity and mortality.
Occasionally, viruses are found that appear avirulent in humans,
such as the flavivirus Langat virus (LGTV), although these are
the exception and provide a useful model for more virulent
viruses (Tsetsarkin et al., 2016). Infection with a virulent virus
in a vertebrate host is usually short-lived and, if the host
survives, eliminated by the rapid induction of antibodies and
subsequent development of cell-mediated responses. By contrast,
the interaction with the tick appears more benign and long-lived
(Nuttall, 2009). Indeed, for ticks to act as the reservoir for viruses,
the virus must persist in the tick for long periods, potentially
years, without harming the tick or preventing completion of
its various life stages. In addition, viruses can be transmitted
transovarially to the next generation of ticks.

Such a harmonious arrangement contrasts completely with
the virus-vertebrate interaction and recent investigations suggest
that the virus-tick relationship is more dynamic. Preliminary
findings have demonstrated both transcriptomic and proteomic
responses to infection with flaviviruses such as tick-borne
encephalitis virus (TBEV) and LGTV (Weisheit et al., 2015). A
subsequent proteomics study of Ixodes scapularis cells infected
with LGTV demonstrated increased expression of proteins
associated withmetabolic pathways (Grabowski et al., 2016). This
may represent a cellular response to stress or manipulation, by
the virus, of the host cells metabolic machinery. What other
potential responses does the tick have in response to virus
infection?

ANTIVIRAL RESPONSES IN TICKS

Arthropods have an array of antiviral mechanisms to prevent
and control infection (reviewed by Kopáček et al., 2010) . These
include RNA interference (Schnettler et al., 2014), antiviral
peptides such as defensins (Talactac et al., 2017) and detection
through Toll receptors (Rükert et al., 2014). This last group
have been extensively studied in vertebrates. Toll-like receptors
(TLRs) are a recognized family of pattern-recognition receptors
that form part of the innate immune system of vertebrates
(Akira and Takeda, 2004). In addition to binding to a diverse
range of pathogen motifs, they also provide a signaling function
that activates immune responses to infection. A distinctive
feature of the TLRs is their conserved structure composed
of an N-terminal leucine-rich repeat (LRR) ectodomain, a
transmembrane domain, and toll-interleukin receptor (TIR)
signaling domain (Bell et al., 2003). Multiple LRRs, ranging from
19 to 25 in human TLRs, create a long stretch of beta-sheet
that forms a horseshoe-shaped structure that enables pattern-
recognition (Botos et al., 2011). The importance of TLRs to the
control of infection is highlighted by the widespread presence of
these proteins in both invertebrates and vertebrates (Buchmann,
2014).

Toll-like proteins evolved early in the evolution of life and
the proteins present in extant species can be found in most

multicellular organisms, including many ancient invertebrates
(Buchmann, 2014). This is not the case for all innate immune
proteins. RIG-like receptors (RLRs), including proteins such as
RIG-I, LGP2, and MDA5, have not been found in arthropod
genomes although they are present in other invertebrate animals,
suggesting the early loss of RLR precursors in the phylum’s
evolution (Mukherjee et al., 2013). However, TLR genes are often
present in numerous copies within the genome of many species
and have evolved to fulfill a number of roles including structural
development (Anderson et al., 1985) and immunity against
pathogens, including viruses (Ferreira et al., 2014). However, the
mechanism of action of arthropod Toll differs from the pattern
recognition receptor function of mammalian TLRs. Insect Toll is
activated as a result of cleavage of an endogenous ligand protein,
Spätzle, following engagement with carbohydrates of microbial
origin (Arnot et al., 2010). Cleavage causes conformation change
in Spätzle enabling it to engage with the Toll receptor. It is likely
that Toll functions through a similar mechanism in ticks but what
is the evidence for this?

A ROLE FOR TOLL IN TICK ANTIVIRAL
RESPONSES

Firstly, is there a gene encoding tick Toll in the tick genome?
The completion of a detailed draft of the I. scapularis genome

FIGURE 1 | Schematic comparison of the main structural domains present in

Ixodes ricinus toll (ISWC02240) and human TLR3.
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(Gulia-Nuss et al., 2016) suggests that multiple isoforms of tick
Toll exist. A recent review on the subject of immunity genes in
I. scapularis reported 13 copies of Toll genes and 2 copies of
the Spätzle gene (Smith and Pal, 2014). This compares favorably
with the nine Toll receptors that exist inDrosophila melanogaster
(Arnot et al., 2010). However, it is too early to assume that all
of the genes identified in ticks produce a functional protein and
have a role in immunity. Some may be pseudogenes or produce
proteins with a developmental function.

An alternative approach is to measure Toll activity in
ticks in response to microbial infection. Mansfield et al.
(2017) have recently compared the transcriptional response to
infection of Ixodes ricinus cells with a bacterium, Anaplasma
phagocytophilum, to infection with two flaviviruses, louping ill
virus (LIV) and TBEV. One striking observation from this study
was the up-regulation of a single Toll-like protein transcript
(ISCW022740) following infection with the viruses but not
the bacterium. Three other Toll transcripts showed very little
change to infection with the pathogens. This suggests that
transcript ISCW022740 may play a role in the antiviral response.
This strongly mirrors the mammalian response to infection
where Toll-like receptors such as TLR3 are upregulated in
response to infection (McKimmie et al., 2005). Structurally, the
protein encoded by transcript ISCW022740 shares many of the
characteristics of TLRs including a large leucine rich domain
composed of numerous LRR motifs, a transmembrane domain
and a putative TIR domain (Figure 1). In addition, there appears
to be a one hundred amino acid domain at the amino terminus
of the protein (extracellular) that increases the size of tick toll in
comparison withmammalian TLRs. The role of this extra domain
is unknown although appears to be shared with other arachnid
toll proteins and may play a role in engaging with the homolog of
the Spätzle protein.

CONCLUSIONS

The association between ticks and viruses is a fascinating one
and a growing field of investigation. Ticks harbor a vast array

of endogenous viruses (Bell-Sakyi and Attoui, 2013; Li et al.,
2015). However, it is not clear what impact this infection
has on the tick and there is little evidence that this impact
is deleterious in the way that certain viruses are to insects
(Carlson et al., 2006; Chen and Siede, 2007; Xu and Cherry,
2014). Ticks encode Toll proteins and there is early evidence
that at least one of these proteins could play some role in
the tick response to virus infection. This may take the role
of actively controlling virus and in vitro infection of tick cells
with tick-borne viruses shows no apparent cellular changes
in stark contrast to the lytic cytopathic effect observed in
many mammalian cells infected with the same virus. However,
an alternative interpretation could be that infection stresses
the cell. Cell-lines used in such studies are often derived
from embryonic tissue and stress could lead to induction of
transcripts associated with a developmental response. Ticks
appear to tolerate virus infection but further investigation
is required to understand what mechanisms tick cells use
to control virus infection and why this does not lead to
elimination of the virus analogous to the response in vertebrate
hosts.
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